Supporting Information

Synthesis, Structure, and Superconductivity of B-site Doped Perovskite Bismuth Lead Oxide with Indium

Xiande Zheng^b, Lei Zhang^a, Xiaoge Wang^a, Yiguo Qing^c, Jie Chen^f, Yaoda Wu^f, Sihao Deng^f, Lunhua He^{d,e,f}, Fuhui Liao^a, Yan Wang^a, Jinling Geng^a, Junliang Sun^a, Guobao Li^{a*}, Laijun Liu^{b*}, Jianhua Lin^{a*}

^aBeijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China

^bCollege of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China

^cBeijing No. 80 High School, Beijing 100102, People's Republic of China

^dBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

^eSongshan Lake Materials Laboratory, Dongguan 523808, People's Republic of China ^fSpallation Neutron Source Science Center, Dongguan, 523803, People's Republic of China

Email: liguobao@pku.edu.cn, and jhlin@pku.edu.cn; Tel: (8610)62750342, Fax: (8610)62753541.

Contents

1.	The refinement details of the X-ray and neutron diffraction data of In1, In5, In9, and $BaBiO_{3-\delta}$ using <i>P</i> -1 space group
2.	The refinement details of the X-ray diffraction data of In2, In3, In4, In6, In7, In8, In10, In11, In12, and In13
~	

3. Temperature-dependent resistance of Ba(Bi_{0.25}Pb_{0.75})_{1-x}In_xO_{3- δ}.....10

1. The refinement details of the X-ray and neutron diffraction data of In1, In5, In9, and BaBiO_{3- δ} using *P*-1 space group.

Table S1. Rietveld refinement details of the X-ray and neutron diffraction data for BaBi_{0.25}Pb_{0.75}O_{3- δ} (In1)in space group *P*-1.

Lattice parameter	a=6.0632(2)Å, b=6.0573(3)Å, c=6.0669(3)Å, α =60.24(1)°, B=59.93(2)° γ =60.03(2)°		
Atom	X, V, Z	Occupancy	Uiso
Ba1	0.2562(1), 0.2583(2), 0.2410(1)	1.000	0.0038(4)
Bi1/Pb1	0.0000, 0.0000, 0.0000	0.250/0.750	0.0029(3)
Bi2/Pb2	0.5000, 0.5000, 0.5000	0.250/0.750	0.0047(4)
O1	0.3050(3), 0.1870(3), 0.7420(4)	0.986(4)	0.0083(4)
O2	0.7556(3), 0.2753(3), 0.2265(2)	0.986(4)	0.0103(5)
O3	0.2283(3), 0.7494(4), 0.2739(3)	0.986(4)	0.0074(3)
R factor ^a	Rx wp=0.049, Rx p=0.032;	Rn wp=0.079, Rn	p=0.060

^aRx wp, Rx p; Rn wp, Rn p are the R factors of the whole patterns and the peaks for X-ray (x) and neutron (n) diffraction data, respectively.

Table S2. Rietveld refinement details of the X-ray and neutron diffraction data for $BaBi_{0.24}Pb_{0.72}In_{0.04}O_{3-\delta}$ (In5) in space group *P*-1.

Lattice	a=6.0657(3)Å, b=6.0582(2)Å, c=6.0640(3)Å, α=60.20(2)°,		
parameter	β=59.86(1)°, γ=60.06(2)°.		
Atom	x, y, z Occupancy U _{iso}		
Ba1	0.2510(2), 0.2596(2), 0.2403(1)	1.000	0.0091(5)
Bi/Pb/In1	0.0000, 0.0000, 0.0000	0.240/0.720/0.040	0.0057(3)
Bi/Pb/In2	0.5000, 0.5000, 0.5000	0.240/0.720/0.040	0.0061(4)
01	0.2791(3), -0.2055(3), 0.7092(4)	0.986(5)	0.0169(5)
O2	0.7634(3), 0.7299(3), 0.2364(2)	0.985(4)	0.0100(5)
O3	0.2268(3), 0.7442(4), 0.2787(3)	0.987(6)	0.0159(6)
R factor ^a	Rx wp=0.040, Rx p=0.028; Rn wp=0.059, Rn p=0.045		

^aRx wp, Rx p; Rn wp, Rn p are the R factors of the whole patterns and the peaks for X-ray (x) and neutron (n) diffraction data, respectively.

Table S3. Rietveld refinement details of the X-ray and neutron diffraction data for $BaBi_{0.23}Pb_{0.69}In_{0.08}O_{3-\delta}$ (In9) in space group *P*-1.

Lattice	a=6.0646(2)Å, b=6.0599(3)Å, c=6.0603(3)Å, α=60.26(1)°,		
parameter	$\beta = 59.82(2)^{\circ}, \gamma = 60.07(2)^{\circ}.$		
Atom	x, y, z	Occupancy	Uiso
Ba1	0.2430(1), 0.2589(2), 0.2444(1)	1.000	0.0082(4)
Bi/Pb/In1	0.0000, 0.0000, 0.0000	0.230/0.690/0.080	0.0063(3)
Bi/Pb/In2	0.5000, 0.5000, 0.5000	0.230/0.690/0.080	0.0063(3)
O1	0.2524(3), -0.2152(3), 0.7165(4)	0.982(5)	0.0124(4)
O2	0.7605(3), 0.7377(3), 0.2383(2)	0.983(4)	0.0116(3)
O3	0.2733(3), 0.7004(4), 0.2282(3)	0.983(4)	0.0201(5)
R factor ^a	Rx wp=0.045, Rx p=0.030; Rn wp=0.063, Rn p=0.050		

^aRx wp, Rx p; Rn wp, Rn p are the R factors of the whole patterns and the peaks for X-ray (x) and neutron (n) diffraction data, respectively.

Table S4. Rietveld refinement details of the X-ray and neutron diffraction data for BaBiO_{3- δ} in space group *P*-1.

Lattice	a=6.1406(3)Å, b=6.1865(2)Å, c=6.1437(2)Å, α=59.90(1)°,		
parameter	$\beta = 59.98(2)^{\circ}, \gamma = 59.87(2)^{\circ}.$		
Atom	x, y, z	Occupancy	U _{iso}
Ba1	0.2519(2), 0.2532(2), 0.2454(1)	1.000	0.0090(4)
Bi1	0.0000, 0.0000, 0.0000	1.000	0.0068(3)
Bi2	0.5000, 0.5000, 0.5000	1.000	0.0068(3)
01	0.2206(3), 0.3012(2), 0.7038(4)	1.000	0.0185(5)
O2	0.7124(3), 0.2815(3), 0.2310(2)	1.000	0.0182(3)
O3	0.2710(4), 0.8032(3), 0.2480(3)	1.000	0.0171(4)
R factor ^a	Rx wp=0.064, Rx p=0.047;	Rn wp=0.074, Rn	n p=0.057

 a Rx wp, Rx p; Rn wp, Rn p are the R factors of the whole patterns and the peaks for X-ray (x) and neutron (n) diffraction data, respectively.

2. The refinement details of the X-ray diffraction data of In2, In3, In4, In6, In7, In8, In10, In11, In12, and In13.

The Powder X-ray powder diffraction data collected at room temperature for In2, In3, In4, In6, In7, In8, In10, In11, In12 and In13 are refined using GSAS software. The refinement details listed in Table S5, S6, S7, S8. The corresponding Rietveld plots are shown in Fig. S1, S2, ..., S10.

	In2	In3	In4
Lattice	a=6.0677(2)Å, b=6.0543(3)Å,	a=6.0682(3) Å, b=6.0545 (3)Å,	a=6.0673(1)Å, b=6.0545(3)Å,
parameter	c=6.0679(3)Å, α=60.18(1)°,	$c=6.0644(3)$ Å, $\alpha=60.22(1)^{\circ}$,	$c=6.0645(2)$ Å, $\alpha=60.21(3)^{\circ}$,
	β=59.87(2)°, γ=60.08(2)°	β=59.89(2)°, γ=60.07(2)°	$\beta = 59.89(2)^{\circ}, \gamma = 60.07(1)^{\circ}$
Atom	x, y, z	x, y, z	x, y, z
Ba1 ^a	0.2416(1), 0.2656(2),	0.2564(1), 0.2611(2), 0.2414(1)	0.2515(1), 0.2649(1), 0.2398(1)
	0.2481(1)		
Ba2 ^a	0.7446(3), 0.7666(2),	0.7512(2), 0.7651(3), 0.7447(3)	0.7532(3), 0.7644(2), 0.7412(3)
	0.7479(2)		
Bi1/Pb1/In1 ^b	0.0000, 0.0000, 0.0000	0.0000, 0.0000, 0.0000	0.0000, 0.0000, 0.0000
Bi2/Pb2/In2 ^b	0.4995(2), 0.4964(2),	0.4976(2), 0.4979(2), 0.5038(3)	0.5033(1), 0.4948(2), 0.5037(3)
	0.5029(2)		
O1 ^c	0.2617(1), -0.7476(2),	0.2511(1), -0.7595(3),	0.2538(1), -0.7538(3),
	0.7061(3)	0.6935(3)	0.7014(1)
O2 ^c	0.8352(3), 0.6858(2),	0.8426(3), 0.6454(2), 0.2141(1)	0.8414(2), 0.6540(2), 0.2155(1)
	0.1793(1)		
O3°	0.7521(2), 0.2470(3),	0.7355(3), 0.2274(1), 0.2735(2)	0.7177(3), 0.2541(1), 0.2504(1)
	0.2398(1)		
O4 ^c	0.2432(1), 0.7217(1),	0.2268(1), 0.7142(3), 0.7871(3)	0.2532(3), 0.7020(3), 0.7816(3)
	0.7433(1)		
O5 ^c	0.2176(1), 0.7480(2),	0.1918(1), 0.7488(3), 0.3149(2)	0.1959(2), 0.7488(3), 0.3070(1)
	0.3053(1)		
O6 ^c	0.7621(2), 0.2258(1),	0.7409(3), 0.2704(2), 0.7618(3)	0.7278(3), 0.2285(1), 0.7926(3)
	0.7946(1)		
R factor ^d	R _{wp} =0.0613, R _p =0.0365	R _{wp} =0.0433, R _p =0.0288	R _{wp} =0.0424, R _p =0.0286
^a The occupancies of Ba1 and Ba2 are 1.0000 for In2, In3 and In4.			

Table S5 Rietveld refinement details of the X-ray diffraction data for In2, In3 and In4 in P1.

^bThe occupancies of Bi1/Pb1/In1 and Bi2/Pb2/In2 are 0.2475/0.7425/0.0100 for In2, 0.2450/0.7350/0.0200 for In3, and 0.2425/0.7275/0.0300 for In4. ^cThe occupancies of O1, O2, O3, O4, O5, and O6 are 1.0000, 1.0000, 1.0000, 1.0000, 1.0000 for

In2, In3 and In4.

 ${}^{d}R_{p}$ is sum($|I_{0}-I_{C}|$)/sum(I_{0}), and R_{wp} is weighted R factors for X-ray diffraction data.

Table S6 Rietveld refinement details of the	X-ray diffraction da	ata for In6, In7 ai	nd In8 in <i>P1</i>
---	----------------------	---------------------	---------------------

	In6	In7	In8
Lattice	a=6.0673(1)Å, b=6.0599(3)Å,	a=6.0679(3) Å, b=6.0587 (3)Å,	a=6.0647(1)Å, b=6.0600(3)Å,
parameter	c=6.0609(3)Å, α=60.20(1)°,	$c= 6.0591(3)$ Å, $\alpha=60.24(1)^{\circ}$,	c=6.0624(2)Å, α=60.23(3)°,
	β=59.84(2)°, γ=60.07 (2)°	β=59.84(2)°, γ=60.07(2)°	β=59.82(2)°, γ=60.06(1)°
Atom	x, y, z	x, y, z	x, y, z
Ba1 ^a	0.2483(1), 0.2661(2),	0.2491(1), 0.2658(2), 0.2412(1)	0.2495(1), 0.2654(2), 0.2416(1)
	0.2414(1)		
Ba2 ^a	0.7494(3), 0.7663(3),	0.7502(3), 0.7661(3), 0.7408(3)	0.7508(3), 0.7655(3), 0.7425(3)
	0.7413(3)		
Bi1/Pb1/In1 ^b	0.0000, 0.0000, 0.0000	0.0000, 0.0000, 0.0000	0.0000, 0.0000, 0.0000
Bi2/Pb2/In2 ^b	0.5049(2), 0.4945(2),	0.5047(2), 0.4943(2), 0.5032(2)	0.5036(2), 0.4950(2), 0.5035(2)
	0.5030(2)		
O1 ^c	0.2599(1), -0.7678(3),	0.2651(2), -0.7727(3),	0.2443(1), -0.7596(3),
	0.7035(3)	0.6954(2)	0.6818(3)
O2 ^c	0.7935(3), 0.6932(2),	0.8019(3), 0.6919(2), 0.1587(1)	0.8355(3), 0.6308(2), 0.2201(3)
	0.1647(1)		
O3°	0.7535(3), 0.2542(1),	0.7475(3), 0.2517(1), 0.2303(1)	0.7277(3), 0.2460(1), 0.2382(1)

	0.2302(2)		
O4 ^c	0.2371(1), 0.7362(3), 0.7567(3)	0.2357(1), 0.7290(2), 0.7527(3)	0.2194(1), 0.7414(3), 0.7467(3)
O5 ^c	0.1826(1), 0.7709(3), 0.3171(2)	0.1852(1), 0.7798(3), 0.3115(2)	0.1949(1), 0.7529(3), 0.3239(3)
O6 ^c	0.7191(3), 0.2368(1), 0.8064(3)	0.7135(3), 0.2472(1), 0.7969(3)	0.7351(3), 0.2232(1), 0.8176(3)
R factor ^d	$R_{wp}=0.0514, R_{p}=0.0341$	R _{wp} =0.0452, R _p =0.0299	R _{wp} =0.0410, R _p =0.0284

^aThe occupancies of Ba1 and Ba2 are 1.0000 for In6, In7 and In8. ^bThe occupancies of Bi1/Pb1/In1 and Bi2/Pb2/In2 are 0.2375/0.7125/0.0500 for In6,

0.2350/0.7050/0.0600 for In7, and 0.2325/0.6975/0.0700 for In8.

^cThe occupancies of O1, O2, O3, O4, O5, and O6 are 1.0000, 1.0000, 1.0000, 1.0000, 1.0000 for In6, In7 and In8.

 ${}^{d}R_{p}$ is sum($|I_{0}-I_{C}|$)/sum(I_{0}), and R_{wp} is weighted R factors for X-ray diffraction data.

Table S7 Rietveld refinement details of the X-ray diffraction data for In10 and In11 in P1.

	In10	In11
Lattice	a=6.0598(2)Å, b=6.0624(3)Å,	a=6.0594(3) Å, b=6.0640 (3)Å,
parameter	c=6.0652(3)Å, α=60.26(1)°,	c=6.0625(3)Å, α=60.30(1)°,
	β=59.79(2)°, γ=60.03(2)°	β=59.76(2)°, γ=60.04(2)°
Atom	x, y, z	x, y, z
Ba1 ^a	0.2504(1), 0.2641(1), 0.2449(1)	0.2492(1), 0.2648(1), 0.2439(1)
Ba2 ^a	0.7485(3), 0.7656(3), 0.7481(3)	0.7480(3), 0.7662(3), 0.7457(3)
Bi1/Pb1/In1 ^b	0.0000, 0.0000, 0.0000	0.0000, 0.0000, 0.0000
Bi2/Pb2/In2 ^b	0.5047(2), 0.4949(2), 0.5014(2)	0.5045(2), 0.4945(2), 0.5027(2)
O1 ^c	0.2321(1), -0.7396(3), 0.6850(3)	0.2543(1), -0.7599(3), 0.6954(2)
O2 ^c	0.8459(3), 0.6327(2), 0.2359(1)	0.8379(3), 0.6352(2), 0.2264(1)
O3 ^c	0.7362(3), 0.2523(1), 0.2251(1)	0.7360(3), 0.2557(1), 0.2274(1)
O4 ^c	0.2336(1), 0.7477(3), 0.7213(3)	0.2163(3), 0.7594(3), 0.7392(3)
O5°	0.2154(2), 0.7428(3), 0.3067(3)	0.2045(1), 0.7606(3), 0.3127(2)
O6 ^c	0.7451(3), 0.2155(1), 0.8014(3)	0.7264(3), 0.2341(1), 0.8071(3)
R factor ^d	R _{wp} =0.0415, R _p =0.0282	R _{wp} =0.0459, R _p =0.0316

^aThe occupancies of Ba1 and Ba2 are 1.0000 for In10 and In11.

^bThe occupancies of Bi1/Pb1/In1 and Bi2/Pb2/In2 are 0.2275/0.6825/0.0900 for In10 and 0.2250/0.6750/0.1000 for In11.

^cThe occupancies of O1, O2, O3, O4, O5, and O6 are 1.0000, 1.0000, 1.0000, 1.0000, 1.0000 for In10 and In11.

Table S8 Rietveld refinement details of the X-ray diffraction data for In12 and In13 in P1

	In12	In13
Lattice	a=6.0578(3) Å, b=6.0644 (3)Å,	a=6.0540(1)Å, b=6.0671(3)Å,
parameter	c=6.0627(3)Å, α=60.33(1)°,	c=6.0624(2)Å, α=60.33(3)°,
_	β=59.75(2)°, γ=60.02(2)°	$\beta = 59.74(2)^{\circ}, c \gamma = 60.03(1)^{\circ}$
Atom	x, y, z	x, y, z
Ba1 ^a	0.2480(1), 0.2643(1), 0.2461(1)	0.2432(1), 0.2620(2), 0.2531(1)
Ba2 ^a	0.7451(3), 0.7663(3), 0.7491(3)	0.7424(3), 0.7649(3), 0.7516(3)
Bi1/Pb1/In1 ^b	0.0000, 0.0000, 0.0000	0.0000, 0.0000, 0.0000
Bi2/Pb2/In2 ^b	0.5054(2), 0.4951(2), 0.5024(2)	0.5066(2), 0.4976(2), 0.5017(2)
O1 ^c	0.2312(1), -0.7361(3), 0.6817(3)	0.2164(1), -0.7153(3), 0.6869(3)
O2 ^c	0.8489(3), 0.6158(2), 0.2456(1)	0.8522(3), 0.6219(2), 0.2503(1)
O3 ^c	0.7311(3), 0.2577(1), 0.2309(1)	0.7518(3), 0.2503(1), 0.2171(1)
O4 ^c	0.2215(1), 0.7544(3), 0.7307(3)	0.2475(1), 0.7424(3), 0.7191(3)
O5 ^c	0.2059(1), 0.7568(3), 0.3134(2)	0.2193(1), 0.7594(3), 0.2976(2)
O6 ^c	0.7289(3), 0.2351(1), 0.8080(3)	0.7476(3), 0.2334(1), 0.7971(3)
R factor ^d	$R_{wp}=0.0455, R_{p}=0.0313$	$R_{wp}=0.0452, R_{p}=0.0300$

^aThe occupancies of Ba1 and Ba2 are 1.0000 for In12 and In13.

^bThe occupancies of Bi1/Pb1/In1 and Bi2/Pb2/In2 are 0.22/0.66/0.1200 for In12, 0.2150/0.6450/0.1400 for In13.

^cThe occupancies of O1, O2, O3, O4, O5, and O6 are 1.0000, 1.0000, 1.0000, 1.0000, 1.0000 for In12 and In13.

 ${}^{d}R_{p}$ is sum($|I_{0}-I_{C}|$)/sum(I_{0}), and R_{wp} is weighted R factors for X-ray diffraction data.

Figure S1 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for In2 at room temperature. The plus symbol represents the observed value, the solid line represents the calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown at the bottom in the figure.

Figure S2 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for In3 at room temperature. The plus symbol represents the observed value, the solid line represents the calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the difference

curve is shown at the bottom in the figure.

Figure S3 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for In4 at room temperature. The plus symbol represents the observed value, the solid line represents the calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown at the bottom in the figure.

Figure S4 Rietveld plots of powder X-ray diffraction patterns ($\lambda 1=1.5405$ Å and $\lambda 2=1.5443$ Å) for In6 at room temperature. The plus symbol represents the observed value, the solid line represents the

calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown at the bottom in the figure.

Figure S5. Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for In7 at room temperature. The plus symbol represents the observed value, the solid line represents the calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown at the bottom in the figure.

Figure S6 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for In8 at

room temperature. The plus symbol represents the observed value, the solid line represents the calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown at the bottom in the figure.

Figure S7 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for In10 at room temperature. The plus symbol represents the observed value, the solid line represents the calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown at the bottom in the figure.

Figure S8 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for In11 at room temperature. The plus symbol represents the observed value, the solid line represents the calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the

difference curve is shown at the bottom in the figure.

Figure S9 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for In12 at room temperature. The plus symbol represents the observed value, the solid line represents the calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown at the bottom in the figure.

Figure S10 Rietveld plots of powder X-ray diffraction patterns (λ_1 =1.5405 Å and λ_2 =1.5443 Å) for In13 at room temperature. The plus symbol represents the observed value, the solid line represents the calculated value, the marks below the diffraction patterns are the calculated reflection positions, and the difference curve is shown at the bottom in the figure.

3. Temperature-dependent resistance of $Ba(Bi_{0.25}Pb_{0.75})_{1-x}In_xO_{3-\delta}$

Figure S12 Temperature-dependent resistance of In3.

Figure S13 Temperature-dependent resistance of In4.

Figure S14 Temperature-dependent resistance of In6.

Figure S15 Temperature-dependent resistance of In7.

Figure S16 Temperature-dependent resistance of In8.

Figure S17 Temperature-dependent resistance of In9.

Figure S18 Temperature-dependent resistance of In10.

Figure S19 Temperature-dependent resistance of In11.

Figure S20 Temperature-dependent resistance of In12.