Supporting Information

Topochemical Conversion of Discontinuous-zone-axis to Form Bismuth Titanate Oriented Polycrystal Nanocomposites

Yan Wang[†], Dandan Yang, Minggang Yao[†], Lijie Li[†], Zhuonan Huang[†], Wenxiong

Zhang[§], Yinfeng Han^{*,†}, Galhenage Asha Sewvandi[¢], Qi Feng[¶], Dengwei Hu^{*,†}

- [†] Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi, 721013 P. R. China
- [¶] Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu-shi, 761-0396, Japan
- Department of Materials Science and Engineering, Faculty of Engineering, University of Moratuwa, Katubedda, Sri Lanka

§ Institute for Solid State Physics, The University of Tokyo, Koto, Sayo, Hyogo 679-5148, Japan

TOC

*Corresponding Author

E-mail: hhanyinfeng@126.com (Y. Han), hdwpolymer@yahoo.co.jp (D. Hu).; Fax:

Figure S1. SEM images of samples obtained by annealing treatments of $HTO-Bi_2O_3$ mixed powders at (a) 500, (b) 600, (c) 700, (d) 800, (e) 850, and (f) 900 °C for 3 h, respectively.

Figure S2. XRD patterns of samples obtained by solvothermal treatments of HTO-BiCl₃ mixed suspension in (a) ethanol, (b) ethanol-water (20-10, Vol-Vol), (c) ethanolwater (10-20), (d) aqueous solution, (e) acetic acid (0.5mol/L), and (f) acetic acid (0.5mol/L) – ethanol (10-20) different solutions at 200 °C for 12 h, respectively.

Figure S3. SEM images of samples obtained by solvothermal treatments of HTO-BiCl₃ mixed suspension in (a) ethanol, (b) ethanol-water (20-10, Vol-Vol), (c) ethanolwater (10-20), (d) aqueous solution, (e) acetic acid (0.5mol/L), and (f) acetic acid (0.5mol/L)–ethanol (10-20) different solutions at 200 °C for 12 h, respectively.

Figure S4. SEM images of samples obtained by annealing treatments of HTO-BiOCl nanocomposite crystals at 600 to 900 °C for 3 to 12 h, respectively. HTO-BiOCl nanocomposite crystals obtained by solvothermal treatment of HTO-BiCl₃ mixed suspension in aqueous solution at 200 °C for 12 h.

	Reaction condition	Phase composite of products	Plane-11& Plane-21 ^b	<i>d</i> -11& <i>d</i> -21 ^c	Lattice mismatch rate between plane- 11& plane-21	Plane-12& Plane-22	d-12&d-22	Lattice mismatch rate between plane- 12& plane-22
	600 °C-3 h	anatase/Bi ₁₂ TiO ₂₀	(101)&(220)	3.5171&3.5970	-2%	(103)&(103)	2.4309&3.2173	_
HTO-	700 °C-3 h	$Bi_{12}TiO_{20}/Bi_4Ti_3O_{12}$	(330)&(020)	2.3980&2.7055	-13%	(400)&(117)	2.5435&2.9686	-17%
Bi_2O_3	800 °C-3 h	$Bi_{12}TiO_{20}/Bi_4Ti_3O_{12}$	(220)&(-111)	3.5988&3.8132	-6%	(-222)&(117)	2.9370&2.9686	-1%
	850 °C-3 h	$Bi_{12}TiO_{20}/Bi_4Ti_3O_{12}$	(3-21)&(020)	2.7191&2.7016	1%	(310)&(117)	3.2124&2.9661	-8%
HTO- BiCl ₃	600 °C-3 h	anatase/BiOCl	(004)&(003)	2.3785&2.4490	-3%	(006)&(005)	1.5857&1.4694	7%
	700 °C-3 h	$Bi_{12}TiO_{20}/Bi_2Ti_2O_7$	(333)&(666)	1.9580&1.9899	-2%	(1-10)&(2-20)	7.1940&7.3115	-2%
	800 °C-6 h	$Bi_4Ti_3O_{12}/Bi_2Ti_2O_7$	(005)&(444)	6.5660&2.9849	-	(220)&(8-80)	1.9196&1.8279	5%

Table S1. Lattice mismatch rate of products in HTO-Bi₂O₃ and HTO-BiCl₃ reaction systems^a.

^{*a*} The crystal phases selected in this table are all derived from the SAED patterns of the samples. The error of the *d*-spacing is $\pm 8 \sim \pm 13$ of the last digit of the decimal point.

^b Plane-xy represents the no. y crystal Plane of the no. x phase in the phase composite of products.

^c *d*-*xy* represents the average *d*-spacing of the no. *y* crystal Plane for the no. *x* phase in the phase composite of products.