Supplementary Information

In-situ growth of urchin-like cobalt-chromium phosphide on 3D graphene foam for efficient overall water splitting

Kuang Li, Xue Jian, Shuo Li, Weiwei Wang, Yuchen Lei, Peilin Zhang, Jinzhe Liu, Chencheng Zhou, Luyang Chen*

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

*Corresponding author: E-mail address: chenly@ecust.edu.cn.

Fig. S1. SEM images of CoP@3DGF.

Fig. S2. SEM images of CoCr-P@3DGF with different Co/Cr ratios of (a-b) 1:1, (c-d) 3:1 and (e-f) 4:1.

Fig. S3. TEM images of (a) Co_2Cr_1 -LDH@3DGF and (b) Co_2Cr_1 -P@3DGF.

Fig. S4. EDS spectrum of Co_2Cr_1 -P@3DGF composite.

Fig. S5. Element mapping images of Co₂Cr₁-P@3DGF (red: Co; green: Cr; yellow: P).

Fig. S6. Tafel curves of CoCr-P@3DGF with different Co/Cr ratios towards HER in 1.0 M KOH.

Fig. S7. CV curves of (a) Co-P@3DGF, (b) Co₁Cr₁-P@3DGF, (c) Co₂Cr₁-P@3DGF, (d) Co_3Cr_1 -P@3DGF, (e) Co₄Cr₁-P@3DGF with various scan rates in 1.0 M KOH. (f) Double layer capacitances of CoCr-P@3DGF with different Co/Cr ratios.

Fig. S8. (a) The polarization, (b) Tafel curves and (c) CV curves of Co_2Cr_1 -P@3DGF after 50 h stability tests for HER reaction in 1.0 M KOH. (d) Double layer capacitances of Co_2Cr_1 -P@3DGF before and after HER reaction.

Fig. S9. (a) SEM images of Co_2Cr_1 -P@3DGF after the stability test of HER. Highresolution XPS spectra of Co_2Cr_1 -P@3DGF for (b) Co 2p, (c) P 2p, (d) O 1s, (e) Cr 2p before and after HER test.

Fig. S10. (a) Polarization curves and (b) corresponding Tafel curves of Co_2Cr_1 -P@3DGF, Co-P@3DGF, Pt/C@3DGF and bare 3DGF in 0.5 M H₂SO₄.

Fig. S11. (a) The polarization, (b) Tafel curves and (c) CV curves of Co_2Cr_1 -P@3DGF after 50 h stability tests for OER reaction in 1.0 M KOH. (d) Double layer capacitances of Co_2Cr_1 -P@3DGF before and after OER reaction.

Fig. S12. (a) SEM images of Co_2Cr_1 -P@3DGF after the stability test of OER. Highresolution XPS spectra of Co_2Cr_1 -P@3DGF for (b) Co 2p, (c) P 2p, (d) O 1s, (e) Cr 2p before and after OER test.

Co/Cr feeding ratio –	EDS analysis [at%]			Estimated shaming formula
	Со	Cr	Р	- Estimated chemical formula
1:1	50.75	7.53	41.71	Co _{0.87} Cr _{0.13} -P
2:1	50.91	5.77	43.32	Co _{0.89} Cr _{0.11} -P
3:1	45.21	4.62	50.17	Co _{0.91} Cr _{0.09} -P
4:1	46.10	2.65	51.25	Co _{0.95} Cr _{0.05} -P

 Table S1. Estimated chemical formula of CoCr-P with different Co/Cr feeding ratios.

Catalysts	j (mA cm ⁻²)	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Co ₂ Cr ₁ -P@3DGF	10	118	71.2	This work
Er-doped CoP NMs	10	66	61	S1
Hollow Mo-CoP arrays	10	40	65	S2
Co _{5.47} N NP@N-PC	10	149	86	S3
Co ₄ Ni ₁ P NTs	10	129	52	S4
CoP/C	10	160	20	85
Cu _{0.075} Co _{0.0925} P/CP	10	47	47.2	S6
(Ni,Co)Se ₂ -GA	10	127	79	S7
CoP-400	10	151	72	S8
S-CoP	10	109	79	S 9
Co_3S_4 (a) MoS_2	10	136	74	S10

Table S2. Comparison of HER performances of Co_2Cr_1 -P@3DGF with recently reportedcatalysts in 1.0 M KOH.

Catalysts	j	Overpotential	Tafel slope	Ref.
	(mA cm ⁻²)	(mV)	(mV dec ⁻¹)	
Co ₂ Cr ₁ -P@3DGF	10	88	68	This work
Er-doped CoP NMs	10	52	32	S1
Cu _{0.075} Co _{0.0925} P/CP	10	70	55.1	S6
Urchin-like CoP	10	105	46	S11
CoP-400	10	113	67	S8
CoP ₃ /Ni ₂ P	10	115	49	S12
W-CoP NAs/CC	10	89	58	S13
CoMoP-5	10	95	61.1	S14
CoP@CC	10	131	64	S15
CoP/NCNHP	10	140	53	S16
HNDCM-Co/CoP	10	138	64	S17

Table S3. Comparison of HER performances of Co_2Cr_1 -P@3DGF with recently reportedcatalysts in 0.5 M H₂SO₄.

Catalurta	j	Overpotential	Tafel slope	Def
Catalysts	(mA cm ⁻²)	(mV)	(mV dec ⁻¹)	Kel.
Co ₂ Cr ₁ -P@3DGF	10	270	79.4	This work
Er-doped CoP NMs	10	256	70	S 1
Hollow Mo-CoP nanoarrays	10	305	56	S2
Co _{5.47} N NP@N-PC	10	248	72	S3
Co ₄ Ni ₁ P NTs	10	245	87	S4
CoP/C	10	430	115	S5
Cu _{0.075} Co _{0.0925} P/CP	10	221	70.4	S6
(Ni,Co)Se ₂ -GA	10	250	70	S7
CoCr-LDH	10	340	81	S18
Co@Co ₉ S ₈ nanochains	10	285	86.5	S19
S-CoP	10	270	82	S9

Table S4. Comparison of OER performances of Co_2Cr_1 -P@3DGF with recently reportedcatalysts in 1.0 M KOH.

Catalysts	Cell voltage (V) at j = 10 mA cm ⁻²	Ref.	
Co ₂ Cr ₁ -P@3DGF	1.56	This work	
Er-doped CoP NMs	1.58	S1	
Hollow Mo-CoP nanoarrays	1.56	S2	
Co _{5.47} N NP@N-PC	1.62	S3	
Co ₄ Ni ₁ P NTs	1.59	S4	
Cu _{0.075} Co _{0.0925} P/CP	1.55	S6	
(Ni,Co)Se ₂ -GA	1.6	S7	
Co ₃ S ₄ @MoS ₂	1.58	S10	
CoP@CC	1.68	S15	
CoP/NCNHP	1.64	S16	
CoP-Co ₂ P@PC/PG	1.567	S20	

Table S5. Comparison of overall water splitting performances of Co_2Cr_1 -P@3DGF withrecently reported catalysts in 1.0 M KOH.

References:

1. G. Zhang, B. Wang, J. Bi, D. Fang and S. Yang, Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting, *J. Mater. Chem. A*, 2019, **7**, 5769-5778.

2. C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y. P. Feng, S. J. Pennycook and J. Wang, Hollow Mo-doped CoP nanoarrays for efficient overall water splitting, *Nano Energy*, 2018, **48**, 73-80.

 Z. Chen, Y. Ha, Y. Liu, H. Wang, H. Yang, H. Xu, Y. Li and R. Wu, In Situ Formation of Cobalt Nitrides/Graphitic Carbon Composites as Efficient Bifunctional Electrocatalysts for Overall Water Splitting, *ACS Appl. Mater. Interfaces*, 2018, **10**, 7134-7144.

4. L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li, Y. Wang and X. Zhao, Metal-Organic Frameworks Derived Nanotube of Nickel-Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting, *Adv. Funct. Mater.*, 2017, **27**, 1703455.

5. L. Li, L. Song, H. Xue, C. Jiang, B. Gao, H. Gong, W. Xia, X. Fan, H. Guo, T. Wang and J. He, CoP nanoparticles encapsulated by graphitic layers and anchored to N-doped carbon nanoplates for enhanced bifunctional electrocatalytic properties for overall water splitting, *Carbon*, 2019, **150**, 446-454.

6. L. Yan, B. Zhang, J. Zhu, S. Zhao, Y. Li, B. Zhang, J. Jiang, X. Ji, H. Zhang and P. K. Shen, Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis, *J. Mater. Chem. A*, 2019, **7**, 14271-14279.

7. X. Xu, H. Liang, F. Ming, Z. Qi, Y. Xie and Z. Wang, Prussian Blue Analogues Derived

Penroseite (Ni,Co)Se₂ Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting, *ACS Catal.*, 2017, 7, 6394-6399.

8. H. Li, X. Zhao, H. Liu, S. Chen, X. Yang, C. Lv, H. Zhang, X. She and D. Yang, Sub-1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH Values, *Small*, 2018, **14**, 1802824.

M. A. R. Anjum, M. S. Okyay, M. Kim, M. H. Lee, N. Park and J. S. Lee, Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting, *Nano Energy*, 2018, 53, 286-295.

10. Y. Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando and Y. Yamauchi, Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting, *Nano Energy*, 2018, **47**, 494-502.

11. H. Yang, Y. Zhang, F. Hu and Q. Wang, Urchin-like CoP Nanocrystals as Hydrogen Evolution Reaction and Oxygen Reduction Reaction Dual-Electrocatalyst with Superior Stability, *Nano Lett.*, 2015, **15**, 7616-7620.

 K. Wang, X. She, S. Chen, H. Liu, D. Li, Y. Wang, H. Zhang, D. Yang and X. Yao, Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP₃ and Ni₂P, *J. Mater. Chem. A*, 2018, **6**, 5560-5565.

13. X. Wang, Y. Chen, B. Yu, Z. Wang, H. Wang, B. Sun, W. Li, D. Yang and W. Zhang, Hierarchically Porous W-Doped CoP Nanoflake Arrays as Highly Efficient and Stable Electrocatalyst for pH-Universal Hydrogen Evolution, *Small*, 2019, **15**, 1902613.

14. D. Jiang, Y. Xu, R. Yang, D. Li, S. Meng and M. Chen, CoP₃/CoMoP Heterogeneous

Nanosheet Arrays as Robust Electrocatalyst for pH-Universal Hydrogen Evolution Reaction, ACS Sustain. Chem. Eng., 2019, 7, 9309-9317.

15. Y. Cheng, F. Liao, W. Shen, L. Liu, B. Jiang, Y. Li and M. Shao, Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc-air batteries, *Nanoscale*, 2017, **9**, 18977-18982.

16. Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen and Y. Li, Core-Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting, J. Am. Chem. Soc., 2018, 140, 2610-2618.

H. Wang, S. Min, Q. Wang, D. Li, G. Casillas, C. Ma, Y. Li, Z. Liu, L. J. Li, J. Yuan,
 M. Antonietti and T. Wu, Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP
 Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline
 Environments, *ACS Nano*, 2017, **11**, 4358-4364.

18. C. Dong, X. Yuan, X. Wang, X. Liu, W. Dong, R. Wang, Y. Duan and F. Huang, Rational design of cobalt-chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation, *J. Mater. Chem. A*, 2016, **4**, 11292-11298.

19. X. Yuan, J. Yin, Z. Liu, X. Wang, C. Dong, W. Dong, M. S. Riaz, Z. Zhang, M. Y. Chen and F. Huang, Charge-Transfer-Promoted High Oxygen Evolution Activity of Co@Co₉S₈ Core-Shell Nanochains, *ACS Appl. Mater. Interfaces*, 2018, **10**, 11565-11571.

20. J. Yang, D. Guo, S. Zhao, Y. Lin, R. Yang, D. Xu, N. Shi, X. Zhang, L. Lu, Y. Q. Lan, J. Bao and M. Han, Cobalt Phosphides Nanocrystals Encapsulated by P-Doped Carbon and Married with P-Doped Graphene for Overall Water Splitting, *Small*, 2019,

, 1804546.