Supplementary Materials

In situ transformation of ZIF-67 into hollow $\text{Co}_2\text{V}_2\text{O}_7$ nanocages on graphene as high-performance cathode for aqueous asymmetric supercapacitors

Kai Lea, Mengjiao Gaob, Dongmei Xua, Zhou Wangb, Guanwen Wangb, Guixia Luc, Wei Liua,*, Fenglong Wangb,*, Jiurong Liub,*

a State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Shandong 250100, China

b School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China

c School of Civil Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, China

*Corresponding author.

E-mail: weiliu@sdu.edu.cn (W. L.), fenglong.wang@sdu.edu.cn (F. W.), and jrliu@sdu.edu.cn (J. L.)
Calculation

The specific capacity (Q) of single electrode can be determined from GCD curves through formula:

\[Q = \frac{I \times \Delta t}{m} \quad (S1) \]

where Δt, I, and m are the discharge time, the charge-discharge current, and the potential range excluding IR drop in charge-discharge curves, and m represents the mass loading of the working electrode.

For the ASC device, the mass ration of cathode and anode was determined by equation:

\[\frac{m_+}{m_-} = \frac{Q_-}{Q_+} \quad (S2) \]

where m and Q represents the mass loading and capacity of cathode (+) and anode (-), respectively. The specific capacitance, energy density, and power density of ASC device were calculated by formulas:

\[C_{cell} = \frac{I \times \Delta t}{m \times \Delta V} \quad (S3) \]

\[E = \frac{1}{2} C_{cell} \Delta V^2 \quad (S4) \]

\[P = \frac{E}{\Delta t} \quad (S5) \]

where C_{cell}, ΔV, and Δt are the corresponding parameters in discharge curves, and m represents the total mass loading of two electrodes in ASC device.

![Fig. S1](image-url) (a) XRD patterns of GO, ZIF-67, and ZIF-67/G; (b) XRD patterns of Co$_2$V$_2$O$_7$/G.
Fig. S2 (a) elemental mapping image and (b) EDX spectrum Co$_2$V$_2$O$_7$/G.

Fig. S3 SEM of (a) ZIF-67 and (b) Co$_2$V$_2$O$_7$.
Fig. S4 (a) CV curves of the Co$_2$V$_2$O$_7$ electrode at different scan rates; (b) linear relationship between the anodic/cathodic peak currents at the square root of the scan rates.

Fig. S5 GCD curves of (a) Co$_2$V$_2$O$_7$ and (b) Co$_2$V$_2$O$_7$/G electrodes at different current densities.

Fig. S6 (a) SEM and (b) XRD pattern of Co$_3$O$_4$/G composites.
Fig. S7 GCD curves of rGO electrode at different current densities.

Reference

