Usage of P-V-L bond theory in studying the structural/properties

regulation of microwave dielectric ceramics: a review

Hongyu Yang,^a Shuren Zhang,^{*b} Hongcheng Yang,^a and Enzhu Li,^{*b}

a. Department of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

b. Department of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China. E-mail: <u>zsr@uestc.edu.cn</u>; <u>lienzhu@uestc.edu.cn</u>

Catalogue

Table 1S. Bond parameters and bond susceptibility of $CaMgSi_2O_6$ ceramic1
Table 2S. Bond parameters of T-type A ₂ BSi ₂ O ₇ (A=Sr, Ca; B=Mg, Mn) structures2
Table 3S. Coordinate environments of monoclinic Ba2ZnSi2O7 structures
Table 4S. Coordinate environments of monoclinic BaCo ₂ Si ₂ O ₇ structures
Table 5S. Bond parameters and bond susceptibility of Ba ₂ ZnSi ₂ O ₇ system
Table 6S. Comparisons of bond features, including bond ionicity, bond covalency, lattice energy and bond susceptibility value in $RENbO_4$ ($RE=Nd$, La) ceramics4
Table 7S. Bond features, including bond ionicity, lattice energy and bond susceptibility value in $Ba(Mg_{1/3}Ta_{2/3})O_3$ system
Table 8S. Comparisons between bond ionicity and lattice energy in $(Zn_{1/3}Nb_{2/3})_xTi_{1-x}O_2$ (x = 0.45,0.75, 1) systems
Table 9S. The m values in bonding subformula A _m B _n in <i>x</i> ZTN-(1- <i>x</i>)ZNT (<i>x</i> =0-0.2, <i>x</i> =0.65-1) (In this situation, n=2m)5

Bond type	Ionicity	N _e ^μ (Å ⁻³)	E_{g}^{μ} (eV)	χ^{μ}	Fμ	Х	χ/Σχ
Ca-O1 ×2	86.267%	0.1503	12.8328	0.908	0.091	0.083	2.58%
Ca-O2 ×2	73.736%	0.1522	9.3793	1.891	0.091	0.172	5.38%
Ca-O3(1) ×2	86.833%	0.1163	10.6011	1.037	0.091	0.094	2.95%
Ca-O3(2) ×2	87.181%	0.0958	9.1508	1.153	0.091	0.105	3.28%
Mg-O1(1) ×2	75.425%	0.2815	12.7054	1.952	0.091	0.177	5.55%
Mg-O1(2) ×2	75.216%	0.2966	13.2088	1.901	0.091	0.173	5.41%
Mg-02 ×2	59.457%	0.2939	10.2495	3.280	0.091	0.298	9.33%
Si-01 ×1	67.983%	1.8713	21.4881	5.068	0.091	0.461	14.42%
Si-O2 ×1	52.998%	2.0499	19.1231	7.125	0.091	0.648	20.27%
Si-O3(1) ×1	68.306%	1.7117	20.0633	5.323	0.091	0.484	15.14%
Si-O3(2) ×1	68.517%	1.6082	19.1187	5.511	0.091	0.501	15.68%

Table 1S. Bond parameters and bond susceptibility of $\rm CaMgSi_2O_6\,ceramic$

Table 2S. Bond parameters of T-type $A_2BSi_2O_7$ (A=Sr, Ca; B=Mg, Mn) structures

	Bond type	lonicity	N _e ^μ (Å ⁻³)	E_{g}^{μ} (eV)	U (kJ/mol)	χ^{μ}	F ^μ	х	χ/Σχ
A=Sr,	A-01×1	85.610%	0.1267	9.7499	645	1.396	0.071	0.100	2.67%
B=Mg	A–O2(1)×2	85.877%	0.1080	8.6198	1234	1.528	0.143	0.218	5.84%
	A–O2(2)×1	85.564%	0.1300	9.9410	649	1.376	0.071	0.098	2.63%
	A–O3(1)×2	85.946%	0.1029	8.3074	1218	1.571	0.143	0.224	6.01%
	A–O3(2)×2	85.572%	0.1294	9.9059	1297	1.380	0.143	0.197	5.27%
	B-03×4	47.985%	0.6089	10.5838	4058	7.933	0.143	1.133	30.32%
	Si-01×1	65.619%	2.0922	20.3619	8626	6.327	0.071	0.452	12.09%
	Si–O2×1	65.284%	2.2980	21.8974	8806	6.035	0.071	0.431	11.53%
	Si-03×2	65.430%	2.2084	21.2340	17459	6.183	0.143	0.883	23.63%
A=Sr,	A-01×1	85.818%	0.1150	9.0945	628	1.457	0.071	0.104	2.79%
B=Mn	A–O2(1)×2	86.042%	0.0990	8.1035	1206	1.588	0.143	0.227	6.07%
	A-O2(2)×1	85.604%	0.1299	9.9838	650	1.361	0.071	0.097	2.60%
	A–O3(1)×2	85.906%	0.1088	8.7151	1238	1.504	0.143	0.215	5.75%
	A–O3(2)×2	85.589%	0.1309	10.0459	1302	1.355	0.143	0.194	5.18%
	B-03×4	48.689%	0.5215	9.4103	3910	7.933	0.143	1.133	30.33%
	Si-01×1	65.693%	2.0904	20.4460	8635	6.327	0.071	0.452	12.10%
	Si-02×1	65.391%	2.2745	21.8277	8797	6.035	0.071	0.431	11.54%
	Si–O3×2	65.549%	2.1778	21.1062	17427	6.183	0.143	0.883	23.64%
A=Ca,	A-01×1	85.299%	0.1482	10.9739	673	1.283	0.071	0.092	2.56%
B=Zn	A-O2(1)×2	85.791%	0.1137	8.9694	1252	1.485	0.143	0.212	5.93%
	A–O2(2)×1	85.242%	0.1522	11.1980	678	1.265	0.071	0.090	2.52%
	A-03(1)×2	85.941%	0.1030	8.3059	1218	1.573	0.143	0.225	6.28%
	A–O3(2)×2	85.294%	0.1486	10.9940	1346	1.282	0.143	0.183	5.11%
	B-03×4	47.003%	0.7510	12.4647	4271	6.485	0.143	0.926	25.88%
	Si-01×1	66.069%	1.8120	18.1922	8350	6.940	0.071	0.496	13.85%
	Si-02×1	65.100%	2.4076	22.6878	8894	5.913	0.071	0.422	11.80%
	Si-03×2	65.740%	2.0141	19.7579	17103	6.533	0.143	0.933	26.07%

Table 3S. Coordinate environments of monoclinic Ba2ZnSi2O7 structures

$Ba_2ZnSi_2O_7 = Ba_2ZnSi_2O_12O_22O_32O_11$										
Ва	Zn	Si	01	02	03	04				
CN=8	CN=4	CN=4	CN=4	CN=4	CN=4	CN=4				
N(Ba-O1) =3	N(Zn-O2) =2	N(Si-O1) =1	N(O1-Ba) =3	N(O2-Ba) =2	N(O3-Ba) =2	N(O4-Ba) =2				
N(Ba-O2) =2	N(Zn-O3) =2	N(Si-O2) =1	N(O1-Si) =1	N(O2-Zn) =1	N(O3-Zn) =1	N(O4-Si) =2				
N(Ba-O3) =2		N(Si-O3) =1		N(O2-Si) =1	N(O3-Si) =1					
N(Ba-O4) =1		N(Si-O4) =1								

 $N(B^{j}-A^{i})$ represents the number of A^{i} cations in the ligand of B^{j} ion

$BaCo_2Si_2O_7 = BaCo_11/2Co_21/2Co_31Si_11Si_21O_11O_21O_31O_41O_51O_61O_71$											
Ва	Co1	Co2	Co2 Co3 Si1		Si2	01					
CN=8	CN=4	CN=4	CN=4	CN=4	CN=4	CN=4					
N(Ba-O2)=2	N(Co1-O4)=2	N(Co2-O1)=2	N(Co3-O1)=1	N(Si1-O1)=1	N(Si2-O2)=1	N(O1-Co2)=1					
N(Ba-O3)=1	N(Co1-O6)=2	N(Co2-O2)=2	N(Co3-O3)=1	N(Si1-O5)=1	N(Si2-O3)=1	N(O1-Co3)=1					
N(Ba-O4)=1			N(Co3-O4)=1	N(Si1-O6)=1	N(Si2-O4)=1	N(01-Si1)=1					
N(Ba-O5)=1			N(Co3-O7)=1	N(Si1-07)=1	N(Si2-O5)=1	N(01-Ba)=1					
N(Ba-O6)=1											
N(Ba-O7)=2											
02	O3	04	O5	O6	07						
CN=4	CN=3	CN=4	CN=3	CN=3	CN=4						
N(O2-Ba)=2	N(O3-Ba)=1	N(O4-Ba)=1	N(O5-Ba)=1	N(O6-Ba)=1	N(07-Ba)=2						
N(O2-Co2)=2	N(O3-Co3)=1	N(O4-Co1)=1	N(05-Si1)=1	N(06-Si1)=1	N(07-Co3)=1						
N(O2-Si2)=2	N(O3-Si2)=1	N(O4-Co3)=1	N(05-Si2)=1	N(O6-Co1)=1	N(07-Si1)=1						
		N(O4-Si2)=1									

Table 4S. Coordinate environments of monoclinic $BaCo_2Si_2O_7\,structures$

Table 5S. Bond parameters and bond susceptibility of $Ba_2ZnSi_2O_7$ system

Bond type	Ionicity	N _e ^μ (Å ⁻³)	E_{g}^{μ} (eV)	χ^{μ}	F ^μ	Х	χ/Σχ
Ba–O1(1)×1	85.359%	0.1066	7.9863	2.001	0.071	0.143	3.31%
Ba–O1(2)×1	85.161%	0.1221	8.8769	1.848	0.071	0.132	3.06%
Ba–O1(3)×1	85.415%	0.1020	7.7189	2.053	0.071	0.147	3.40%
Ba–O2(1)×1	85.225%	0.1171	8.5973	1.892	0.071	0.135	3.13%
Ba–O2(2)×1	85.380%	0.1049	7.8860	2.020	0.071	0.144	3.35%
Ba–O3(1)×1	85.394%	0.1037	7.8183	2.033	0.071	0.145	3.37%
Ba–O3(2)×1	85.365%	0.1060	7.9558	2.006	0.071	0.143	3.32%
Ba-O4×1	85.514%	0.0936	7.2150	2.163	0.071	0.154	3.58%
Zn-O2×2	46.974%	0.6195	10.1377	8.153	0.071	0.582	13.50%
Zn-O3×2	46.832%	0.6417	10.4232	7.985	0.071	0.570	13.22%
Si-01×1	64.389%	2.3058	20.6729	6.858	0.071	0.490	11.36%
Si-02×1	64.509%	2.2244	20.1022	6.999	0.071	0.500	11.59%
Si-03×1	64.498%	2.2319	20.1545	6.986	0.071	0.499	11.57%
Si-04×1	64.801%	2.0271	18.6936	7.383	0.071	0.527	12.23%

	Bond type	<i>f</i> i (%)	<i>f</i> _c (%)	Ne ^µ (Å⁻³)	E _g (eV)	<i>U</i> (kJ/mol)	χ^{μ}	F ^µ	х	x/∑x		
NdNbO ₄												
	Nd-O(1)1	90.35	9.65	0.23	14.07	1487	1.576	0.143	0.225	7.55%		
	Nd-O(1)2	90.40	9.60	0.22	13.47	1465	1.628	0.143	0.233	7.80%		
	Nd-O(2)1	80.58	19.42	0.25	10.64	1435	3.286	0.143	0.469	15.75%		
	Nd-O(2)2	80.85	19.15	0.22	9.51	1381	3.571	0.143	0.510	17.12%		
	Nb-O(1)1	88.67	11.33	1.05	23.64	7150	2.393	0.143	0.342	11.47%		
	Nb-O(1)2	89.06	10.94	0.48	12.56	5845	3.928	0.143	0.561	18.83%		
	Nb-O(2)	78.95	21.05	1.11	18.11	6535	4.482	0.143	0.640	21.48%		
					L	_aNbO4						
	La–O(1)1	89.82	10.18	0.20	11.57	1408	2.143	0.143	0.306	8.45%		
	La–O(1)2	89.96	10.04	0.16	9.31	1307	2.546	0.143	0.364	10.04%		
	La–O(2)1	79.73	20.27	0.22	8.66	1356	4.432	0.143	0.633	17.47%		
	La–O(2)2	79.78	20.22	0.21	8.38	1341	4.544	0.143	0.649	17.91%		
	Nb-O(1)1	88.12	11.88	1.54	28.64	5231	2.412	0.143	0.345	9.51%		
	Nb-O(1)2	89.10	10.90	0.49	11.46	3922	4.924	0.143	0.703	19.41%		
	Nb-O(2)	76.60	23.40	1.96	25.56	11400	4.363	0.143	0.623	17.20%		

Table 6S. Comparisons of bond features, including bond ionicity, bond covalency, lattice energy and bond susceptibility value in $RENbO_4$ (RE=Nd, La) ceramics

Table 7S. Bond features, including bond ionicity, lattice energy and bond susceptibility value in $Ba(Mg_{1/3}Ta_{2/3})O_3$ system

Bond type	<i>f</i> i (%)	N _e ^μ (Å ⁻³)	E _g (eV)	<i>U</i> (kJ/mol)	χ^{μ}	F ^μ	х	χ/Σχ
Ba1-O1(1) ×1	95.609%	0.1385	13.6793	192	0.789	0.019	0.015	0.83%
Ba1-O1(2) ×5	95.609%	0.1385	13.6794	960	0.789	0.093	0.073	4.16%
Ba1-O2 ×6	95.606%	0.1410	13.8716	1157	0.780	0.111	0.087	4.94%
Ba2-O1 ×3	95.612%	0.1363	13.4967	1147	0.798	0.111	0.089	5.05%
Ba2-O2(1) ×3	95.613%	0.1357	13.4517	1145	0.800	0.111	0.089	5.06%
Ba2-O2(2) ×6	95.609%	0.1384	13.6659	1151	0.790	0.222	0.175	10.00%
Mg-02 ×6	77.399%	0.7086	13.1032	3864	5.076	0.111	0.564	32.14%
Ta-O1 ×3	89.737%	1.8275	19.9522	23789	3.233	0.111	0.359	20.47%
Ta-O2 ×3	89.830%	2.3072	24.3033	25227	2.740	0.111	0.304	17.35%

	Columbit	е		Ixiolite			Rutile	
<i>x</i> =1	<i>f</i> _i (%)	U (kJ/mol)	<i>x</i> =0.75	<i>f</i> i (%)	U (kJ/mol)	<i>x</i> =0.45	<i>f</i> i (%)	U (kJ/mol)
Zn-O1	63.68	366	Zn-O1(1)	62.70	288	Zn-01(1)	64.22%	167
Zn-O2(1)	64.71	348	Zn-O1(2)	64.59	265	Zn-O1(2)	64.05%	337
Zn-O2(2)	63.86	363	Zn-O1(3)	63.60	277	Ti-01(1)	80.89%	2228
Nb-01(1)	83.68	2171	Ti-01(1)	79.96	1043	Ti-O1(2)	80.82%	4485
Nb-O1(2)	84.29	2005	Ti-O1(2)	80.80	963	Nb-01(1)	84.63%	1877
Nb-O2	83.41	2231	Ti-O1(3)	80.38	1006	Nb-01(2)	84.58%	3778
Nb-O3(1)	84.60	1893	Nb-01(1)	83.88	3220			
Nb-O3(2)	83.82	2137	Nb-01(2)	84.46	2975			
Nb-O3(3)	84.25	2017	Nb-O1(3)	84.17	3107			

Table 8S. Comparisons between bond ionicity and lattice energy in $(Zn_{1/3}Nb_{2/3})_xTi_{1-x}O_2$ (x = 0.45, 0.75, 1) systems

Table 9S. The m values in bonding subformula A_mB_n in xZTN-(1-x)ZNT (x=0-0.2, x=0.65-1) (In this situation, n=2m)

Structure	Bond type	0	0.05	0.1	0.15	0.2
Rutile	Zn-O1(1)	0.05	0.056	0.062	0.068	0.073
	Zn-O1(2)	0.1	0.112	0.123	0.135	0.147
	Ti-O1(1)	0.183	0.183	0.182	0.181	0.180
	Ti-O1(2)	0.367	0.365	0.363	0.362	0.360
	Nb-01(1)	0.1	0.112	0.123	0.135	0.147
	Nb-01(2)	0.2	0.223	0.247	0.270	0.293
Structure	Bond type	0.65	0.7	0.8	0.9	1
Ixiolite	Zn-O1(1)	0.1258	0.1317	0.1433	0.1550	0.1667
	Zn-O1(2)	0.1258	0.1317	0.1433	0.1550	0.1667
	Zn-O1(3)	0.1258	0.1317	0.1433	0.1550	0.1667
	Ti-O1(1)	0.1725	0.1717	0.1700	0.1683	0.1667
	Ti-O1(2)	0.1725	0.1717	0.1700	0.1683	0.1667
	Ti-O1(3)	0.1725	0.1717	0.1700	0.1683	0.1667
	Nb-01(1)	0.2517	0.2633	0.2867	0.3100	0.3333
	Nb-01(2)	0.2517	0.2633	0.2867	0.3100	0.3333
	Nb-01(3)	0.2517	0.2633	0.2867	0.3100	0.3333