Aligned MoS_2 nanosheets vertically on N-doped carbon nanotubes with NiFe

alloy for overall water splitting

Tao Wang,^a Xiao Zhang,^b Ping Yang,^{a*} and San Ping Jiang ^{b*}

^aSchool of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China. ^bFuels and Energy Technology Institute and Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth WA6845, Australia.

*Corresponding author, E-mail: mse_yangp@ujn.edu.cn (P Yang) and E-mail: S.Jiang@curtin.edu.au (SP Jiang)

Fig. S1 XPS spectra of NiFe-NCNT-875. (a) C 1s, (b) N 1s, (c) Ni 2p, and (d) Fe 2p.

Fig. S2 HER and OER performances of NiFe-NCNT-875 and contrast samples. (a) LSV curves and (b)

Tafel plots of HER. (c) LSV curves and (d) Tafel plots of OER.

Fig. S3 Cyclic voltammetry curves (CV) of samples for HER. (a) NiFe-NCNT-850 (b) NiFe-NCNT-875 (c) NiFe-NCNT-900 (d) NiFe-NCNT@MoS₂-12.

Fig. S4 Cyclic voltammetry curves (CV) of samples for OER. (a) NiFe-NCNT-850 (b) NiFe-NCNT-875 (c) NiFe-NCNT-

900 (d) NiFe-NCNT@MoS₂-12.

Fig. S5 (a) Linear fitting of the measured capacitive currents at -0.05 V (vs RHE) versus scan rates of samples, (b)

Linear fitting of the measured capacitive currents at 1.28 V (vs RHE) versus scan rates of samples.

Fig. S6 Nyquist plots of samples.

 Table S1 Comparison of electrochemical overall water splitting activities among different nonprecious catalysts in

 MMKOU solution

1M	кон	SO	luti	on.
----	-----	----	------	-----

Catalysts	η (V) at J=10 mA/cm ²	Ref.
NiFe-NCNT@MoS ₂ -12	1.6	This work
Fe _x Ni _y /CeO ₂ /NC	1.7	1
$CoMo_2S_4$	1.65	2
CoP/PNC	1.68	3
CoS _x /Co-MOF	1.48	6
Ni ₂ P@NiFeAlO _x	1.52	12
NiFeO _x @NiFeP	1.65	34
(Ni, Fe)S ₂ @MoS ₂	1.56	38
NiFe-NC	1.67	46