A monolithic sponge catalyst for hydrogen generation from sodium borohydride solution for portable fuel cells

Jifeng Deng,^{ab} Bingxue Sun,^c Jinrong Xu,^a Yu Shi,^c Lei Xie,^c Jie Zheng^{*a} and Xingguo Li^{*a} (a. Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. E-mail: xgli@pku.edu.cn, zhengjie@pku.edu.cn; Fax: +86-10-62765930; Tel: +86-10-62765930.

b. Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

 c. Sunan Institute for Molecular Engineering, Peking University, Building 6, Xianshi Road No.88, Changshu Hi-Tech Industrial Development Zone, Jiangsu 215500, China.)

Figure of Arto puttern of Co ₂ D/F VF in sponge and the intermediate
Figure S2 XPS spectra and curve fitting profiles of Co ₂ B/PVFM sponge1
Figure S3 SEM images and EDS mapping of the Co ₂ B/PVFM sponge
Figure S4 The BET curves of pristine PVFM and Co ₂ B/PVFM sponge
Figure S5 Study of the H ₂ generation kinetics from Co ₂ B/PVMF sponge catalysed hydrolysis of NaBH ₄ in
different conditions
Figure S6 The hydrolysis kinetics of 20 wt% NaBH ₄ solution
Table S1 Comparation among Co-B catalysts of different work4
The calculation of hydrogen storage density D _H
Reference

Figure S1 XRD pattern of Co₂B/PVFM sponge and the intermediate.

Figure S2 XPS spectra and curve fitting profiles of $Co_2B/PVFM$ sponge: (a) survey, (b) Co 2p, (c) C 1s and (d) B 1s.

Figure S3 SEM images and EDS mapping of the Co₂B/PVFM sponge after catalyzing the hydrolysis of 10 wt% (a, b, c) and 30 wt% (d, e, f) NaBH₄ solution.

Figure S4 The BET curves of pristine PVFM and $Co_2B/PVFM$

Figure S5 Study of the H₂ generation kinetics from Co₂B/PVMF sponge catalysed hydrolysis of NaBH₄ in different conditions: (a) Different NaOH concentrations (10 wt% NaBH₄ at 298K). (b) Different NaBH₄ concentrations (5 wt% NaOH, 298K). (c-d) Different Co-B loading (5 wt% NaBH₄, 5 wt% NaOH at 298K). The hydrogen generation rate is expressed in per volume of catalyst and per mass of catalyst in (c) and (d), respectively. (e) different temperature (5 wt% NaBH₄, 5 wt% NaOH). (f) An Arrhenius plot for H₂ generation based on (e).

Figure S6 The hydrolysis kinetics of 20 wt% $NaBH_4$ solution at 298 K catalysed by the $Co_2B/PVMF$ sponge catalyst in 3 consecutive test.

Catalyst (composition and form)	Catalyst amount	Catalytic activity	Temperature	Mass fraction of NaBH4 and NaOH	Activation energy(kJ·mol ⁻¹)	Reference
CoB/Ni-foam	15 mg∙cm ⁻²	1930 ml·min ⁻	293 K	1 wt% NaBH ₄ & 5 wt% NaOH		1
PVDF/CoCl ₂	0~5 wt _{CoCl2} %	1709 ml·min ⁻ ¹ mol _{CoCl} ⁻¹	298 K	5 wt% NaBH ₄ & 5 wt% NaOH		2
PVDF/CoCl ₂ /Y-zeolite	5 wt _{Co} %	1977 ml∙min ⁻ ¹ mol _{CoCl} ⁻¹	333 K	0.6 wt\% NaBH_4	49	3
Co-B@AHs			303 K	5 wt% NaBH ₄ & 5 wt% NaOH	56	4
Co ₂ B/PVFM	6.5 mg/cm ³	1500 ml·min ⁻ 1mol _{cata} -1	298 K	5 wt% NaBH ₄ & 5% NaOH	56	this work

Table S1 Comparation among Co-B catalysts of different work

The calculation of hydrogen storage density

The calculation used to determine the hydrogen storage density of our system is as following:

 $D_H = \frac{m_H}{m_s} \times 100\%$, where D_H represents the hydrogen storage density, m_H represents the mass of

H₂ released by our system during hydrolysis, m_s represents the mass of the materials, including sponge catalyst and NaBH₄ solution(water included).

Reference

1. S. Guo, Q. Wu, J. Sun, T. Chen, M. Feng, Q. Wang, Z. Wang, B. Zhao and W. Ding, Highly stable and controllable CoB/Ni-foam catalysts for hydrogen generation from alkaline NaBH₄ solution, *International Journal of Hydrogen Energy*, 2017, **42**, 21063-21072.

2. A. Chinnappan, H.-C. Kang and H. Kim, Preparation of PVDF nanofiber composites for hydrogen generation from sodium borohydride, *Energy*, 2011, **36**, 755-759.

3. Q. Li, Y. Chen, D. J. Lee, F. Li and H. Kim, Preparation of Y-zeolite/CoCl2 doped PVDF composite nanofiber and its application in hydrogen production, *Energy*, 2012, **38**, 144-150.

4. L. Ai, X. Gao and J. Jiang, In situ synthesis of cobalt stabilized on macroscopic biopolymer hydrogel as economical and recyclable catalyst for hydrogen generation from sodium borohydride hydrolysis, *Journal of Power Sources*, 2014, **257**, 213-220.