Supporting Information (SI)

Photochromism and photocatalysis of organic-inorganic hybrid iodoargentates modulated by argentophilic interactions

Pengfei Hao,* Yi Xu, Xia Li, Junju Shen and Yunlong Fu*

Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China

*Corresponding author. Tel: 0357/2053716; Fax: (+86) 357 2053716.

E–mail address: haopengfei_2015@126.com; yunlongfu@sxnu.edu.cn.

Content

1. Chemical analytical experiment for photoproducts
2. Figures
Fig. S1. IR spectra of 1-4
Fig. S2. The asymmetric unit diagram of 14
Fig. S3. The asymmetric unit diagram of 24
Fig. S4. The asymmetric unit diagram of 35
Fig. S5. The asymmetric unit diagram of 45
Fig. S6. Thermo-gravimetric (TG) and differential scanning calorimetry (DSC) curves of 15
Fig. S7. Thermo-gravimetric (TG) and differential scanning calorimetry (DSC) curves of 26
Fig. S8. Thermo-gravimetric (TG) and differential scanning calorimetry (DSC) curves of 36
Fig. S9. Thermo-gravimetric (TG) and differential scanning calorimetry (DSC) curves of 46
Fig. S10. The UV-vis absorption spectra (a) and band gaps (b) for 1, 2, 3 and 47
Fig. S11. UV-vis absorption spectra of 1 before and after UV light irradiation. The inset
showing the photochromic behavior of 1 7
Fig. S12. UV-vis absorption spectra of 2 before and after UV light irradiation. The inset

showing the photochromic behavior of 2	7
Fig. S13. Powder X-ray diffraction (PXRD) patterns of 1 and 1P at room temperature	8
Fig. S14. Powder X-ray diffraction (PXRD) patterns of 2 and 2P at room temperature	8
Fig. S15. The EPR spectra of 3 and 3P (a), and 4 and 4P (b)	8
Fig. S16. The surface enhanced raman spectra (SERS) of 4 upon UV light irradiation	9
Fig. S17. UV-vis absorption spectra of 3 and 3P-heating at 160°C for 3 h	9
Fig. S18. UV-vis absorption spectra of 4 and 4P-heating at 160°C for 5 h	9
Fig. S19. The coloration-decoloration processes with repeated UV irradiation/heating of	3.
	0
Fig. S20. The coloration-decoloration processes with repeated UV irradiation/heating of	3.
	0
Fig. S21. UV-vis absorption spectra of the RhB solution in the presence of 3 upon light	۱t
irradiation1	0
Fig. S22. UV-vis absorption spectra of the RhB solution in the presence of 4 upon light	۱t
irradiation1	1
Fig. S23. The PXRD patterns of 3 before and after photodegradation1	1
Fig. S24. The PXRD patterns of 4 before and after photodegradation1	1
Tables1	2
Table S1 Crystal data and structure refinement for compounds 1-4.	2
Table S2 Selected bond lengths (Å) and angles (°) for 1-41	3
Table S3. Hydrogen bonds of for compounds 1-4 (Å and °).	5
Table S4. Synthesis conditions for compounds 1-4. 1	7

3.

1. Chemical analytical experiment for photoproducts

Dissolve 0.20 mmol powder samples of **3**, **3P**, **4** and **4P** in 5 ml dimethyl sulfoxide containing 1 mmol and 1 mmol NaI and Na₂S₂O₃, respectively. After several minutes, a small number of black precipitated particles are obtained in the solution of **3P** and **4P**. And then black precipitated particles are washed, dried and treated with concentrated HNO₃, solution of NaCl and concentrated NH₃·H₂O in turn, exhibiting the generation of metal silver particles. The above processes are implemented in the dark at room temperature.

Fig. S2. The asymmetric unit diagram of 1.

4 / 17

Fig. S3. The asymmetric unit diagram of 2.

Fig. S4. The asymmetric unit diagram of 3.

Fig. S5. The asymmetric unit diagram of 4.

Fig. S6. Thermo-gravimetric (TG) and differential scanning calorimetry (DSC) curves of 1.

Fig. S7. Thermo-gravimetric (TG) and differential scanning calorimetry (DSC) curves of 2.

Fig. S8. Thermo-gravimetric (TG) and differential scanning calorimetry (DSC) curves of 3.

Fig. S9. Thermo-gravimetric (TG) and differential scanning calorimetry (DSC) curves of 4.

Fig. S10. The UV-vis absorption spectra (a) and band gaps (b) for 1, 2, 3 and 4.

Fig. S11. UV-vis absorption spectra of 1 before and after UV light irradiation. The inset showing

Fig. S12. UV-vis absorption spectra of 2 before and after UV light irradiation. The inset showing the photochromic behavior of 2.

Fig. S13. Powder X-ray diffraction (PXRD) patterns of 1 and 1P at room temperature.

Fig. S14. Powder X-ray diffraction (PXRD) patterns of 2 and 2P at room temperature.

Fig. S15. The EPR spectra of 3 and 3P (a), and 4 and 4P (b)

Fig. S16. The surface enhanced raman spectra (SERS) of 4 upon UV light irradiation.

Fig. S17. UV-vis absorption spectra of 3 and 3P-decolorized.

Fig. S18. UV-vis absorption spectra of 4 and 4P-decolorized.

Fig. S19. The coloration-decoloration processes with repeated UV irradiation/heating of 3.

Fig. S20. The coloration-decoloration processes with repeated UV irradiation/heating of 3.

Fig. S21. UV-vis absorption spectra of the RhB solution in the presence of 3 upon light irradiation.

Fig. S22. UV-vis absorption spectra of the RhB solution in the presence of 4 upon light irradiation.

Fig. S23. The PXRD patterns of 3 before and after photodegradation.

Fig. S24. The PXRD patterns of 4 before and after photodegradation.

3. Tables

Table S1 Cr	ystal data and	structure refinement	nt for compounds 1-4 .
-------------	----------------	----------------------	-------------------------------

Compounds	1	2	3	4
CCDC code	2003491	2003492	2003493	2003494
Empirical formula	$C_{22}H_{30}N_4Ag_2I_4$	$C_{36}H_{44}N_8Ag_4I_8$	$C_9H_{11}N_2Ag_2I_3$	$C_{11}H_{15}N_2Ag_2I_3$
Formula weight	1073.84	2035.47	743.64	771.69
Crystal size (mm)	0.05×0.05×0.4	0.35×0.22×0.0	0.07×0.03×0.0	0.29×0.12×0.1
Crystal system	Monoclinic	Triclinic	Orthorhombic	Monoclinic
Space group	P2 ₁ /n	<i>P</i> -1	Pnma	P21/c
a (Å)	7.0674(4)	9.4556(14)	17.4877(15)	8.9078(7)
b (Å)	19.8103(10)	9.4596(14)	6.6760(6)	24.2649(18)
<i>c</i> (Å)	21.2365(12)	29.009(4)	13.8701(12)	8.1079(6)
α (°)	90	87.486(3)	90	90
в (°)	92.976	87.279(3)	90	91.485(2)
γ (°)	90	84.662(3)	90	90
<i>V</i> (ų)	2969.3(3)	2558.8(7)	1619.3(2)	1751.9(2)
Ζ	4	2	4	4
$D_c ({ m g}{ m cm}^{-3})$	2.402	2.642	3.050	2.926
F (000)	1984	1856	1328	1392
μ (mm ⁻¹)	5.495	6.369	8.117	7.508
Reflections collected	43180	37987	20906	23273
Unique reflections	7394	12463	2169	4289
R _{int}	0.0404	0.0340	0.0229	0.0340
Goodness-of-fit on <i>F</i> ²	1.194	1.156	1.175	1.258
<i>R</i> ₁ / <i>wR</i> ₂ , [<i>l</i> ≥2 <i>σ</i> (<i>l</i>)] ^{a,b}	0.0433, 0.1273	0.0442, 0.1350	0.0426, 0.1278	0.0405,0.1139
R_1/wR_2 , (all data)	0.0566, 0.1420	0.0563, 0.1537	0.0521, 0.1518	0.0462,0.1232
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ (e Å ⁻³)	1.164,-1.966	1.916, -2.403	2.714, -2.561	2.820,-2.595
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} $		^b wR ₂ = [$\sum w(F_0^2 -$	$-F_{c}^{2})^{2}/\sum w(F_{o}^{2})^{2}]^{1/2}$	

	Compound 1								
Ag(1)-I(2)	2.8201(8)	Ag(2)-I(3)#1	2.8478(8)						
Ag(1)-I(3)	2.8482(8)	Ag(2)-I(4)#1	2.8839(9)						
Ag(1)-I(4)	2.8770(8)	Ag(2)-I(1)	2.9176(8)						
Ag(1)-I(1)	2.9175(8)	Ag(2)-I(2)	2.8271(9)						
I(2)-Ag(1)-I(3)	110.19(3)	I(3)#1-Ag(2)-I(4)#1	106.45(3)						
I(2)-Ag(1)-I(4)	118.13(3)	I(2)-Ag(2)-I(1)	100.89(3)						
I(3)-Ag(1)-I(4)	106.63(3)	I(3)#1-Ag(2)-I(1)	111.43(3)						
I(2)-Ag(1)-I(1)	101.06(3)	I(4)#1-Ag(2)-I(1)	108.28(2)						
I(3)-Ag(1)-I(1)	111.78(3)	I(2)-Ag(2)-I(3)#1	111.14(3)						
I(4)-Ag(1)-I(1)	109.08(2)	I(2)-Ag(2)-I(4)#1	118.58(3)						
Symmetry code: #1 x	:-1,y,z; 2 x+1,y,z; #1 x,y	v,z-1; #2 -x+1,-y+1,-z+1; #3 x,y	r,z+1						
	(Compound 2							
Ag(1)-I(1)	2.8297(8)	Ag(1)-I(2)	2.8487(9)						
Ag(1)-I(6)	2.8577(9)	Ag(1)-I(7)#1	2.9249(9)						
Ag(2)-I(3)	2.8488(9)	Ag(2)-I(2)	2.8548(9)						
Ag(2)-I(5)	2.8608(9)	Ag(2)-I(8)#2	2.8794(9)						
Ag(3)-I(3)	2.8483(9)	Ag(3)-I(4)	2.8545(8)						
Ag(3)-I(6)	2.8597(9)	Ag(3)-I(7)	2.8753(9)						
Ag(4)-I(1)	2.8298(9)	Ag(4)-I(4)	2.8500(9)						
Ag(4)-I(5)	2.8586(9)	Ag(4)-I(8)	2.9251(9)						
I(1)-Ag(1)-I(2)	109.18(3)	I(1)-Ag(1)-I(6)	117.71(3)						
I(2)-Ag(1)-I(6)	110.57(3)	I(1)-Ag(1)-I(7)#1	102.79(2)						
I(2)-Ag(1)-I(7)#1	107.21(3)	I(6)-Ag(1)-I(7)#1	108.66(3)						
I(3)-Ag(2)-I(2)	108.97(3)	I(3)-Ag(2)-I(5)	108.75(3)						
I(2)-Ag(2)-I(5)	105.51(2)	I(3)-Ag(2)-I(8)#2	105.41(3)						
I(2)-Ag(2)-I(8)#2	115.78(3)	I(5)-Ag(2)-I(8)#2	112.28(3)						
I(3)-Ag(3)-I(4)	108.47(3)	I(3)-Ag(3)-I(6)	108.90(3)						
I(4)-Ag(3)-I(6)	105.39(2)	I(3)-Ag(3)-I(7)	105.81(2)						
I(4)-Ag(3)-I(7)	115.87(3)	I(6)-Ag(3)-I(7)	112.25(3)						
I(1)-Ag(4)-I(4)	109.31(3)	I(1)-Ag(4)-I(5)	117.82(3)						

Table S2 Selected bond lengths (Å) and angles (°) for 1-4

I(4)-Ag(4)-I(5)	110.44(3)	I(1)-Ag(4)-I(8)	102.81(2)				
I(4)-Ag(4)-I(8)	107.12(3)	I(5)-Ag(4)-I(8)	108.62(3)				
Symmetry code: #1 x+	-1,y,z; #2 x,y-1,z; #3 x-	1,y,z; #4 x,y+1,z					
Compound 3							
Ag(1)-I(3)	2.7990(9)	Ag(1)-I(2)	2.8011(9)				
Ag(1)-I(1)#1	2.8979(8)	Ag(1)-I(1)	2.9508(9)				
Ag(1)-Ag(1)#2	3.1268(15)						
I(3)-Ag(1)-I(2)	114.86(3)	I(3)-Ag(1)-I(1)#1	111.73(3)				
I(2)-Ag(1)-I(1)#1	112.95(3)	I(3)-Ag(1)-I(1)	103.68(3)				
I(2)-Ag(1)-I(1)	104.93(3)	I(1)#1-Ag(1)-I(1)	107.74(2)				
Symmetry code: 1 -x+	1,-y,-z+1; x,-y+1/2,z	; -x+1,y-1/2,-z+1; x,-y-1/2,	Z				
	C	Compound 4					
Ag(1)-I(1)	2.8544(8)	Ag(2)-I(3)	2.8155(8)				
Ag(1)-I(3)#1	2.8577(8)	Ag(2)-I(1)#2	2.9263(9)				
Ag(1)-I(2)	2.8620(8)	Ag(2)-I(1)	3.0727(9)				
Ag(1)-I(3)#2	2.9375(8)	Ag(2)-I(2)	2.7737(7)				
Ag(1)-Ag(2)#2	3.1846(8)	Ag(2)-Ag(1)#2	3.1846(8)				
Ag(1)-Ag(2)	3.0664(9)	Ag(2)-Ag(2)#2	2.8909(13)				
I(1)-Ag(1)-I(3)#1	109.61(3)	I(2)-Ag(2)-I(1)	102.28(2)				
I(1)-Ag(1)-I(2)	105.71(3)	I(3)-Ag(2)-I(1)	95.62(3)				
I(3)#1-Ag(1)-I(2)	104.01(2)	I(1)#2-Ag(2)-I(1)	122.44(2)				
I(1)-Ag(1)-I(3)#2	102.13(2)	I(2)-Ag(2)-I(3)	131.36(3)				
I(3)#1-Ag(1)-I(3)#2	108.58(2)	I(2)-Ag(2)-I(1)#2	104.12(3)				
I(2)-Ag(1)-I(3)#2	126.19(3)	I(3)-Ag(2)-I(1)#2	103.37(2)				
Symmetry code: #1 x,	y,z-1; #2 -x+1,-y+1,-z+	1; #3 x,y,z+1					

Table S3. Hydrogen bonds of for compounds 1-4 (Å and °).

Compound 1							
D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)			
C(1)-H(1)…I(3)#1	0.930	3.094	3.946	153.17			
C(2)-H(2C)…I(4)#1	0.960	3.231	4.147	160.20			
C(4)-H(4)…I(2)#2	0.930	3.067	3.992	173.26			
C(10)-H(10A)…I(3)#1	0.960	3.209	4.123	159.83			
C(10)-H(10B)…I(3)#3	0.960	3.252	4.185	164.53			
C(12)-H(12)…I(1)#2	0.930	2.877	3.760	159.01			
C(13)-H(13A)…I(1)#2	0.960	3.271	4.146	152.32			
C(15)-H(15)…I(3)#1	0.930	3.078	4.000	171.57			
C(20)-H(20)…I(4)#4	0.930	3.288	4.202	168.19			

#1 x-1, y, z-1; #2 x-1/2, -y+1/2, z-1/2; #3 -x+2, -y+1, -z+1; #4 -x+3/2, y+1/2, -z+3/2

Compound 2					
D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)	
C(1)-H(1)…I(1)#1	0.930	3.083	3.771	132.17	
C(1)-H(1)…I(2)#2	0.930	3.110	3.724	125.15	
C(10)-H(10)…I(3)	0.930	3.106	3.703	123.62	
C(10)-H(10)…I(4)#3	0.930	3.004	3.684	131.20	
C(19)-H(19)…I(1)#3	0.930	3.064	3.758	132.79	
C(19)-H(19)…I(4)#4	0.930	3.126	3.736	124.76	
C(28)-H(28)…I(2)	0.930	2.991	3.682	132.38	
C(28)-H(28)…I(3)#5	0.930	3.127	3.720	123.34	
N(1)-H(1A)…I(7)#3	0.860	2.845	3.643	155.11	
N(2)-H(2A)…I(2)#2	0.860	3.292	3.796	119.96	
N(2)-H(2A)…I(3)	0.860	3.231	3.691	116.09	
N(2)-H(2A)…I(7)	0.860	3.212	3.865	134.69	
N(3)-H(3)…I(6)#3	0.860	2.894	3.678	152.47	
N(4)-H(4)…I(2)	0.860	3.141	3.599	115.68	
N(4)-H(4)…I(3)	0.860	3.245	3.753	120.33	
N(4)-H(4)…I(6)	0.860	3.253	3.889	132.81	
N(5)-H(5A)…I(8)#3	0.860	2.847	3.643	154.57	
N(6)-H(6)…I(3)#5	0.860	3.225	3.686	116.17	
N(6)-H(6)…I(4)#4	0.860	3.289	3.793	120.06	

N(6)-H(6)…I(8)#4	0.860	3.216	3.866	134.33
N(7)-H(7)…I5	0.860	3.216	3.676	152.37
N(8)-H(8)…I(3)#5	0.860	3.249	3.757	120.38
N(8)-H(8)…I(4)#5	0.860	3.127	3.593	116.39
N(8)-H(8)…I(5)#5	0.860	3.261	3.893	132.39
#1 x-1, y, z-1; #2 x-1/2, -y+1/2,	z-1/2; #3 -x+2, -y	+1, -z+1; #4 -:	x+3/2, y+1/2, -z+3	3/2

Compound 3							
D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)			
C(2)-H(2)…I(1)#1	0.930	3.190	3.839	128.53			
C(5)-H(5)…I(3)#2	0.930	3.008	3.899	160.95			
C(8)-H(8)…I(3)#3	0.930	3.202	4.043	151.40			
C(9)-H(9A)…I(1)#3	0.960	3.175	4.088	159.36			
C(9)-H(9B)…I(3)	0.960	3.311	4.236	162.32			
#1 -x+1, -y+1, -z+1; #2 -x+	#1 -x+1, -y+1, -z+1; #2 -x+1, -y+1, -z+2; #3 -x+3/2, -y+1, z+1/2						
Compound 4							
	Con	pound 4					
D-H···A	Con d(D-H)	d(H…A)	d(D…A)	<(DHA)			
D-H…A C(1)-H(1C)…I(3)#1	Con d(D-H) 0.960	d(H…A) 2.998	d(D…A) 3.915	<(DHA) 160.18			
D-H…A C(1)-H(1C)…I(3)#1 C(1)-H(1A)…I(3)#2	Con d(D-H) 0.960 0.960	d(H…A) 2.998 3.215	d(D…A) 3.915 4.079	<(DHA) 160.18 150.54			
D-H…A C(1)-H(1C)…I(3)#1 C(1)-H(1A)…I(3)#2 C(2)-H(2)…I(1)#3	Con d(D-H) 0.960 0.960 0.930	d(H…A) 2.998 3.215 3.297	d(D…A) 3.915 4.079 3.909	<(DHA) 160.18 150.54 125.33			
D-H…A C(1)-H(1C)…I(3)#1 C(1)-H(1A)…I(3)#2 C(2)-H(2)…I(1)#3 C(3)-H(3A)…I(3)#3	Con d(D-H) 0.960 0.960 0.930 0.960	d(H…A) 2.998 3.215 3.297 3.178	d(D…A) 3.915 4.079 3.909 4.101	<(DHA) 160.18 150.54 125.33 161.72			
D-H…A C(1)-H(1C)…I(3)#1 C(1)-H(1A)…I(3)#2 C(2)-H(2)…I(1)#3 C(3)-H(3A)…I(3)#3 C(6)-H(6)…I(2)	Con d(D-H) 0.960 0.960 0.930 0.960 0.930	d(H…A) 2.998 3.215 3.297 3.178 3.192	d(D…A) 3.915 4.079 3.909 4.101 4.111	<(DHA) 160.18 150.54 125.33 161.72 170.03			

Entry	DMBI/BI (mmol)	Agl (mmol)	Nal·2H ₂ O (mmol)	HI (mL)	Methanol (mL)	Acetonitrile (mL)	Product
1	0.6	0.6	2	0.2	2	3	1
2	0.6	0.6	2	0.2	5	0	2
3	0.6	1.2	2	0.2	2	3	3
4	0.6	1.2	2	0.2	2	3	4

 Table S4. Synthesis conditions for compounds 1-4.