Luminescent vapochromic single crystal to single crystal transition in one-dimensional coordination polymer featuring the first Cu(I) dimer bridged by an aqua ligand.

Sloane Evariste, Ali Moustafa Khalil, Sebastien Kerneis, Chendong Xu, Guillaume Calvez,* Karine Costuas* and Christophe Lescop*

Institut des Sciences Chimiques de Rennes, CNRS - INSA - Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France.

Supporting Information

Table of contents

I.	Experimental Section	2
II.	X-ray Crystallographic Study	4
III.	Photophysical study	16
IV.	Computational details	21
V.	IR-spectrum of Ddry	24
VI.	Preliminary description of the mecanochromic behaviour of D_{dry} : solid state luminescence spectra and power X-ray diagrams obtained after grinding of D_{dry} .	24
VII.	References for the supplementary information file	25

I. Experimental Section

For the preparation of the polymer **D**, procedures were performed under air, in a simple flask. Commercially available solvents were used as received without further purification. Commercially available reagents ($[Cu(CH_3CN)_4]$.PF₆, dppm, and 1,4-dicyanobenzene ligand **B**₀ were obtained from Sigma-Aldrich. ¹H and ³¹P{¹H} NMR spectra were recorded on Bruker AV300 or AV400 spectrometers. ¹H NMR chemical shifts were reported in parts per million (ppm) relative to Me₄Si as external standard. ³¹P{¹H} NMR downfield chemical shifts were expressed with a positive sign, in ppm, relative to 85% H₃PO₄ respectively. FT-IR measurements have been performed on a Perkin Elmer Frontier spectrometer using UATR (Universal Attenuated Total Reflectance) accessory. Spectra have been recorded between 650 cm⁻¹ and 4000 cm⁻¹, on pure samples. UV-vis solid-state absorption measurements have been recorded on a Perkin-Elmer Lambda 650 spectrometer using a 60 mm integrating sphere. Spectra have been recorded between 800 nm and 200 nm, on pellets.

Steady-state emission spectra and luminescence quantum yield measurements were recorded on a *Horiba Jobin-Yvon (HJY)* Fluorolog-3 (FL3-2iHR550) fluorescence spectrofluorometer equipped with a IR R928P PMT / *HJY* FL-1073 detector and with an integrating sphere. Low temperature measurements were allowed by using a OptistatCF (*Oxford Inst.*) in the range of 77 K to 300 K. Excited-state lifetimes in the range 80 K and 300 K were measured with a delta hub (TCSPC: Time-Correlated-Single-Photon-Counting) + delta diode system allowing to measure excited-state lifetimes between 500 ps et 10 μ s and with a pulsed xenon source (FL-1035) allowing to measure excited-state lifetimes longer than 10 μ s.

Solid sample was placed in a quartz sample holders inside the integrating sphere and the cryostat and maintained at the desired temperature until equilibrium was reached before recording the spectrum.

Synthesis of derivative D_{dry}

One equivalent of 1,4-dicyanobenzene (0.007 g, 0.052 mmol) ligand \mathbf{B}_0 was added to one equivalent of the $[Cu_2(\mu_2\text{-}dppm)_2(CH_3CN)_4](PF_6)_2$ complex **A** prepared in-situ in CH₂Cl₂ at room temperature from the reaction of $[Cu(CH_3CN)_4](PF_6)$ (0.039 g, 0.104 mmol) and dppm (0.040 g, 0.104 mmol). To this clear solution were added

200 μ L of distillated water. The resulting reaction mixture was stirred overnight at room temperature. The crude solution was then left upon pentane vapour diffusion, affording after one week of crystallization colourless single crystals. They were collected through filtration and dried under vacuum affording the derivative **D**_{dry} (0.055 g, 0.040 mmol, 80% yield) as an air-stable colourless polycrystalline solid.

Solution NMR data were obtained by dissolving crystals of **D**_{drv} in dry CD₂Cl₂:

¹H NMR (300 MHz, CD₂Cl₂): $\delta = 3.33 - 3.44$ (m, 4H, PCH₂P), 6.98 (t, 8H, J = 7.5 Hz, H_{dppm} in the *para* position relative to the phosphorus atom), 7.18 (t, 16H, J = 7.7 Hz, *meta* H_{dppm}), 7.32 (d, 16H, J = 7.1 Hz, *ortho* H_{dppm}), 7.79 (s, 4H, protons of the 1,4-dicyanobenzene).

³¹P{¹H} NMR (121 MHz, CD₂Cl₂): δ = -8.8 (broad s), -150.0 (sept., PF₆⁻).

IR (cm⁻¹): 697 (vs), 739 (vs), 823(vs), 1097(s), 1260 (w), 1438 (w), 1486 (w), 2253 (v_{CN}, vw), 2958 (vw), 3057 (w), 3646 (v_{OH}, vw)

Elemental analysis, calcd. (%) for C₅₈H₅₀O₁Cu₂F₁₂N₂P₆: C 52.30, H 3.78, N 2.10; found: C 51.86, H 3.66, N 1.95.

Preparation of derivatives D_{CH2Cl2}, D_{EtOH}, D_{CH3NO2} and D_{THF}

Typical procedure consisted by placing single crystals of D_{dry} in the suitable sample holder considering the measurement subsequently conducted. This sample holder was put in an empty beaker that, in turn, was placed in a larger beaker containing a few mL of the considered solvant (CH₂Cl₂, EtOH, CH₃NO₂ or THF). This second beaker was covered and left at room temperature for 5 mn. After this lap of time, it was possible to apply a UV light irradiation at $\lambda_{ex} = 365$ nm to observe that the initial eye-perceived blue-cyan solid state luminescence of **Ddry** was converted to an eye-perceived green to yellow solid state solid state luminescence typical of the solvated crystal of **D**_{CH2Cl2}, **D**_{EtOH}, **D**_{CH3NO2} or **D**_{THF}.

The sample holder was then collected, closed and immediately adapted to the targeted characterisation device on which we checked that, before and after the measurement by applying a UV light irradiation at $\lambda_{ex} = 365$ nm, the initial green to yellow solid state luminescence typical of the solvated crystal of **D**_{CH2Cl2}, **D**_{EtOH}, **D**_{CH3NO2} or **D**_{THF} was still observed.

II. X-ray Crystallographic Study

Single crystal data collection for \mathbf{D}_{dry} , \mathbf{D}_{CH2CI2} , \mathbf{D}_{EtOH} , \mathbf{D}_{CH3NO2} and \mathbf{D}_{THF} , were performed at 150 K with a D8 Venture Bruker AXS (Centre de Diffractométrie, Université de Rennes 1, France) with Mo-K α radiation ($\lambda = 0.71073$ Å). Reflections were indexed, Lorentz-polarization corrected and integrated by the *DENZO* program of the KappaCCD software package. The data merging process was performed using the SCALEPACK program.¹ Structure determinations were performed by direct methods with the solving program SIR97,² that revealed all the non-hydrogen atoms. SHELXL program³ was used to refine the structures by full-matrix least-squares based on F^2 . All non-hydrogen atoms were refined with anisotropic displacement parameters. Unless specifically mentioned (*vide infra*) in the detailed description of each different X-ray crystal structure resolutions, hydrogen atoms were included in idealised positions and refined with isotropic displacement parameters.

Single crystals of all these derivatives were always coated in paratone oil, mounted at low temperature on the diffractometer goniometer as quickly as possible in the case of the solvated crystals D_{CH2CI2} , D_{EtOH} , D_{CH3NO2} and D_{THF}) and X-ray data collection were performed at low temperature.

Upon the vapochromic single crystal to single crystal transition from \mathbf{D}_{dry} to \mathbf{D}_{CH2C12} , \mathbf{D}_{EAGH} , \mathbf{D}_{CH3NO2} or \mathbf{D}_{THF} , the bulk quality of the single crystal integrity was significantly damaged since several micro-cracks always appeared at the surface of the crystals. As a result, the mosaicity of these single crystals was severely hampered but X-ray diffraction data collection was still possible to be conducted allowing getting access to a data set that can be used to proceed to the X-ray crystal structure resolution. Nevertheless, due to the low quality of the intrinsic mosaicity of these solvated single crystals, final agreement (R) factors were determinate with modest values (Table S1) and several ALERTs level B appear in the checkcif reports. Nevertheless, anisotropic displacement parameters associated to the atoms of these 1D-CPs are always satisfactory, unless specifically mentioned (*vide infra*) in the detailed description of each different X-ray crystal structure resolution. Indeed, some of the carbon atoms of the disordered phenyl rings had to be modelled with isotropic displacement parameters. This allows a primarily assignment of these modest R1 and *w*R2 factors of the derivative \mathbf{D}_{CH2CL2} , \mathbf{D}_{EAOH} , \mathbf{D}_{CH3NO2} or \mathbf{D}_{THF} to the low mosaicity associated with the single crystals exposed to the vapochromic transition, and leads confidence to the treatment of the structural resolution of these derivatives whose metric data are fully consistent with those determined for \mathbf{D}_{dry} .

Concerning the X-ray crystal structure resolution of \mathbf{D}_{dry} , as indicated by an Alert Level B in the checkcif report, the "Structure Contains Solvent Accessible VOIDS". Nevertheless, no residual electronic density can found in located in these voids. The protons of the aqua ligand were localized and were refined with isotropic displacement parameters. Table S1 gives the crystallographic data for the derivatives \mathbf{D}_{dry} .

Concerning the X-ray crystal structure resolution of D_{CH2CI2} , two included dichloromethane solvent molecules were found being highly disordered. A correct modelling of the disorder of these solvent molecules was not possible. We have therefore proceeded to a 'squeeze' treatment'⁴ in order to remove the scattering contribution of these molecules which cannot be satisfactorily modelled. As a result, since these disordered molecules occupy a significant volume of the unit cell, several ALERTs level B appear in the checkcif report since " VERY LARGE Solvent Accessible VOIDs" are present in the structure resolution. In addition, one of the phenyl ring of one of the dppm ligands was found disordered over two neighboring positions whose relative occupancies were pondered. In the case of the orientation having the lowest ponderation in its occupancy, all the carbon atoms were refined with isotropic displacement parameters. Table S1 gives the crystallographic data for the derivative D_{CH2CI2} after the 'squeeze' treatment. Table S2 give the crystallographic data for the derivative **D**_{CH2CI2} before 'squeeze' treatment.

Concerning the X-ray crystal structure resolution of \mathbf{D}_{EtOH} , 1.5 included ethanol solvent molecules were found being highly disordered. A correct modelling of the disorder of these solvent molecules was not possible. We have therefore proceeded to a 'squeeze' treatment⁴ in order to remove the scattering contribution of these molecules which cannot be satisfactorily modelled. As a result, since these disordered molecules occupy a significant volume of the unit cell, several ALERTs level A and level B appear in the checkcif report since "VERY LARGE Solvent Accessible VOIDs" are present in the structure resolution. In addition, one of the phenyl ring of one of the dppm ligands was found disordered over two neighboring positions whose relative occupancies were pondered. Some of the carbon atoms of the phenyl rings of the dppm ligands were refined with isotropic displacement parameters, which induced apparition of several ALERTs level B the checkcif report. Finally, in the case of the X-ray crystal structure resolution of \mathbf{D}_{EtOH} , the protons of the aqua ligand could be localized and were refined with isotropic displacement parameters. Table S1 gives the crystallographic data for the derivative \mathbf{D}_{EtOH} after the 'squeeze' treatment. Table S2 give the crystallographic data for the derivative \mathbf{D}_{EtOH} before 'squeeze' treatment.

Concerning the X-ray crystal structure resolution of D_{CH3NO2} , one included nitromethane solvent molecules was found being highly disordered. A correct modelling of the disorder of this solvent molecule was not possible. We

have therefore proceeded to a 'squeeze' treatment⁴ in order to remove the scattering contribution of this molecules which cannot be satisfactorily modelled. As a result, since this disordered molecule occupy a significant volume of the unit cell, several ALERTs level A and level B appear in the checkcif report since " VERY LARGE Solvent Accessible VOIDs" are present in the structure resolution. In addition, one of the phenyl ring of one of the dppm ligands was found disordered over two neighboring positions whose relatives occupancies were ponderated. Finally, in the case of the X-ray crystal structure resolution of D_{CH3NO2} , the protons of the aqua ligand could be localized and were refined with isotropic displacement parameters. Table S1 gives the crystallographic data for the derivative D_{CH3NO2} after the 'squeeze' treatment. Table S2 give the crystallographic data for the derivative D_{CH3NO2} before 'squeeze' treatment.

Concerning the X-ray crystal structure resolution of D_{THF} , one included THF solvent molecule was found being highly disordered over two neighboring positions whose relative occupancies were first pondered. Nevertheless, an acceptable modelling of the disorder of this solvent molecule was not possible. We have therefore proceeded to a 'squeeze' treatment⁴ in order to remove the scattering contribution of this molecule which cannot be satisfactorily modelled. As a result, since this disordered molecule occupy a significant volume of the unit cell, several ALERTs level A and level B appear in the checkcif report since " VERY LARGE Solvent Accessible VOIDs" are present in the structure resolution. In addition, one of the phenyl ring of one of the dppm ligands was found disordered over two neighboring positions whose relative occupancies were pondered. Finally, in the case of the X-ray crystal structure resolution of \mathbf{D}_{THF} , the protons of the aqua ligand were localized and were refined with isotropic displacement parameters. Table S1 gives the crystallographic data for the derivative D_{THF} after the 'squeeze' treatment. Table S2 give the crystallographic data for the derivative **D**_{THF} before 'squeeze' treatment. Atomic scattering factors for all atoms were taken from International Tables for X-ray Crystallography.⁵ CCDC reference numbers 2005250, 2005249, 2005253, 2005252 and 2005251 contain the supplementary crystallographic data for the reference measurements of the X-ray crystal structures of the derivatives D_{dry} , D_{CH2CI2} , D_{EtOH} , D_{CH3NO2} or D_{THF} respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre.

	D _{dry}	D _{CH2Cl2}	D _{EtOH}
Molecular formula	C ₅₈ H ₅₀ Cu ₂ F ₁₂ N ₂ OP ₆	$C_{58}H_{50}Cu_2F_{12}N_2OP_6$	C ₅₈ H ₅₀ Cu ₂ F ₁₂ N ₂ OP ₆
CCDC number	2005250	2005249	2005253
Molecular weight	1331.90	1331.90	1331.90
a(Å)	13.2578(6)	13.972(2)	13.843(2)
b (Å)	22.1788(9)	22.320(3)	22.710(3)
c (Å)	20.6890(12)	20.342(3)	20.222(3)
α (°)	90	90	90
$\beta(\circ)$	91.1534(20)	92.108(6)	91.308(5)
γ(°)	90	90	90
$V(Å^3)$	6082.2(5)	6339.5(16)	6355.6(16)
Z	4	4	4
$Dc (g cm^{-3})$	1.454	1.396	1.392
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P21/c	P21/c	P21/c
Temperature (K)	150(2)	150(2)	150(2)
Wavelength Mo-Kα (Å)	0.71069	0.71073	0.71073
Crystal size (mm)	0.4 * 0.23 * 0.1	0.26 * 0.21 * 0.11	0.18 * 0.15 * 0.11
μ (mm ⁻¹)	0.934	0.896	0.894
F(000)	2704	2704	2704
θ limit (°)	1.35 - 26.40	2.08 - 27.71	2.21 - 27.60
Index ranges hkl	-11 ≤ <i>h</i> ≤ 16,	$-17 \le h \le 18$,	-17 ≤ <i>h</i> ≤ 17,
C C	-27 ≤k≤ 27.	-29 ≤k≤ 29.	-26 ≤k≤ 29.
	-25 < <i>l</i> < 25	-25 < <i>l</i> < 26	-24 <i><l< i=""> 26</l<></i>
Reflections collected	25533	109973	46284
Independant reflections	12378	14522	14390
Reflections $[I > 2\sigma(I)]$	7932	10023	9418
Data/restraints/parameters	12378/0/737	14522/0/732	14390/ 0 / 741
Goodness-of-fit on F^2	1.027	1.043	1.055
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0614	R1 = 0.1560	R1=0.1134
	wR2= 0.1428	wR2= 0.3695	wR2= 0.2232
R indices (all data)	R1 = 0.1042	R1 = 0.1908	R1 = 0.1602
	wR2= 0.1733	wR2= 0.3895	wR2= 0.2479
Largest diff peak and hole $(e \text{ Å}^{-3})$	1.004 and -0.755	2.392 and -1.060	2.055 and -1.012

Table S1. Crystal data and structure refinement for derivatives D_{dry} , D_{CH2Cl2} , D_{EtOH} , D_{CH3NO2} or D_{THF} after the 'squeeze' treatment

	D _{CH3NO2}	D _{THF}
Molecular formula	$C_{58}H_{50}Cu_2F_{12}N_2OP_6$	$C_{58}H_{50}Cu_2F_{12}N_2OP_6$
CCDC number	2005252	2005251
Molecular weight	1331.90	1331.90
<i>a</i> (Å)	13.7187(9)	13.983(2)
<i>b</i> (Å)	22.5661(13)	22.598(3)
<i>c</i> (Å)	20.3718(14)	20.222(3)
α (°)	90	90
$\beta(^{\circ})$	91.618(3)	91.830(5)
$\gamma(^{\circ})$	90	90
$V(Å^3)$	6304.1(7)	6386.7(16)
Ζ	4	4
$Dc (g cm^{-3})$	1.403	1.385
Crystal system	Monoclinic	Monoclinic
Space group	P21/c	P21/c
Temperature (K)	150(2)	150(2)
Wavelength Mo-Kα (Å)	0.71073	0.71069
Crystal size (mm)	0.19 * 0.16 * 0.12	0.25 * 0.17 * 0.11
μ (mm ⁻¹)	0.901	0.890
<i>F</i> (000)	2704	2704
θ limit (°)	2.19-27.55	2.21 - 27.63
Index ranges hkl	-17 ≤ <i>h</i> ≤ 17,	-18 ≤ <i>h</i> ≤ 18,
	-27 ≤ <i>k</i> ≤ 29,	-25 ≤ <i>k</i> ≤ 29,
	-26 ≤ <i>l</i> ≤ 24	-26 ≤ <i>l</i> ≤ 26
Reflections collected	50324	73293
Independant reflections	14198	14779
Reflections $[I > 2\sigma(I)]$	9561	8251
Data/restraints/parameters	14198/0/752	14779/ 0 / 769
Goodness-of-fit on F^2	1.079	1.089
Final R indices $[I > 2\sigma(I)]$	R1 = 0.1230	R1 = 0.1092
	wR2= 0.2434	wR2= 0.2675
R indices (all data)	R1= 0.1632	R1 = 0.1683
	wR2= 0.2614	wR2= 0.3000
Largest diff peak and hole $(e \text{ Å}^{-3})$	2.181 and -1.327	1.397 and -0.953

	D _{CH2Cl2} . 2 CH ₂ Cl ₂	D _{EtOH} . 1.5ETOH	D _{CH3NO2} . CH ₃ NO ₂	D _{THF} . THF
Molecular formula	C ₆₀ H ₄₈ Cl ₄ Cu ₂ F ₁₂ N ₂ OP ₆	C ₆₁ H ₅₉ Cu ₂ F ₁₂ N ₂ O _{2.5} P ₆	C ₅₉ H ₅₃ Cu ₂ F ₁₂ N ₃ O ₃ P ₆	$C_{62}H_{56}Cu_2F_{12}N_2O_2P_6$
Molecular weight	1495.70	1401.00	1392.94	1401.99
<i>a</i> (Å)	13.972(2)	13.843(2)	13.7187(9)	13.983(2)
<i>b</i> (Å)	22.320(3)	22.710(3)	22.5661(13)	22.598(3)
<i>c</i> (Å)	20.342(3)	20.222(3)	20.3718(14)	20.222(3)
α (°)	90	90	90	90
$\beta(^{\circ})$	92.108(6)	91.308(5)	91.618(3)	91.830(5)
$\gamma(^{\circ})$	90	90	90	90
$V(Å^3)$	6339.4(16)	6355.6(15)	6304.1(7)	6387(3)
Ζ	4	4	4	4
$Dc (g cm^{-3})$	1.567	1.464	1.468	1.458
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P21/c	P21/c	P21/c	P21/c
Temperature (K)	293(2)	293(2)	293(2)	293(2)
Wavelength Mo-Kα (Å)	0.71073	0.71073	0.71073	0.71069
Crystal size (mm)	0.26 * 0.21 * 0.11	0.18 * 0.15 * 0.11	0.19 * 0.16 * 0.12	0.25 * 0.17 * 0.11
μ (mm ⁻¹)	1.069	0.900	0.908	0.895
F(000)	3016	2860	2832	2856
θ limit (°)	2.08 - 27.71	2.21 - 27.60	2.19 - 27.55	2.21 - 27.63
Index ranges hkl	-17 ≤ <i>h</i> ≤ 18,	- 17 ≤ <i>h</i> ≤ 17,	-17 ≤h≤ 17,	- 18 ≤ <i>h</i> ≤ 18,
	-29 ≤k≤ 29,	-26 ≤k≤ 29,	-27 ≤ <i>k</i> ≤ 29,	-25 ≤k≤ 29,
	-25 ≤ <i>l</i> ≤ 26	-24 ≤ <i>l</i> ≤ 26	-26 ≤ <i>l</i> ≤ 24	-26 ≤ <i>l</i> ≤ 26
Reflections collected	109973	46284	50324	73293
Independant reflections	14522	14390	14198	14779
Reflections $[I \ge 2\sigma(I)]$	9975	9532	9688	8137
Data/restraints/parameters	14522/0/831	14390/ 0 / 817	14198/6/798	14779/ 20 / 853
Goodness-of-fit on F^2	1.112	1.194	1.203	1.106
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1= 0.1775	R1 = 0.1172	R1= 0.1357	R1=0.1212
	wR2= 0.3649	wR2= 0.2225	wR2= 0.2733	wR2=0.2697
R indices (all data)	R1= 0.2239	R1 = 0.1784	R1= 0.1871	R1=0.2148
	wR2= 0.3918	wR2= 0.2593	wR2= 0.3004	wR2=0.3365
Largest diff peak and hole $(e Å^{-3})$	2.045 and -1.170	1.900 and -0.870	1.622 and -1.301	1.602 and -0.971

Table S2. Crystal data and structure refinement for derivatives D_{CH2Cl2} , D_{EtOH} , D_{CH3NO2} or D_{THF} before the 'squeeze' treatment

Table S3. Intermetallic distances [Å] and angles [°] for the $D_{dry},\,D_{CH2Cl2},\,D_{EtOH},\,D_{CH3NO2}$ or D_{THF}

$Ph_2(1)P$ $P(2)Ph_2$						
		- Cu(1)	Cu(2) ~			
C	Ň		1)	N (200)	(107) C	
(1	00)	P(3	B)Ph ₂	P(4)Ph ₂	-	
			\sim			
	D _{dry}	D _{CH2Cl2}	D _{EtOH}	D _{CH3NO2}	D _{THF}	
Cu(1)-Cu(2)	3.1300(9)	3.132(2)	3.179(1)	3.1799(9)	3.157(1)	
Cu(1)-O(1)	2.222(3)	2.222(7)	2.225(5)	2.216(4)	2.207(6)	
Cu(2)-O(1)	2.339(4)	2.359(7)	2.393(5)	2.353(4)	2.362(6)	
Cu(1)-N(100)	2.022(4)	2.014(9)	2.014(6)	2.025(5)	2.019(7)	
Cu(2)-N(200)	2.009(4)	2.006(9)	2.026(6)	2.018(5)	2.013(7)	
Cu(1)-P(1)	2.2287(13)	2.206(3)	2.284(2)	2.2589(17)	2.218(2)	
Cu(1)-P(3)	2.2494(15)	2.246(3)	2.2594(19)	2.2221(15)	2.243(2)	
Cu(2)-P(2)	2.2634(13)	2.237(3)	2.252(2)	2.2813(18)	2.241(2)	
Cu(2)-P(4)	2.2735(16)	2.270(3)	2.2262(18)	2.2596(16)	2.264(3)	
Cu(1)-O(1)- Cu(2)	86.63(11)	86.2(2)	86.94(19)	88.15(14)	87.3(2)	
Cu(1)-N(100)- C(100)	154.6(4)	157.6(10)	160.1(6)	157.8(5)	157.0(7)	
Cu(2)-N(200)- C(107)	158.7(4)	161.5(9)	157.9(7)	160.7(5)	159.4(7)	

Table S4. Unit cell parameters for derivatives D_{Dry} and D_{CH2Cl2} at 150 K, 200 K and 250 K.

	D _{Dry} 150K	D _{Dry} 200K	D _{Dry} 250K	D _{CH2Cl2} 150K	D _{CH2Cl2} 200K	D _{CH2Cl2} 250K
a(A)	13.2578(6)	13.29(2)	13.36(3)	13.972(2)	13.99(2)	14.03(3)
b (Å)	22.1788(9)	22.25(3)	22.31(3)	22.320(3)	22.42(2)	22.55(4)
<i>c</i> (Å)	20.6890(12)	20.62(2)	20.66(3)	20.342(3)	20.36(2)	20.37(3)
α (°)	90	90	90	90	90	90
$\beta(^{\circ})$	91.1534(20)	90.55(4)	90.91(5)	92.108(6)	92.12(6)	92.41(6)
$\gamma(^{\circ})$	90	90	90	90	90	90

Fig. S2. ORTEP views of the molecular structure of the repetition unit of the 1D-CPs D_{dry} . Hydrogen atoms and hexafluorophosphate counter-anions have been omitted for clarity.

Fig. S3. ORTEP views of the molecular structure of the repetition unit of the 1D-CPs (a) D_{CH2Cl2} , after the squeeze treatment: hydrogen atoms and hexafluorophosphate counter-anions have been omitted for clarity; the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms of the phenyl ring having the highest ponderation and in white for the phenyl ring having the lowest ponderation (for which carbon atoms could be refined only with isotropic displacement parameters; (b) $D_{CH2Cl} \cdot 2CH_2Cl_2$ before the squeeze treatment: hydrogen atoms have been omitted for clarity; the phenyl rings that were modelled with two relative orientations are represented in grey for the atoms of the phenyl ring having the highest ponderation and in white for the phenyl ring having the lowest ponderation; the phenyl ring having the highest ponderation and in white for the phenyl ring having the lowest ponderation; the stick and ball graphical mode with only one orientation for one of them and with the two orientations of the second one shown with pale colors for the orientations having the lower ponderation in its relative occupancy.

a)

b)

Fig. S4. ORTEP views of the molecular structure of the repetition unit of the 1D-CPs (a) D_{EtOH} , after the squeeze treatment: hydrogen atoms and hexafluorophosphate counter-anions have been omitted for clarity; the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms of the phenyl ring having the highest ponderation and in white for the phenyl ring having the lowest ponderation; (b) D_{EtOH} . **1.5 EtOH** before the squeeze treatment: hydrogen atoms have been omitted for clarity; the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms have been omitted for clarity; the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms of the phenyl ring having the lowest ponderation; the 1.5 included disordered EtOH solvent molecules are shown in the stick and ball graphical mode with pale colors for the molecule having the lower occupancy.

Fig. S5. ORTEP views of the molecular structure of the repetition unit of the 1D-CPs (a) D_{CH3NO2} , after the squeeze treatment: hydrogen atoms and hexafluorophosphate counteranions have been omitted for clarity; the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms of the phenyl ring having the highest ponderation and in white for the phenyl ring having the lowest ponderation; (b) D_{CH3NO2} . CH_3NO_2 before the squeeze treatment: hydrogen atoms have been omitted for clarity; the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms of the phenyl ring having the highest ponderation and in white for the phenyl ring having the lowest ponderation; the included disordered CH_3NO_2 solvent molecule is shown in the stick and ball graphical mode.

a)

b)

Fig. S6. ORTEP views of the molecular structure of the repetition unit of the 1D-CPs (a) D_{THF} , after the squeeze treatment: hydrogen atoms and hexafluorophosphate counter-anions have been omitted for clarity; the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms of the phenyl ring having the highest ponderation and in white for the phenyl ring having the lowest ponderation; (b) D_{THF} . THF before the squeeze treatment: hydrogen atoms have been omitted for clarity; the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms of the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms of the phenyl ring that was modelled with two relative orientations is represented in grey for the atoms of the phenyl ring having the highest ponderation and in white for the phenyl ring having the lowest ponderation; only one orientation of the included disordered THF solvent molecule is shown in the stick and ball graphical mode.

a)

III. Photophysical study

Fig. S7. RT solid state excitation spectrum of Ddry at 298 K

Fig. S8. Temperature-dependent non-normalized (top, arbitrary units) and normalized (bottom) solid state emission spectra of **Ddry** with a) $\lambda_{exc} = 370$ nm and b) $\lambda_{exc} = 330$ nm ; from 80 K to 298 K.

Fig. S9. Temperature-dependent non-normalized (top, arbitrary units) and normalized (bottom) solid state emission spectra of \mathbf{D}_{CH2Cl2} with a) $\lambda_{exc} = 370$ nm and b) $\lambda_{exc} = 330$ nm ; from 80 K to 298 K.

Fig. S10. a) Temperature-dependent non-normalized (arbitrary units) and b) normalized solid state emission spectra of D_{EtOH} with $\lambda_{exc} = 370$ nm; from 80 K to 298 K.

Fig. S11. Temperature-dependent non-normalized (top, arbitrary units) and normalized (bottom) solid state emission spectra of D_{CH3NO2} with a) $\lambda_{exc} = 370$ nm and b) $\lambda_{exc} = 330$ nm ; from 80 K to 298 K.

Fig. S12. Temperature-dependent non-normalized (top, arbitrary units) and normalized (bottom) solid state emission spectra of \mathbf{D}_{THF} with a) $\lambda_{\text{exc}} = 370$ nm and b) $\lambda_{\text{exc}} = 330$ nm ; from 80 K to 298 K.

Fig. S13. Plot of emission decay lifetime against temperature (80 K to 300 K) of D_{CH3NO2} with $\lambda_{exc} = 370$ nm.

Fig. S14. Plot of emission decay lifetime against temperature (80 K to 300 K) of D_{THF} with $\lambda_{exc} = 370$ nm.

Fig. S15. Solid state UV-Vis absorption spectrum of D_{dry} and ligand B0 at room temperature.

Fig. S16. Solid state UV-Vis absorption spectrum of D_{dry} , D_{CH2Cl2} and D_{EtOH} at room temperature.

Fig. S17. Plot of emission decay lifetime against temperature of D_{dry} with $\lambda_{exc} = 370$ nm performed on a second and independent batch of derivative D_{dry} .

IV. Computational details

DFT calculations were carried out using the Gaussian 09 program.⁶ A molecular fragment of the polymer, $[Cu_2(\mu_2-dppm)_2(1,4-dicyanobenzene)_2]$ was extracted from the **D**_{Dry} X-Ray structure (see Scheme S1). All calculations were performed using PBE0⁷ functional and SVP⁸ atomic basis set. Tight criterion of energy convergence were applied to ensure high quality of calculations (10⁻¹⁰ u.a.). Only the carbon and hydrogen atomic positions were optimized for the ground state configuration (S₀) to maintain mostly the solid-state configuration. The vertical electronic excitation energies of the first vertical singlet and triplet excited states were calculated by time-dependant DFT protocol. A complete study would imply geometry optimizations of the excited states that could be comparable to the emission experimental data. This would necessitate to take into account the polymer and crystal reorganisation / relaxations that constrain the molecular fragment which is not possible at this molecular level of simulation.

Scheme S1

Table S4. Calculated vertical electronic excited state energies of $[Cu_2(\mu^2-dppm)_2(1,4-dicyanobenzene)_2]$ and associated oscillator strength (zero for the triplet states in the absence of spin-orbit coupling consideration).

Singlet	Excitation	λ (nm)	Oscillator	Triplet	Excitation
Excited	Energy	. ,	Strength	Excited	Energy
States	(eV)			States	(eV)
S_1	3.526	352	0.004	T ₁	2.902
S_2	3.564	348	0.014	T ₂	2.904
S_3	3.625	342	0.039	T ₃	3.425
S_4	3.754	330	0.044	T_4	3.445
S_5	3.906	328	0.002	T ₅	3.457
S_6	4.070	317	0.003	T ₆	3.468
S_7	3.783	305	0.001	T ₇	3.469
S_8	4.131	300	0.003	T ₈	3.478

Fig. S18. Isosurface representations of the electronic charge-density difference between the first vertical singlet (S_1 , S_2) and triplet (T_1 , T_2 , T_3 , T_4 , T_5 , T_6) excited states and the ground state (S_0) (blue = density depletion, greenish = density increase) ($\pm 1.10^{-4}$ e.bohr⁻³).

V. IR-spectrum of Ddry

Fig. S19. IR spectrum of D_{dry} in the solid state at 298K

Fig. S21. Power X-ray diffraction diagrams of D_{THF} before and after grinding.

VII. References for the supplementary information file

¹ Otwinowski, Z.; Minor, W. In *Methods in Enzymology*, (Ed.: C.W. Carter, Jr. & R.M. Sweet), New York:Academic Press, **1997**, *276*, 307.

² Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. *J. of Applied Cryst.* **1999**, *32*, 115.

³ Sheldrick G.M., *SHELX97*, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, **1997**.

⁴ (a) Spek, A. L. *J. Appl. Crystallogr.* **2003**, *36*, 13; (b) van der Stuis, P.; Spek, A. L. *Acta Crystallogr.* **1990**, *46*, 194.

⁵ International Tables for X-ray Crystallography, vol C, Ed. Kluwer, Dordrech, 1992.

⁶ (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.;

Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A.

F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,

M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.;

Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.;
Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski,
V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.;
Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, 2009; (b)
Ibid, Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, 2009.

- ⁷C. Adamo, V. Barone, J. Chem. Phys., 1999, 6158-69, 110.
- ⁸ A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-2577. A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys., 1994, 5829-5835, 100.