Electronic Supplementary Information The Hexagonal Perovskite Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} as Efficient Electrocatalyst for Oxygen Evolution Reaction

Lulu Tang,^a Wanqun Zhang,^a Dan Lin,^a Yi Ren,^a Hui Zheng,^a Qinxin Luo,^a Lianwei Wei,^a Huimin Liu,^a Junhua Chen,^b and Kaibin Tang^{*ac}

^a Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
^b Physics Department, School of Electric Science and Applied Physics, Hefei University of Technology, Hefei, 230009, China
^c Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China E-mail: kbtang@ustc.edu.cn Calculation details:

The density functional theory (DFT) calculations were carried out with Cambridge Sequential Total Energy Package (CASTEP) code.¹ The generalized gradient approximation (GGA) method with the Perdew-Burke-Ernzerhof (PBE) functional was applied to the exchange-correlation potential. The ultrasoft pseudo-potentials (USP) were used for treating the core electrons and the energy cutoff was set as 400 eV for the plane wave. The self-consistent field (SCF) tolerance was 1×10^{-6} eV. A centered 6 $\times 6 \times 1$ k-points mesh were employed for surface calculation and the density of states (DOS) calculation. The PDOS band center was calculated using the equation: band

center =
$$\frac{\int Ef(E)dE}{\int f(E)dE}$$
, where f(E) is the DOS value and E is the electron energy.²

Fig. S1. XRD patterns of the as-prepared BSCF-H and BSCF-C powders.

Fig. S2. Schematic presentation of the cubic BSCF-C crystal structure

Fig. S3. XRD patterns of the powders obtained by the calcination of BSCF solid precursor for 10 h at various temperatures, 600 °C, 650 °C ,700 °C,750 °C,800 °C, 850 °C and 900 °C, respectively.

Fig. S4. (a) N_2 adsorption/desorption isotherm curves of BSCF-H, (b) BJH pore size distribution plots BSCF-H, (c) N_2 adsorption/desorption isotherm curves of BSCF-C, (d) BJH pore size distribution plots BSCF-C, (e) N_2 adsorption/desorption isotherm curves of RuO₂, (f) BJH pore size distribution plots RuO₂.

Fig. S5. (a) The OER specific activity of the BSCF-H, BSCF-C, and commercial RuO₂ catalysts. (b) Specific activity of the BSCF-H, BSCF-C, and commercial RuO₂ catalysts at potential of 1.60 and 1.65 V, respectively.

Fig. S6. Chronoamperometric responses of RuO_2 at constant potentials of 1.60 V ensure an initial current density of 10 mA cm⁻².

Fig. S7. Cyclic voltammograms (10 mV s⁻¹) of BSCF-H showing 2nd, 25th, 100th and 200th cycles.

Fig. S8. CV measurements in a non-faradic current region (0.08-0.18 V vs. RHE, no iR-corrected) at scan rates of 20, 40, 60, 80 and 100 mV s⁻¹ of (a) BSCF-H, (b) BSCF-C and (c) RuO₂ catalysts in 0.1 M KOH.

Fig. S9. XPS spectra of Fe 2p in the BSCF-H and BSCF-C.

Fig. S10. (a) The initial HO and the optimized HO adsorption on the (001) surface of BSCF-C, (c) The initial HO adsorption and the optimized HO adsorption on the (001) surface of BSCF-H.

Samples	The conce	concentrations of metal ions (µg/mL)			ICP-MS composition
	Ba	Sr	Co	Fe	
BSCF-H	35.34	18.82	19.56	4.589	Ba0.5Sr0.5Co0.8Fe0.2O3
BSCF-C	39.09	19.85	22.26	5.069	Ba0.5Sr0.5Co0.8Fe0.2O3

Table S1. Actual compositions of BSCF-H and BSCF-C powders by ICP-AES.

Table S2. Summary of OER activities of BSCF-H and some reported state-of-the-art perovskite catalysts based on transition metal. All catalysts supported on glass carbon electrode in 0.1 M KOH solution.

Catalysts	Tafel slope (mV dec-1)	Loading (mg cm ⁻ ²)	η_{10} at 10 mA cm ⁻² (V)	References
$\frac{SrNb_{0.1}Co_{0.7}Fe_{0.2}O_{3-\delta}}{nanorod}$	61	0.232	≈0.39	<i>Adv. Energy</i> <i>Mater.</i> 2017 , 7, 1602122
$\label{eq:prba_0.5} PrBa_{0.5}Sr_{0.5}Co_{1.5}Fe_{0.5}O_{5+\delta}$ nanofiber	55	0.25	≈0.358	<i>Nat. Commun</i> , 2017 , 8, 14586
$La_{0.5}Sr_{1.5}Ni_{1\text{-}x}Fe_{x}O_{4\pm\delta}$	44	0.0153	≈0.36	<i>Nat. Commun.</i> , 2018 , 9, 3150
SrCo _{0.95} P _{0.05} O _{3-δ} (SCP)	84	0.232	≈0.48	<i>Adv. Funct.</i> <i>Mater.</i> 2016 , <i>26</i> , 5862–5872
LaNiO ₃ Nanorods	N.A.	0.408	≈0.572	ACS Appl. Mater. Interfaces 2017 , 9, 24634-24648
$Pr_{0.5}Ba_{0.3}Ca_{0.2}CoO_{3-\delta}$	73	0.39	≈0.44	<i>Chem. Commun.</i> , 2017 , 53, 5132-5135
$Bi_{0.1}(Ba_{0.5}Sr_{0.5})_{0.9}Co_{0.8}Fe_{0.2}O_{3-\delta}$	74	0.2266	≈0.441	<i>Sci. Rep.</i> 2019 , 9, 4210
P- Bi _{0.1} (Ba _{0.5} Sr _{0.5}) _{0.9} Co _{0.8} Fe _{0.2} O _{3-$\delta^{[a]}$}	68	0.2266	≈0.37	<i>Sci. Rep.</i> 2019 , 9, 4210
La ₂ NiMnO ₆ -1	58	N.A.	≈0.37	<i>J. Am. Chem. Soc.</i> 2018 , 140, 11165-11169
SNCF-BM ^[b]	90	0.232	≈0.42	<i>Angew. Chem.</i> <i>Int. Ed.</i> 2015 ,54, 3897-3901

				Angew. Chem.
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	94	0.232	≈0.51	Int. Ed. 2015,54,
				3897-3901
				J. Mater. Sci.
BSCF-600 ^[c]	63	0.232	≈0.36	<i>Technol.</i> 2019,
				35, 1184–1191
Cubic Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-δ}				
	118	0.25	≈0.47	This work
(BSCF-C, 900 C)				
Hexagonal				
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	61	0.25	≈0.36	This work
(BSCF-H)				
[a]: BSCF-BM = ball-milling Ba	$a_{0.5}Sr_{0.5}Co_0$.8Fe _{0.2} O _{3-δ}		

[b]: P-Bi_{0.1}(Ba_{0.5}Sr_{0.5})_{0.9}Co_{0.8}Fe_{0.2}O_{3- δ} = plasma engraved

 $Bi_{0.1}(Ba_{0.5}Sr_{0.5})_{0.9}Co_{0.8}Fe_{0.2}O_{3\text{-}\delta}$

[c]: BSCF-600 = $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ by CO₂ thermal treatment

Table S3. The element concentration of Ba and Sr in the 0.1 M KOH solution after 10 h chronoamperometry test.

Samula	Ba element	Sr element
Sample	concentration(µg/L)	concentration(µg/L)
Reference (0.1 M KOH)	ND	ND
BSCF-C (0.1 M KOH)	24.44	236.5
BSCF-H (0.1 M KOH)	146.1	1254

ND = not detected

Table S4. The impedance parameters of the various catalysts performed in the present work.

catalysts	Rs (Ω)	Rct (Ω)
BSCF-H	37.29	19.52
BSCF-C	34.98	103.80
RuO_2	38.01	35.97

Table S5. O 1s XPS peak deconvolution results.

Electrocatalysts	lattice O ²⁻	O_2^{2-}/O^{-}	OH- or O_2	$H_2O \text{ or } CO_3^{2-}$
BSCF-H	3.46%	32.93%	58.22%	5.39%
BSCF-C	11.17%	17.93%	64.18%	6.72%

References

- 1. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, *J. Phys. Condens. Matter*, 2002, **14**, 2717-2744.
- W. Xu, N. Apodaca, H. Wang, L. Yan, G. Chen, M. Zhou, D. Ding, P. Choudhury and H. Luo, A-site Excessive (La_{0.8}Sr_{0.2})_{1+x}MnO₃ Perovskite Oxides for Bifunctional Oxygen Catalyst in Alkaline Media, *Acs Catalysis*, 2019, 9, 5074-5083.