Supporting Information

for

Reactivities of Cyclam Derivatives with Metal-Amyloid- β

Gunhee Kim, ${ }^{\perp \mathrm{a}}$ Evan Lelong, ${ }^{\perp \mathrm{b}}$ Juhye Kang, ${ }^{\text {La,c }}$ Jong-Min Suh, ${ }^{\text {a }}$ Nathalie Le Bris, ${ }^{\text {b }}$ Hélène Bernard, ${ }^{\text {b }}$ Dongwook Kim, ${ }^{\text {a,d }}$ Raphaël Tripier*b and Mi Hee Lim*a
${ }^{\text {a }}$ Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
${ }^{\text {b }}$ Univ Brest, UMR CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
${ }^{\text {c}}$ Technical Support Center, Office of Research Affairs, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
${ }^{d}$ Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
${ }^{\perp}$ These authors contributed equally to this work.
*To whom correspondence should be addressed: miheelim@kaist.ac.kr and raphael.tripier@univbrest.fr

Table of Contents
Table S1 Summary of the X-ray crystallographic data for 1 S3
$\begin{array}{ll}\text { Table S2 } & \text { Summary of the acidity constants }\left(\mathrm{p} K_{\mathrm{a}} \mathrm{s}\right) \text { of } \\ & \text { DMC, DMC-E, TMC, and TMC-E }\end{array}$
Table S3 Summary of the X-ray crystallographic data for $\left[\mathrm{Cu}(\mathrm{DMC})(\mathrm{CI})_{2}\right] \quad$ S5
Table S4 Summary of the X-ray crystallographic data for $\left[\mathrm{Zn}(\mathrm{DMC})(\mathrm{Cl})_{2}\right] \quad$ S6
Table S5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Cu}(\mathrm{DMC})(\mathrm{Cl})_{2}\right]$ and $\left[\mathrm{Zn}(\mathrm{DMC})(\mathrm{Cl})_{2}\right] \quad \mathrm{S} 7$

Fig. S1 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $1 \quad$ S8
Fig. S2 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2 S9
Fig. S3 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of DMC-E S10
Fig. S4 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of TMC-E S11
Fig. S5 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $4 \quad$ S12
Fig. S6 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of CB-Cyclam-E S13
Fig. S7 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $5 \quad$ S14
Fig. S8 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of CB-DMC-E S15
Fig. S9 $\begin{array}{ll}\text { Superposition of the X-ray crystal structures of } \\ \text { cyclam-hydroxyethyl-bisformyl } 1 \text { and cyclam-bisformyl S16 }\end{array}$
Fig. S10 Solution speciation studies of DMC, DMC-E, TMC, and TMC-E by potentiometry S17
$\begin{array}{lll}\text { Fig. S11 } & \text { Possible interactions of Cyclam and its derivatives with A } \beta_{42} \text { monomer } \\ & \text { visualized by docking studies } & \text { S18 }\end{array}$
$\begin{array}{lll}\text { Fig. S12 Interactions of Cu(II)-treated } A \beta_{42} \text { with Cyclam-E, DMC-E, } & \\ & \text { TMC-E, CB-Cyclam-E, or CB-DMC-E detected by ESI-MS }\end{array}$
Fig. S13 Original gel/Western blot data of Fig. $5 \quad$ S20
Fig. S14 Morphologies of the resultant metal-free and metal-treated A β_{42} aggregates generated upon incubation with TMC-E and CB-DMC-E observed by TEM
Fig. S15 Ability of Cyclam and its derivatives to remove $\mathrm{H}_{2} \mathrm{O}_{2} \quad$ S22
Fig. S16 Cytotoxicity of Cyclam and its derivatives in the absence and presence of metal ions

Table S1 Summary of the X-ray crystallographic data for 1.

Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}$
Formula weight	268.4
Temperature	170 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P-1
	$\mathrm{a}=8.4724(6) \AA$
Unit cell dimensions	$b=8.8104(6) \AA \quad \beta=95.879(6)^{\circ}$
	c $=10.4428(7) \AA$
Volume	715.16(9) \AA^{3}
Z	2
Density (calculated)	$1.246 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.081 \mathrm{~mm}^{-1}$
F(000)	296
Crystal size	$0.37 \times 0.12 \times 0.05 \mathrm{~mm}^{3}$
θ range for data collection	3.46 to 26.37°
Index ranges	$-10<=h<=10,-11<=k<=10,-12<=\mid<=13$
Reflections collected	5561
Independent reflections	$2904[\mathrm{R}(\mathrm{int})=0.0256]$
Completeness to $\theta=25.242^{\circ}$	99.6\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9960 and 0.9707
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	2904 / 0 / 173
Goodness-of-fit on F^{2}	0.883
Final R indices [$1>2 \sigma(\mathrm{l})$]	$\mathrm{R} 1=0.0428, \mathrm{wR} 2=0.0874$
R indices (all data)	$\mathrm{R} 1=0.0847, w R 2=0.0974$
Extinction coefficient	n/a
Largest diff. peak and hole	0.243 and $-0.159 \mathrm{e} \cdot \AA^{-3}$

Table S2 Summary of the acidity constants ($\mathrm{p} K_{\mathrm{a}} \mathrm{s}$) of DMC, DMC-E, TMC, and TMC-E.

		$\mathrm{pK}_{\mathrm{a}}{ }^{a}$					
	$\mathrm{~L}=$	Cyclam b	Cyclam-E b	DMC	DMC-E	TMC	TMC-E
$\mathrm{LH} \longleftrightarrow \mathrm{L}+\mathrm{H}$	11.54	$11.16(1)$	$10.61(2)$	$10.88(2)$	$9.45(3)$	$9.69(2)$	
$\mathrm{LH}_{2} \longleftrightarrow \mathrm{LH}+\mathrm{H}$	10.35	$10.14(2)$	$9.02(4)$	$8.89(4)$	$9.13(2)$	$9.13(2)$	
$\mathrm{LH}_{3} \longleftrightarrow \mathrm{LH}_{2}+\mathrm{H}$	2.43	-	-	-	$2.75(6)$	$2.27(3)$	
$\mathrm{LH}_{4} \longleftrightarrow \mathrm{LH}_{3}+\mathrm{H}$	1.97	-	-	-	$2.1(9)$	-	

Charges are omitted for clarity. Conditions: [compound] $=2 \mathrm{mM} ; 25^{\circ} \mathrm{C} ; I=0.10 \mathrm{M}$ in KNO_{3}.
${ }^{a}$ Values in parentheses are standard derivations in the last significant digit. ${ }^{5}$ The values are obtained from reference 1.

Reference

1. N. Camus, Z. Halime, N. le Bris, H. Bernard, M. Beyler, C. Platas-Lglesias and R. Tripier, A [two-step/one week] synthesis of C-functionalized homocyclens and cyclams. Application to the preparation of conjugable BCAs without chelating properties alteration, RSC Adv., 2015, 5, 85898-85910.

Table S3 Summary of the X-ray crystallographic data for $\left[\mathrm{Cu}(\mathrm{DMC})(\mathrm{Cl})_{2}\right]$.

Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{CuN}_{4}$
Formula weight	362.82
Temperature	153(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
	$\mathrm{a}=6.813(2) \AA$
Unit cell dimensions	$b=12.552(5) \AA \quad \beta=103.241(12)^{\circ}$
	$\mathrm{c}=10.796(4) \AA$
Volume	898.6(6) \AA^{3}
Z	2
Density (calculated)	$1.341 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.507 \mathrm{~mm}^{-1}$
F(000)	382
Crystal size	$0.471 \times 0.121 \times 0.098 \mathrm{~mm}^{3}$
θ range for data collection	3.620 to 27.999°
Index ranges	$-8<=h<=8,-16<=k<=16,-13<=1<=14$
Reflections collected	9934
Independent reflections	$2133[\mathrm{R}$ (int) $=0.0586]$
Completeness to $\theta=25.242^{\circ}$	98.8\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.5275
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	2133 / 0 / 92
Goodness-of-fit on F^{2}	1.038
Final R indices [$1>2 \sigma(\mathrm{l})$]	$\mathrm{R} 1=0.0510, \mathrm{wR} 2=0.1163$
R indices (all data)	$\mathrm{R} 1=0.0672, \mathrm{wR} 2=0.1284$
Extinction coefficient	n/a
Largest diff. peak and hole	0.855 and $-0.514 \mathrm{e} \cdot \AA^{-3}$

Table S4 Summary of the X-ray crystallographic data for $\left[\mathrm{Zn}(\mathrm{DMC})(\mathrm{Cl})_{2}\right]$.

Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Zn}$
Formula weight	364.65
Temperature	100(2) K
Wavelength	0.700 Å
Crystal system	Monoclinic
Space group	C2/c
	$\mathrm{a}=16.424(3) \AA$
Unit cell dimensions	$b=6.4810(13) \AA \quad \beta=112.23(3)^{\circ}$
	$\mathrm{c}=16.486$ (3) \AA
Volume	1624.4(6) \AA^{3}
Z	4
Density (calculated)	$1.491 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.755 \mathrm{~mm}^{-1}$
F(000)	768
Crystal size	$0.034 \times 0.032 \times 0.012 \mathrm{~mm}^{3}$
θ range for data collection	1.314 to 24.975°
Index ranges	$-19<=\mathrm{h}<=19,-7<=\mathrm{k}<=7,-19<=\mathrm{l}<=19$
Reflections collected	8024
Independent reflections	2121 [R (int) $=0.0675$]
Completeness to $\theta=25.242^{\circ}$	97.1\%
Absorption correction	Empirical
Max. and min. transmission	1.000 and 0.896
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	2121 / 288 / 171
Goodness-of-fit on F^{2}	1.034
Final R indices [$1>2 \sigma(\mathrm{l})$]	$\mathrm{R} 1=0.0825, \mathrm{wR} 2=0.2324$
R indices (all data)	$\mathrm{R} 1=0.1133, \mathrm{wR} 2=0.2644$
Largest diff. peak and hole	1.760 and $-0.955 \mathrm{e} \cdot \AA^{-3}$

Table S5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Cu}(\mathrm{DMC})(\mathrm{Cl})_{2}\right]$ and $\left[\mathrm{Zn}(\mathrm{DMC})(\mathrm{Cl})_{2}\right]$.

$\left[\mathrm{Cu}(\mathrm{DMC})(\mathrm{Cl})_{2}\right]$		$\left[\mathrm{Zn}(\mathrm{DMC})(\mathrm{Cl})_{2}\right]$	
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.987(3)$	$\mathrm{Zn} 1-\mathrm{N} 1$	$2.268(19)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.066(3)$	$\mathrm{Zn} 1-\mathrm{N} 2$	$2.11(4)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.987(3)$	$\mathrm{Zn} 1-\mathrm{N} 3$	$2.11(4)$
$\mathrm{Cu} 1-\mathrm{N} 4$	$2.066(3)$	$\mathrm{Zn} 1-\mathrm{N} 4$	$2.268(19)$
$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.982(1)$	$\mathrm{Zn} 1-\mathrm{Cl} 1$	$2.461(6)$
$\mathrm{Cu} 1-\mathrm{Cl} 2$	$2.982(1)$	$\mathrm{Zn} 1-\mathrm{Cl} 2$	$2.461(6)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$93.50(12)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$79.3(12)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$86.50(12)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 3$	$84.8(18)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 4$	$93.50(12)$	$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 4$	$87.3(12)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$86.50(12)$	$\mathrm{N} 4-\mathrm{Zn} 1-\mathrm{N} 1$	$161.9(8)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 44^{a}$	0	$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 4{ }^{a}$	80.59

${ }^{a}$ This angle was obtained by averaging the dihedral angles obtained from the two measurements.

Fig. S1 NMR $\left[{ }^{1} \mathrm{H}(300 \mathrm{MHz})\right.$ and $\left.{ }^{13} \mathrm{C}(75 \mathrm{MHz})\right]$ spectra of 1.

Fig. S2 NMR [${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and $\left.{ }^{13} \mathrm{C}(75 \mathrm{MHz})\right]$ spectra of 2.

Fig. S3 NMR $\left[{ }^{1} \mathrm{H}(300 \mathrm{MHz})\right.$ and $\left.{ }^{13} \mathrm{C}(75 \mathrm{MHz})\right]$ spectra of DMC-E.

Fig. S4 NMR $\left[{ }^{1} \mathrm{H}(300 \mathrm{MHz})\right.$ and $\left.{ }^{13} \mathrm{C}(75 \mathrm{MHz})\right]$ spectra of TMC-E.

Fig. S5 NMR [${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and $\left.{ }^{13} \mathrm{C}(75 \mathrm{MHz})\right]$ spectra of 4 .

Fig. S6 NMR $\left[{ }^{1} \mathrm{H}(300 \mathrm{MHz})\right.$ and $\left.{ }^{13} \mathrm{C}(75 \mathrm{MHz})\right]$ spectra of CB-Cyclam-E.

5

Fig. S7 NMR $\left[{ }^{1} \mathrm{H}(300 \mathrm{MHz})\right.$ and $\left.{ }^{13} \mathrm{C}(75 \mathrm{MHz})\right]$ spectra of 5 .

Fig. S8 NMR $\left[{ }^{1} \mathrm{H}(300 \mathrm{MHz})\right.$ and $\left.{ }^{13} \mathrm{C}(75 \mathrm{MHz})\right]$ spectra of CB-DMC-E.

Fig. S9 Superposition of the X-ray crystal structures of cyclam-hydroxyethyl-bisformyl 1 (grey bonds) and cyclam-bisformyl (black bonds). ${ }^{2}$ The X-ray crystallographic data were summarized in Table S1.

Reference

2. G. Royal, V. Dahaoui-Gindrey, S. Dahaoui, A. Tabard, R. Guilard, P. Pullumbi and C. Lecomte, New synthesis of trans-disubstituted cyclam macrocycles - elucidation of the disubstitution mechanism on the basis of X-ray data and molecular modeling, Eur. J. Org. Chem., 1998, 1971-1975.

Fig. S10 Solution speciation studies of DMC, DMC-E, TMC, and TMC-E by potentiometry. Solution speciation diagrams of the compounds ($F_{\mathrm{L}}=$ fraction of species at given pH) were summarized. Charges are omitted for clarity. Conditions: [compound] $=2 \mathrm{mM} ; 25^{\circ} \mathrm{C} ; I=0.10 \mathrm{M}$ in KNO_{3}.

Fig. S11 Possible interactions of Cyclam and its derivatives with the $A \beta_{42}$ monomer (PDB 1IYT) visualized by docking studies. The structure of compounds and amino acid residues in $A \beta_{42}$ adjacent to the compounds are indicated in stick representation. Distances of hydrogen bonding (within $3.2 \AA$) are labeled in \AA with dashed lines.

Fig. S12 Interactions of $\mathrm{Cu}(\mathrm{II})$-treated $\mathrm{A} \beta_{42}$ with Cyclam-E, DMC-E, TMC-E, CB-Cyclam-E, or CB-DMC-E detected by ESI-MS. Blue dashed line indicates the peak corresponding to [A $\beta_{42}+$ $\mathrm{Cu}(\mathrm{II})+2 \mathrm{H}]^{4+}$. Green peaks denote the adducts of cyclam derivatives with $\mathrm{Cu}(\mathrm{II})(\cdot=[\mathrm{Cu}(\mathrm{II})+$ compound +Cl$\left.)]^{+} ; *=\left[\mathrm{Cu}(\mathrm{II})+\text { compound }+\mathrm{CH}_{3} \mathrm{COO}\right]^{+} ; * *=\left[\mathrm{Cu}(\mathrm{II})+\text { compound }+\mathrm{CF}_{3} \mathrm{COO}\right]^{+}\right)$. Conditions: $\left[\mathrm{A} \beta_{42}\right]=25 \mu \mathrm{M} ;\left[\mathrm{CuCl}_{2}\right]=25 \mu \mathrm{M}$; [compound] $=25 \mu \mathrm{M} ; 20 \mathrm{mM}$ ammonium acetate, $\mathrm{pH} 7.3 ; 37^{\circ} \mathrm{C}$; 3 h incubation. The relative intensity of each spectrum was normalized based on the highest peak in the spectrum. Note that the trifluoroacetate moiety was originated from $A \beta_{42}$.

Fig. S13 Original gel/Western blot data of Fig. 5. Detailed conditions are described in Fig. 5.

Fig. S14 Morphologies of the resultant metal-free and metal-treated $A \beta_{42}$ aggregates generated upon incubation with TMC-E and CB-DMC-E observed by TEM. Conditions: $\left[A \beta_{42}\right]=25 \mu \mathrm{M}$; $\left[\mathrm{CuCl}_{2}\right.$ or $\left.\mathrm{ZnCl}_{2}\right]=25 \mu \mathrm{M}$; [compound] $=25 \mu \mathrm{M} ; \mathrm{pH} 7.4$. Scale bar $=200 \mathrm{~nm}$.

Fig. S15 Ability of Cyclam and its derivatives to remove $\mathrm{H}_{2} \mathrm{O}_{2}$. The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ presented from the samples [L-ascorbate (Asc) only; $\mathrm{Cu}(I I)$ only; $\mathrm{Cu}(I I)+A \beta_{42} ; A \beta_{42}+A s c ; \mathrm{H}_{2} \mathrm{O}_{2}$ + compound] was detected by an Amplex Red $\mathrm{H}_{2} \mathrm{O}_{2} /$ peroxidase assay. Conditions: [A β_{42}] $=12.5$ $\mu \mathrm{M} ;\left[\mathrm{CuCl}_{2}\right]=12.5 \mu \mathrm{M}$; [Asc] $=500 \mu \mathrm{M} ;\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=12.5 \mu \mathrm{M}$; [compound] $=12.5 \mu \mathrm{M} ; 37{ }^{\circ} \mathrm{C} ; 1 \mathrm{~h}$ incubation. Error bars represent the standard error of the mean from two independent experiments.

Fig. S16 Cytotoxicity of Cyclam and its derivatives in the absence and presence of metal ions. Cell viability, determined by the MTT assay, was calculated in comparison to that obtained upon treatment with an equivalent amount of $\mathrm{H}_{2} \mathrm{O}$. Conditions: $\left[\mathrm{CuCl}_{2}\right.$ or $\left.\mathrm{ZnCl}_{2}\right]=50 \mu \mathrm{M}$; [compound] = $50 \mu \mathrm{M} ; 37^{\circ} \mathrm{C} ; 24 \mathrm{~h}$ incubation. Error bars represent the standard error of the mean from three independent experiments. ${ }^{*} P<0.05$.

