Supporting Information

Carbon dioxide reduction by lanthanide(III) complexes supported by redox-active Schiff base ligands

Nadir jori,^a Davide Toniolo^a, Bang C. Huynh,^a Rosario Scopelliti^a and Marinella Mazzanti^{*a}

[a] Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

*Corresponding authors: E-mail: marinella.mazzanti@epfl.ch, ISIC/EPFL.

Table of Contents

1.	NMR spectra	S3
2.	X-ray crystallographic data	S 9
3.	Electrochemistry	512

1. NMR spectra

Figure S3: ¹H NMR spectrum of the reaction mixture of the synthesis of **2-Sm** starting from [SmI₂] (400 MHz, THF-d₈, 298 K).

Figure S6: ¹³C{¹H} NMR spectrum of the reaction mixture between **4-Sm** and ¹³CO₂ (4 eq) (100 MHz, THF-d₈, 298 K).

Figure S8 ¹³C{¹H} NMR spectrum of the residue obtained removing the solvent from the reaction mixture of **2-Nd** and ¹³CO₂ (2 eq) after quenching with basic (pD = 13.6) D₂O (D₂O, 100 MHz, 298 K).

Figure S9 ¹³C{¹H} NMR spectrum of the residue obtained removing the solvent from the reaction mixture of **4**-**Nd** and ¹³CO₂ (4 eq) after quenching with basic (pD = 13.6) D₂O (D₂O, 100 MHz, 298 K).

Figure S10 ¹³C{¹H} NMR spectrum of the residue obtained removing the solvent from the reaction mixture of **2**-Sm and ¹³CO₂ (2 eq) after quenching with basic (pD = 13.6) D₂O (D₂O, 100 MHz, 298 K).

Figure S11 ¹³C{¹H} NMR spectrum of the residue obtained removing the solvent from the reaction mixture of **4**-**Sm** and ¹³CO₂ (4 eq) after quenching with basic (pD = 13.6) D₂O (D₂O, 100 MHz, 298 K).

2. X-ray crystallographic data

Figure S12 Molecular structure of complex 2-Sm (C-C bond between imine highlighted in yellow, 50% probability ellipsoid). Hydrogen atoms and THF molecules were omitted for clarity.

Figure S13 Molecular structure of complex 4-Sm (C-C bonds between imine highlighted in yellow, 50% probability ellipsoids). Hydrogen atoms and THF molecules were omitted for clarity.

Figure S14 Molecular structure of complex 4-Nd (C-C bonds between imine highlighted in yellow, 50% probability ellipsoids). Hydrogen atoms and THF molecules were omitted for clarity.

Figure S15 Side view of solid-state molecular structure of complex 4-Nd (C-C bonds between imine highlighted in yellow, 50% probability ellipsoids). Hydrogen and potassium atoms and THF molecules were omitted for clarity.

Table S1. X-ray crystallographic data.

Compound	2-Nd	2-Sm	3-Eu	4-Nd	4-Sm
Formula	$C_{78}H_{102}K_2N_8Nd_2O_{12}$	C _{72.48} H _{90.96} K ₂ N ₈ O _{10.62} Sm ₂	C ₆₆ H ₇₈ Eu ₂ K ₂ N ₈ O	$C_{86}H_{118}K_4N_8Nd_2O_{14}$	C ₈₆ H ₁₁₈ K ₄ N ₈ O ₁₄ Sm
			9		2
Crystal size [mm]	0.210×0.057×0.047	0.50×0.09×0.06	0.47×0.28×0.25	0.22×0.20×0.14	0.19×0.13×0.12
Crystal system	Monoclinic	Monoclinic	Monoclinic	monoclinic	Monoclinic
Space group	C 2/c	C 2/c	I 2/a	P 2 ₁ /n	P 2 ₁ /n
V [ų]	7492.2(6)	7268.8(2)	7096.0(3)	4459.02(15)	4462.4(3)
a [Å]	19.1572(10)	18.9002(3)	16.1474(4)	11.5916(2)	11.5872(5)
b [Å]	19.9660(6)	19.5477(2)	26.3520(7)	17.4426(3)	17.4186(7)
c [Å]	21.4402(9)	21.6120(3)	16.7297(4)	22.1502(4)	22.2099(9)
α [°]	90	90	90	90	90
β [°]	113.990(5)	114.4471(18)	94.589(2)	95.3459(18)	95.457(4)
γ [°]	90	90	90	90	90
Z	4	4	4	2	2
Absorption	1.549	13.537	14.031	1.403	1.554
coefficient [mm ⁻¹]					
F (000)	3520	3315	3064	1996	2004
T [K]	140.00(10)	140.01(10)	140.00(10)	100.01(10)	100.01(10)
Total no.	53552	25997	7266	70708	55351
reflexions					
Unique reflexions	12961 [0.0544]	7150 [0.0314]	7266 [0.0380]	11477 [0.0371]	8454 [0.0973]
[R _{int}]					
Final R indice	0.0400	0.0398	0.0523	0.0258	0.0436
[I>2σ(I)]					
Largest diff. peak	2.049	1.608	1.653	0.760 and -0.904	1.421
and hole [eA-3]	and -1.467	and -0.793	and -0.836		and -0.982
GOF	1.038	1.026	1.046	1.043	1.023

3. Electrochemistry

Figure S16 Room temperature cyclic voltammogram of a saturated solution of complex [Nd(trensal)], 1-Nd recorded in 0.1 $M [NBu_4][PF_6]$ in THF at 100 mV/sec scan rate, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂].

Figure S17 Room temperature cyclic voltammogram of a saturated solution of complex [Nd(trensal)], 1-Nd recorded in 0.1 M [NBu₄][PF₆] in THF at different scan rates, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂].

Figure S18 Reduction region of the cyclic voltammogram of a saturated solution of complex [Nd(trensal)], 1-Nd recorded in $0.1 \text{ M} \text{ [NBu}_4][PF_6]$ in THF at different scan rates, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂].

Figure S19 Room temperature cyclic voltammogram of a saturated solution of complex [Sm(trensal)], 1-Sm recorded in 0.1 $M [NBu_4][PF_6]$ in THF at 100 mV/sec scan rate, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂].

Potential/V vs. Fc⁺/Fc

Figure S20 Room temperature cyclic voltammogram of a saturated solution of complex [Sm(trensal)], 1-Sm recorded in 0.1 M [NBu₄][PF₆] in THF at different scan rates, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂].

Potential/V vs. Fc⁺/Fc

Figure S21 Reduction region of the cyclic voltammogram of a saturated solution of complex [Sm(trensal)], 1-Sm recorded in 0.1 M [NBu₄][PF₆] in THF at different scan rates, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂].

Figure S22 Reduction region of the cyclic voltammogram of a saturated solution of complex [Eu(trensal)], 1-Eu recorded in 0.1 M [NBu₄][PF₆] in THF at different scan rates (blue: 50 mV/sec, orange: 100 mV/sec and grey: 500 mV/sec) referenced against [Fe(C_5H_5)₂]⁺/[Fe(C_5H_5)₂].

Potential/V vs. Fc⁺/Fc

Figure S23 Cyclic voltammograms of complexes 1-Eu (blue), 1-Sm (orange) and 1-Nd (grey) in ~0.1 M [Bu₄N][PF₆] THF solution at 100mV/sec scan rate.