AIPE-Active Pt(II) Complexes with Tunable Triplet Excited State: Design, Mechanochromism and Application in Anti-Counterfeiting

Senqiang Zhu^a, Jinyang Hu^a, Shengliang Zhai^a, Yutian Wang^a, Zengchuang Xu^b, Rui

Liu^{a,}*, Hongjun Zhu^{a,}*

^a School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing,

211816, China.

^b Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai,

200083, China

*Corresponding author.

Phone: +86-25-83172358. Fax: +86-25-83587428. E-mail: rui.liu@njtech.edu.cn (R.

Liu), zhuhj@njtech.edu.cn (H. Zhu).

CONTENTS

1.				General
information •	•••••	• • • • • •	••••	• • • • •
• • • • • •		3		
2.	Synthesis	0	f	Pt-1-Pt-
5••••	•••••			• • • • •
•••••	• 5			
3. Phot	tophysical	properties	of	Pt-1-Pt-
5••••	• • • • • • •		••••9	
4.				AIPE

property • • • • • • • • • • • • • • • • • • •
••••14
5
Piezochromism • • • • • • • • • • • • • • • • • • •
•••••15
6. XRD and
DSC····
•••••
7. Crystallographic
data • • • • • • • • • • • • • • • • • •
•••••18

1. General information

Materials and Instruments

All solvents and reagents were purchased from Energy Chemical. and used as is unless otherwise stated. The synthetic routes for ligands L1–L5 and complexes Pt-1–Pt-5 are illustrated in Scheme 1. The synthesis of 1a (2-bromo-9,9-dibutyl-9*H*-fluorene) , 2a, 3a, 4a, 5a, 6 have been reported previously.¹⁻⁵ The synthetic procedures and characterization data for the key precursors 7, ligands L1–L5 and complexes Pt-1–Pt-5 are provided below. L1–L5 were obtained by suzuki coupling reactions between 1a–5a and 7, respectively. The ligands L1–L5 reacted respectively with Pt(DMSO)₂Cl₂ in refluxing acetic acid under nitrogen for 24 hours to afford complexes Pt-1–Pt-5. All intermediates, ligands and the Pt(II) complexes were characterized by ¹H NMR and ¹³C NMR. Ligands L1–L5 and complexes Pt-1–Pt-5 were also characterized by ESI-HRMS and elemental analyses. ¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer using CHCl₃-d₆ as the solvent, with tetramethylsilane as internal standard. The elemental analyses were performed with a Vario El III elemental analyzer. ESI-HRMS analyses were performed with a Vario El III elemental analyzer. ESI-HRMS analyses were performed on a Bruker BioTOF III mass spectrometer. Powder X-ray diffractometer. DSC experiments were recorded on a NETZSCH DSC 204 instrument at a scanning rate of 10 K min⁻¹.

Photophysical measurements

The spectroscopic grade solvents were used for the photophysical experiments. Optical absorption spectra were obtained by using a Cary-5000 UV-vis spectrophotometer in different solvents. Photoluminescence spectra were carried out on a Hitachi F-7000 fluorescence spectrophotometer. The emission quantum yields of L1–L5 and Pt-1–Pt-5 were determined by the relative actinometry method (Pt-1–Pt-5 were measured in degassed solutions). A 1 N sulfuric acid solution of quinine bisulfate ($\Phi_{em} = 0.546$, $\lambda_{ex} = 347.5$ nm) was used as the reference for ligands L1–L5 and a degassed aqueous solution of [Ru(bpy)₃]Cl₂ ($\Phi_{em} = 0.042$, $\lambda_{ex} = 436$ nm) was used as the reference for complexes Pt-1–Pt-5. Fluorescence Lifetime were performed using time-correlated single-photon counting (TCSPC) method and collected on an LP980 laser flash photolysis spectrometer and FS5 spectrometer.

X-ray diffraction crystallography.

The single crystal **Pt-2** was grown by the slow evaporation of its solution in the mixture solvent of CH₂Cl₂ and n-hexane at room temperature. The diffraction data were collected on a Nonius CAD4 Single Crystal Diffractometer equipped with a graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å) by using an $\omega/2\theta$ scan mode at 296 K. The crystal structures were solved by the direct method and refined by the full-matrix leastsquares procedure on F2 using SHELXL-97 program. All non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were introduced at calculated positions. CCDC 1558700 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Centre via <u>www.ccdc.cam.ac.uk/data_request/cif.</u>

DFT Calculations.

The ground electronic state frontier molecular orbitals (FMOs) of complexes **Pt-1-Pt-5** were simulated by density functional theory (DFT), and their excited electronic states were calculated using the time-dependent density function theory (TDDFT) method. All calculations were performed using the Gaussian 09 software package. The specific DFT method used was PBE1PBE for calculating excited electronic states. The basis sets used in all calculations were the 6-31G* set for all light atoms and the LANL2DZ set for the Pt atom. Full equilibrium geometry optimizations were performed for the ground electronic states of all complexes. Excited-state calculations for 10 excited states were performed at the fully optimized ground-state molecular geometry of the complexes. For consistency with experiments, dichloromethane (CH_2Cl_2) which was used as the solvent for experimental measurements was selected as the solvent in theoretical calculations as well.

2. Synthesis of Pt-1-Pt-5.

Synthesis of ligands and complexes

Scheme S1 Synthetic route for L1–L5 and Pt-1–Pt-5. (a) $Pd_2(dba)_3$ /ether/sodium ter-butoxide, toluene, 60°C,12h; (b) mesitylene, CuI, 18-crown-6, K₂CO₃, reflux, 48 h; (c) DMSO, reflux,3h; (d) $Pd(PPh_3)_{4,}$ K₂CO₃ a.q., toluene, reflux, 12 h; (e) $Pd(PPh_3)_{4,}$ toluene, reflux, 24 h; (f) bis(pinacolato)diboron, $Pd(dppf)_2Cl_2$, AcOK, 1,4-dioxane, 80°C,4h; (g) $Pd(PPh_3)_4$, Na₂CO₃ a.q., toluene, EtOH, reflux, 12 h; (h) $Pt(DMSO)_2Cl_2$, CH₃COOH, reflux, 48h.

Synthesis of 7

A mixture of dpyb-Br (310 mg, 1 mmol), potassium acetate (294 mg, 3 mmol), bis(pinacolato)diboron (508 mg, 2 mmol) and 1,1-[bis(diphenylphosphino)]ferrocene palladium(II) dichloride (82 mg, 0.1 mmol) in anhydrous 1,4-dioxane(25 mL) was degassed by three freeze-

pump–thaw cycles and back-filled with nitrogen. The mixture was heated at 80 °C for 4 h under nitrogen. After cooling to ambient temperature, the solution washed with water (3×20 mL). The organic layer was dried over anhydrous MgSO₄, filtered and the solvent removed under reduced pressure. Purification was carried out by column chromatography (silica gel) eluted with mixed solvent of hexane–ethyl acetate 3: 1. 0.24 g light yellow was collected as the product (yield: 83%).¹H NMR (400MHz, CDCl₃): δ 8.78 (t, *J*= 2 Hz,1H), 8.71-8.73 (m,2H), 8.465 (d, J= 2, 2H), 7.89 (d, J =4, 2H),7.74-7.78(m, 2H), 7.22-7.25 (m, 2H), 1.38 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 157.3, 149.5, 139.3, 136.8, 133.82, 128.7, 122.8, 122.2, 121.1, 83.5, 24.9. MS(FAB+): m/z 358. Anal. calcd (%) for C₂₂H₂₃BN₂O₂: C, 73.76; H, 6.47; N, 7.82; Found: C, 73.71; H, 6.51; N, 7.85.

General synthetic procedure for L1–L5

The mixture of 7 (0.358g, 1 mmol), **1a–5a** (1 mmol), Na₂CO₃ (0.4238g, 4mmol), Pd(PPh₃)₄ (0.1155g, 0.1mmol), toluene (20 mL),ethanol (20 mL) and water (5 mL) was heated to reflux under nitrogen for 12 hours. After cooling to ambient temperature, the solution washed with water (3×20 mL). The organic layer was dried over anhydrous MgSO₄, filtered and the solvent removed under reduced pressure. Purification was carried out by column chromatography (silica gel) eluted with mixed solvent of hexane–ethyl acetate 4 : 1 (v/v).

L1. 0.32 g white solid was collected as the product (yield:63%). ¹H NMR (CDCl₃, 400 MHz): 8.77 (d, J = 2 Hz, 2H,), 8.55 (s, 1H), 8.35 (s, 2H), 7.93 (d, J=4 Hz, 2H), 7.79-7.84 (m, 3H), 7.71-7.75 (m, 3H),7.28-7.37 (m, 5H), 2.03-2.06 (m, 4H), 1.07-1.12 (m, 4H), 0.67-0.70 (m,10H). ¹³C NMR (100 MHz, CDCl₃): δ 157.4, 151.4, 151, 149.7, 143.1, 140.7, 140.5, 139.8, 136.8, 127.1,126.7, 126.5,126.3, 124.7, 122.9, 122.4, 121.7, 121.1, 119.9, 119.7, 55.2, 40.2, 26, 23.1, 13.8. ESI-HRMS: m/z calc. for [C₃₇H₃₆N₂ + H]+: 509.29513, found 509.29514 .Elemental analysis calculated for C₃₇H₃₆N₂: C, 87.36; H, 7.13; N, 5.51. Found: C, 81.27; H, 8.07; N, 5.80.

L2: 0.289 g light yellow solid was collected as the product (yield:41%).¹H NMR (CDCl₃, 400 MHz): 8.77 (d, *J* = 2 Hz, 2H,), 8.57 (s, 1H), 8.39 (s, 2H), 7.95 (t, *J* = 8 Hz, 3H), 7.80-7.86 (m, 4H),7.76 (s, 1H), 7.38 (t, *J* = 8 Hz, 2H), 7.30 (t, *J* = 8 Hz, 2H), 7.02 (t, *J* = 4 Hz, 2H), 6.78-6.84 (m, 4H), 6.23 (d, *J* = 4 Hz, 2H), 2.01-2.11 (m, 4H), 1.07-1.14 (m, 4H), 0.68-0.78 (m,10 H). ¹³C NMR (100 MHz, CDCl₃):157.3, 154.5, 151.9, 149.7, 144.6, 142.8, 141.0, 140.6, 139.7,136.8, 129.6, 126.8, 126.7, 126.5, 126.0,124.6,122.4,122.3,121.9,121.8,119.5,115.6, 55.6, 40, 26.2, 22.9,

13.9. ESI-HRMS: m/z calc. for [C₄₉H₄₃N₃S+H]+: 706.32505, found 706.32397.Elemental analysis calculated for C₄₉H₄₃N₃S: C, 83.37; H, 6.14; N, 5.95. Found: C, 83.27; H, 6.09; N, 5.90.

L3: 0.463 g white solid was collected as the product (yield:59%).¹H NMR (CDCl₃, 400 MHz): 8.77 (d, J = 2 Hz, 2H,), 8.58 (s, 1H), 8.39 (s, 2H), 8.18 (s, 2H), 7.93 (t, J = 8 Hz, 3H), 7.77-7.87 (m, 5H), 7.56 (d, J = 4 Hz, 2H), 7.49 (d, J = 4 Hz, 2H), 7.41 (d, J = 4 Hz, 2H), 7.30 (t, J = 4 Hz, 2H), 2.05-2.11 (m, 4H), 1.49 (s, 18H),1.13-1.18 (m, 4H), 0.74-0.79 (m,10 H). ¹³C NMR (100 MHz, CDCl₃): 157.4, 152.8, 151.7, 149.8, 142.9, 142.8, 140.8, 140.6, 139.6,139.4, 136.8, 126.6, 125.0, 124.5, 123.8, 123.4, 122.4, 121.3, 121.0, 120.8, 120.4, 120.1, 116.3, 109.2, 55.6, 40.2, 34.8, 32.1, 26.2, 23.1, 13.9. ESI-HRMS: m/z calc. for [C₅₇H₅₉N₃+H]+: 786.47818, found 786.47736. Elemental analysis calculated for C₅₇H₅₉N₃: C, 87.09; H, 7.57; N, 5.35. Found: C, 87.07; H, 7.51; N, 5.43.

L4: 0.339 g light yellow solid was collected as the product (yield:53%).¹H NMR (CDCl₃, 400 MHz): 8.77 (d, J = 2 Hz, 2H,), 8.57 (s, 1H), 8.37 (s, 2H), 8.15 (s, 1H), 8.06-8.12 (m, 2H), 7.94 (d, J = 2 Hz, 3H), 7.85 (d, J = 4 Hz, 3H), 7.79 (d, J = 4 Hz, 2H), 7.75 (s, 1H), 7.51 (t, J = 8 Hz, 1H), 7.39 (t, J = 8 Hz, 1H), 7.31 (t, J = 8 Hz, 2H), 2.12-2.16 (m, 4H), 1.09-1.13 (m, 4H), 0.67-0.70 (m,10 H). ¹³C NMR (100 MHz, CDCl₃):168.8, 157.3, 154.2, 152.2, 151.9, 149.8, 143.9, 142.8, 140.8, 140.6, 139.7,136.8, 135.0, 133.7, 132.3, 127.1, 126.6, 126.4, 125.0,124.6, 122.9, 122.3, 121.8, 121.6, 121.5,121, 120.8, 120.2, 55.6,40.23, 26.1, 23.1, 13.8. ESI-HRMS: m/z calc. for [C₄₄H₃₉N₃S+H]+: 642.29375, found 642.29376.Elemental analysis calculated for C₄₄H₃₉N₃S: C, 82.33; H, 6.12; N, 6.55. Found: C, 82.27; H, 6.07; N, 6.57.

L5. 0.34 g yellow-green solid was collected as the product (yield: 45%). ¹H NMR (CDCl₃, 400 MHz): 8.78 (d, J = 2 Hz, 2H,), 8.67 (q, 2H), 8.56 (s, 1H), 8.34-8.39 (m, 3H), 7.90-7.96 (m, 4H), 7.78-7.88 (m, 5H),7.70 (t, J = 8 Hz, 1H), 7.52 (d, J = 4 Hz, 2H), 7.32 (t, J = 4 Hz, 2H), 4.24 (t, J = 8 Hz, 2H),2.09-2.13 (m, 4H), 1.75-1.78(m, 2H), 1.46-1.51 (m, 2H), 1.10-1.16 (m, 4H), 1.01 (t, J = 8 Hz, 3H), 0.67-0.79 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 164.2, 157.3, 151.7, 149.7, 147.5, 142.8, 141.3, 140.5, 139.87, 137.4, 136.9, 132.7, 131.1, 130.9, 130.2, 128.9, 128.8, 127.8, 126.7, 124.6, 122.4, 121.1, 120.4, 55.49, 40.31, 40.12, 30.27, 26.2, 23, 20.4, 13.89, 13.85. ESI-HRMS: m/z calc. for [C₅₃H₄₉N₃O₂ + H]+: 760.38975, found 760.38898. Elemental analysis calculated for C₅₃H₄₉N₃O₂: C, 83.76; H, 6.50; N, 5.53; .Found: C, 83.67; H, 6.52; N, 5.59.

General synthetic procedure for Pt-1–Pt-5

The mixture of L1–L5 (0.2 mmol), $Pt(DMSO)_2Cl_2$ (0.2 mmol), and acetic acid (10 mL) was refluxed under nitrogen for 24 hours. After cooling to room temperature, the reaction mixture was filtered. The precipitate was washed with water, ethanol, and ether. The crude product was further purified by recrystallization in DCM/ hexane.

Pt-1: 51 mg yellow powder was collected as the product (yield:35%). ¹H NMR (CDCl₃, 400 MHz): δ 9.28 (dd, J_1 =16 Hz, J_2 = 2 Hz, 2H), 7.93 (t, J =8 Hz, 2H), 7.77 (t, J =8 Hz, 4H), 7.60 (d, J =4 Hz, 4H). 7.36(m, d, J =4 Hz, 3H), 7.22(s, 2H), 2.00-2.06 (m, 4H), 1.10-1.15 (m, 4H), 0.69-0.73 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ 167.1,152.2, 151.6, 150.8, 141.1, 140.7, 140.6, 140.3, 138.8, 137.1, 127.1, 126.8, 125.8, 123.3, 123.1, 122.9, 121.1,120.1, 119.7, 119.3, 55.2, 40.2, 26, 23.1, 13.8. HRMS (MALDI-TOF), m/z calcd for [C₃₇H₃₅ClN₂Pt+H]⁺: 738.2209, found 738.2169. Anal. Calcd. for C₃₇H₃₅ClN₂Pt: C, 60.20; H, 4.78; N, 3.79. Found: C, 60.26; H, 4.81; N, 3.78.

Pt-2: 59 mg yellow powder was collected as the product (yield:32%). ¹H NMR (CDCl₃, 400 MHz): δ 9.38 (dd, J₁ =16 Hz, J₂ = 2 Hz, 2H), 7.97-8.02 (m, 3H), 7.84 (t, J = 8 Hz, 3H), 7.67-7.72 (m, 3H), 7.63 (s, 1H), 7.39 (t, J = 8 Hz, 2H), 7.32 (t, J = 4 Hz, 2H), 7.03 (t, J = 4 Hz, 2H), 6.81-6.83 (m, 4H), 6.24-6.27 (m, 2H), 2.06-2.11 (m, 4H), 1.10-1.17 (m, 4H), 0.70-0.76 (m,10 H). HRMS (MALDI-TOF), m/z calcd for [C₄₉H₄₂ClN₃PtS+H]⁺ 935.2509, found 935.2507. Anal. Calcd. for C₄₉H₄₂ClN₃PtS: C, 62.91; H, 4.53; N, 4.49. Found: C, 62.99; H, 4.58; N, 4.54.

Pt-3: 38 mg yellow powder was collected as the product (yield:19%). ¹H NMR (CDCl₃, 400 MHz): δ 9.38 (dd, J₁ =16 Hz, J₂ = 2 Hz, 2H), 8.18 (s, 2H), 8.00 (t, J = 8 Hz, 2H), 7.94 (d, J = 4 Hz, 1H), 7.84 (t, J = 8 Hz, 3H), 7.72 (s, 2H), 7.68 (d, J = 4 Hz, 1H), 7.63 (s, 1H), 7.58 (s, 2H), 7.50 (d, J=4 Hz, 2H), 7.42 (d, J = 8 Hz, 2H), 7.32 (d, J = 4 Hz, 2H), 2.07-2.14 (m, 4H), 1.49 (s, 18H), 1.15-1.19 (m, 4H), 0.75-0.81 (m,10 H). HRMS (MALDI-TOF), m/z calcd for [C₅₇H₅₈ClN₃Pt+H] ⁺: 1015.4040, found 1015.4023. Anal. Calcd. for C₅₇H₅₈ClN₃Pt: C, 67.41; H, 5.76; N, 4.14. Found: C, 67.52; H, 5.81; N, 4.19.

Pt-4: 50 mg yellow powder was collected as the product (yield:29%).¹H NMR (CDCl₃, 400 MHz): δ 9.34 (dd, J₁ =16 Hz, J₂ = 2 Hz, 2H), 8.17 (s, 1H), 8.08-8.13 (m, 2H), 7.94-7.99 (m, 3H), 7.85 (d, J =4 Hz, 2H), 7.80 (d, J = 4 Hz, 2H), 7.67 (d, J = 4 Hz, 3H), 7.63 (s, 1H), 7.52 (t, J = 8 Hz, 1H), 7.40 (t, J = 4 Hz, 1H), 7.29 (d, J = 4 Hz, 2H), 2.13-2.19 (m, 4H), 1.12-1.17 (m, 4H), 0.69-0.73 (m,10H). HRMS (MALDI-TOF), m/z calcd for [C₄₄H₃₈ClN₃PtS+H]⁺: 871.2196, found 871.2191. Anal. Calcd. for C₄₄H₃₈ClN₃PtS: C, 60.65; H, 4.40; N, 4.82. Found: C, 60.60; H, 4.33; N, 4.78.

Pt-5: 82 mg yellow powder was collected as the product (yield:41%). ¹H NMR (CDCl₃, 400 MHz): δ 9.39 (dd, J₁ =16 Hz, J₂ = 2 Hz, 2H), 8.65-8.71 (m, 2H), 8.35 (d, J = 4 Hz,1H), 8.0(t, J = 4 Hz, 2H), 7.88-7.94 (m, 2H), 7.82 (t, J = 8 Hz, 3H), 7.64-7.73 (m, 5H), 7.53 (d, J = 4 Hz, 2H), 7.33 (t, J = 4 Hz, 2H), 4.24 (t, J = 8 Hz, 2H), 2.10-2.14 (m, 4H), 1.75-1.78(m, 2H), 1.48-1.52 (m, 2H), 1.15-1.19 (m, 4H), 1.01 (t, J = 8 Hz, 3H), 0.75-0.82 (m, 10H). HRMS (MALDI-TOF), m/z calcd for [C₅₃H₄₈ClN₃O₂Pt+H]⁺: 989.3156, found 989.3186. Anal. Calcd. for C₅₃H₄₈ClN₃O₂Pt: C, 64.33; H, 4.89; N, 4.25;. Found: C, 64.30; H, 4.85; N, 4.29.

3. Photophysical properties of Pt-1-Pt-5

Fig. S1 Normalized absorption spectra of Pt-1(a), Pt-2(b), Pt-3(c), Pt-4(d) and Pt-5(e) in different

solvents.

Fig. S2 The corresponding CIE chromaticity coordinate of Pt-1–Pt-5 in CH_2Cl_2 ($c = 1.0 \times 10^{-5}$ M).

 Table S1. Contour plots of the other highest occupied molecular orbitals (HOMOs) and lowest

unoccupied molecular orbitals (LUMOs) for Pt-1 -Pt-5 in CH₂Cl₂.

Table S2 Excitation Energies (eV), Wavelengths (nm), Oscillator Strengths, Dominant Contributing

 Configurations, and the Associated Configuration Coeffcients of 10 Low-Lying Electronic States of

		excitation			active orbital pair	ir c	
Sn		ene	energy		of dominant	configuration	
		eV	nm	•	configuration	coefficient	
Pt-1	1	3.1811	388.75	0.1267	HOMO-LUMO	0.68	
	2	3.2044	386.92	0.0215	HOMO-LUMO+1	0.67	
	3	3.6461	340.05	0.0109	HOMO-3-LUMO+1	0.68	
	4	3.7547	330.21	0.0051	HOMO-2-LUMO+1	0.59	
	5	3.7835	327.70	0.0018	HOMO-3-LUMO	0.65	
	6	3.8210	324.48	0.0018	HOMO-1-LUMO+1	0.60	
	7	3.9082	317.24	0.0148	HOMO-1-LUMO+1	0.65	
	8	3.9336	315.19	0.0001	HOMO-4-LUMO+1	0.68	
	9	4.0612	305.29	0.0644	HOMO-LUMO	0.60	
	10	4.0870	303.37	0.0019	HOMO-LUMO	0.65	
Pt-2	1	3.2014	387.28	0.1266	HOMO-1-LUMO	0.67	
	2	3.2069	386.62	0.0067	HOMO-LUMO	0.68	
	3	3.2275	384.14	0.0198	HOMO-1-LUMO+1	0.68	
	4	3.2509	381.38	0.0000	HOMO-LUMO+2	0.68	
	5	3.4858	355.69	0.0005	HOMO-LUMO+2	0.68	
	6	3.6626	338.52	0.0108	HOMO-LUMO+6	0.58	
	7	3.7669	329.14	0.0042	HOMO-LUMO+6	0.58	
	8	3.7736	328.56	0.0119	HOMO-4-LUMO+1	0.66	
	9	3.7941	326.78	0.0002	HOMO-5-LUMO	0.68	
	10	3.9367	314.95	0.0006	HOMO-6-LUMO+1	0.67	
Pt-3	1	3.1776	390.18	0.1108	HOMO-1-LUMO	0.60	
	2	3.2068	386.62	0.0218	HOMO-1-LUMO+1	0.63	
	3	3.3354	371.72	0.0223	HOMO-LUMO	0.61	
	4	3.3834	366.45	0.0004	HOMO-LUMO+1	0.64	
	5	3.6550	339.22	0.0104	HOMO-5-LUMO+1	0.69	
	6	3.7332	332.11	0.6227	HOMO-LUMO+2	0.69	
	7	3.7725	328.65	0.0154	HOMO-4-LUMO+1	0.67	
	8	3.7907	327.08	0.0000	HOMO-5-LUMO	0.69	
	9	3.9087	317.20	0.0001	HOMO-2-LUMO	0.69	
	10	3.9351	315.07	0.0000	HOMO-6-LUMO+1	0.69	
Pt-4	1	3.1921	388.41	0.1251	HOMO-LUMO	0.65	
	2	3.2154	385.60	0.0293	HOMO-LUMO+1	0.64	
	3	3.5248	351.75	1.1151	HOMO-LUMO+2	0.63	
	4	3.6538	339.33	0.0114	HOMO-3-LUMO+1	0.69	
	5	3.7340	332.04	0.0006	HOMO-1-LUMO	0.54	
	6	3.7767	328.29	0.4204	HOMO-1-LUMO+2	0.51	
	7	3.7806	327.95	0.1244	HOMO-2-LUMO+1	0.46	
	8	3.7934	326.85	0.0039	HOMO-3-LUMO	0.64	
	9	3.8345	323.34	0.0260	HOMO-1-LUMO+1	0.62	
	10	3.9301	315.47	0.0000	HOMO-5-LUMO+1	0.69	

Pt-5	1	3.0774	402.89	0.1031	HOMO-LUMO	0.61
	2	3.1883	388.87	0.1302	HOMO-LUMO+1	0.66
	3	3.2144	385.71	0.0225	HOMO-LUMO+2	0.65
	4	3.3554	369.50	0.0283	HOMO-1-LUMO	0.60
	5	3.6609	338.67	0.0107	HOMO-3-LUMO+2	0.69
	6	3.7301	332.39	0.0019	HOMO-1-LUMO+1	0.58
	7	3.7838	327.67	0.0174	HOMO-2-LUMO+2	0.58
	8	3.8006	326.23	0.0054	HOMO-3-LUMO+1	0.63
	9	3.8141	325.07	0.3257	HOMO-4-LUMO	0.67
	10	3.8351	323.28	0.0144	HOMO-1-LUMO+2	0.63

Fig. S3 Emission spectra of complexes **Pt-1**(a), **Pt-2**(b), **Pt-3**(c), **Pt-4**(d) and **Pt-5**(e) in air-saturated and degassed CH₂Cl₂ solution.

Fig. S4 Normalized emission spectra of Pt-1(a), Pt-2(b), Pt-3(c), Pt-4(d) and Pt-5(e) in different

Fig. S5 (a) Normalized emission spectra of (a) ligands L1 ($\lambda_{ex} = 316$ nm), L2 ($\lambda_{ex} = 318$ nm), L3 ($\lambda_{ex} = 340$ nm), L4 ($\lambda_{ex} = 355$ nm) and L5 ($\lambda_{ex} = 381$ nm) in CH₂Cl₂ (c = 1 × 10⁻⁵ mol/L); (b-f) Normalized emission spectra of L1–L5 in different solvents.

4. AIPE property

Fig. S6 Emission spectra of complexes Pt-1(a), Pt-4(b), Pt-5(c) ($c = 1.0 \times 10^{-5}$ M) in THF-water

mixtures with different water fractions (0-90%). Plots of fluorescent areas versus water fractions in THF-H₂O. The insets and the photographs show the complexes in different water fraction mixtures under 365 nm UV illumination.

5. Piezochromism

Fig. S7 Pt-1(a) Emission spectra of initial, ground and fumed samples. (b) Cycle numbers for reversible grinding–fuming. (c) Reversible grinding–fuming photographs of complex based on

Fig. S8 Pt-3 (a) Emission spectra of initial, ground and fumed samples. (b) Cycle numbers for reversible grinding–fuming. (c) Reversible grinding–fuming photographs of complex based on piezochromic and vapochromic properties obtained under UV light at 365 nm.

Fig. S9 Pt-4 (a) Emission spectra of initial, ground and fumed samples. (b) Cycle numbers for reversible grinding–fuming. (c) Reversible grinding–fuming photographs of complex based on piezochromic and vapochromic properties obtained under UV light at 365 nm.

Fig. S10 Pt-5 (a) Emission spectra of initial, ground and fumed samples. (b).Reversible grinding– fuming photographs of complex based on piezochromic and vapochromic properties obtained under UV light at 365 nm.

6. XRD and DSC

Fig. S11 Changes in XRD patterns by mechanical grinding and solvent treatment for Pt-1(a),

Pt-3(b), Pt-4(c), Pt-5(d).

Fig. S12 DSC curves of Pt-1(a), Pt-3(b), Pt-4(c), Pt-5(d) in pristine, ground, and annealed states.

7. Crystallographic data

Fig. S13 The picture of crystal Pt-2.

	Pt-2 (1558700)
formula	C ₅₀ C ₁₃ N ₃ Pt S
fw	976.074
crystal system	Triclinic
space group	<i>P</i> -1 (2)
<i>a</i> , Å	9.1509(4)
<i>b</i> , Å	9.7957(4)
<i>c</i> , Å	24.3327(11)
a, deg	86.999(2)
β , deg	82.305(2)
γ, deg	75.544(2)
V, Å ³	2092.69(16)
Ζ	2
$ ho_{ m calcd}, m g\ cm^{-3}$	1.54893
T/K	296(2)
μ, mm–1	3.634
θ , deg	2.32 to 27.58
<i>F</i> (000)	1020
	$-10 \le h \le 10$,
index ranges	$-10 \le k \le 11, -28 \le 1 \le$
	28
data/restraints/parameters	7342/ 0 /525
GOF (F^2)	1.041
R_1^a , wR_2^b (I>2 σ (I))	0.0312, 0.0632

Table S3 Crystallographic data of Pt-2

R_1^a , wR_2^b	0.0388, 0.0659
(all data)	

 $R_{I}^{a} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma F_{o}|. \quad wR_{2}^{b} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1}$

Table S4 Selected bond distances and angles in the crystal				
Bond distances (Å)				
Pt(1)-N(2)	2.04(28)	Pt(1)-Cl(1)	2.42(12)	
Pt(1)-N(3)	2.02(36)	C(12)-N(1)	1.43(53)	
Pt(1)- C(37)	1.90(54)	S(1)-C(7)	1.76 (55)	

Bond angles (°)				
N(2)-Pt(1)-N(3)	161.0(136)	C(1)-N(1)-C(12)	121.5(366)	
C(37)-Pt(1)-N(3)	80.5(154)	C(7)-S(1)-C(6)	99.9(221)	
Cl(1)-Pt(1)-N(3)	99.8(108)	N(1)-C(13)-C(14)	120.3(402)	

 Table S4 Summary of the molecular interactions in the crystal

Entry	Orientation of Interaction	d (Å)
1	C-HPt	2.84(4)
2	C-HCl	2.84(11)

References

1. J. Khunchalee, R. Tarsaeng, S. Jungsuttiwong, T. Keawin, T. Sudyoadsuk and V. Promarak, *Tetrahedron Lett.*, 2012, **53**, 5939-5943.

2. L. Wang, H. Yin, M. A. Jabed, M. Hetu, C. Wang, S. Monro, X. Zhu, S. Kilina, S. A. McFarland and W. Sun, *Inorg. Chem.*, 2017, **56**, 3245-3259.

3. C. J. Yao, R. H. Zheng, Q. Shi, Y. W. Zhong and J. Yao, *Chem. Commun.*, 2012, **48**, 5680-5682.

4. Y. Li, N. Dandu, R. Liu, S. Kilina and W. Sun, Dalton Trans, 2014, 43, 1724-1735.

5. A. Saini, K. R. J. Thomas, C.-T. Li and K.-C. Ho, *J. Mater. Sci. Mater. Electron.*, 2016, **27**, 12392-12404.