Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Electronic Supplementary Information

Stability improvement of Cu(II) doped ZnS/ZnO photodetectors prepared with facile solution-processing method

Po-Hsuan Hsiao, a Ta-Cheng Wei, a and Chia-Yun Chena, b*

^aDepartment of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan

^bHierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan

S1 Microstructural and compositional investigations of prepared samples

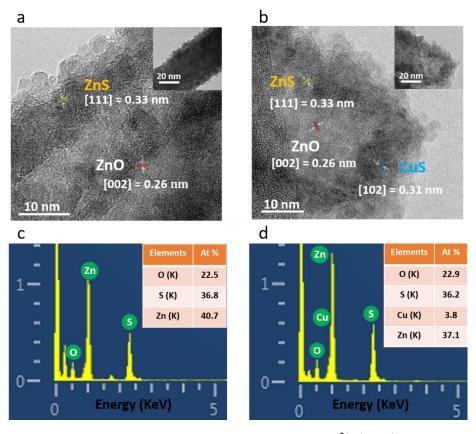


Figure S1 HRTEM images of a (a) ZnS/ZnO nanorod and (b) Cu²⁺ doped ZnS/ZnO nanorod. The inserted figures showed the corresponding TEM images, respectively. No voids could be observed at inner ZnO nanorods. EDS results of a (a) ZnS/ZnO nanorod and (b) Cu²⁺ doped ZnS/ZnO nanorod. The inserted tables presented the corresponding quantitative elemental compositions, respectively.

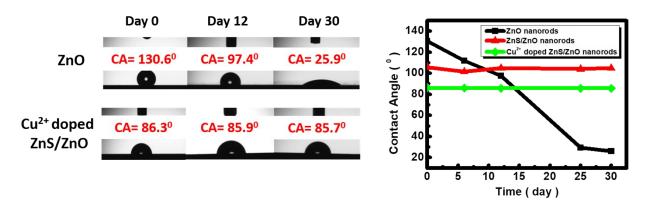


Figure S2 Contact-angle measurements of three various samples. The results indicated the highly unstable wettability of ZnO from time to time, whereas the contact angles stayed the same for long-term measurements in Cu²⁺ doped ZnS/ZnO.

S3 Measured photocurrent enhancement of sole ZnO based photodetectors

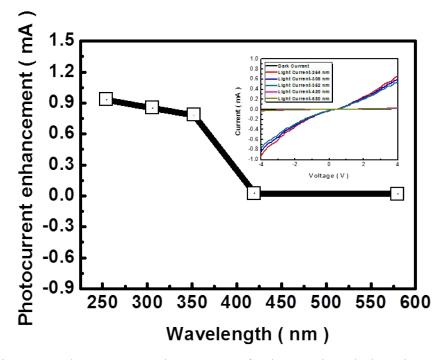


Figure S3 Photocurrent enhancement of sole ZnO based photodetectors. The inserted figures presented the measured current-voltage curves under light illuminations of various wavelengths, respectively.

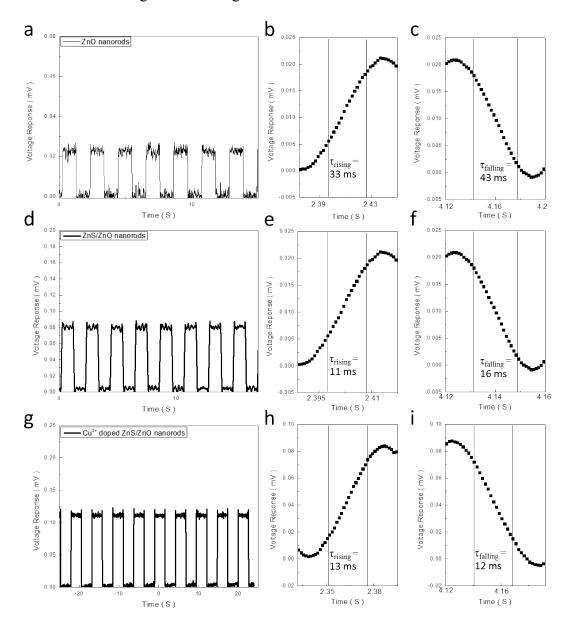


Figure S4 The on/off switch diagrams of (a)-(c) ZnO nanorods, (d)-(f) ZnS/ZnO nanorods and (g)-(i) Cu^{2+} doped ZnS/ZnO nanorods under 365-nm illumination, respectively.

S5 Long-term cycling test of Cu²⁺ doped ZnS/ZnO-based photodetectors

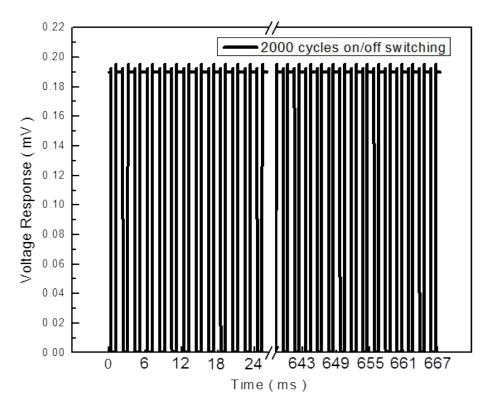


Figure S5 Cycling test of Cu²⁺ doped ZnS/ZnO-based photodetectors.

S6 Responsivity and EQE examinations

Table S1 Device responsivity and EQE results

	Responsivity (A/W @ 4 V)	EQE (%)	
Light sources : 365nm			
ZnO nanorods	0.37	126	
ZnO/ZnS nanorods	0.48	163	
Cu ²⁺ doped ZnS/ZnO nanorods	0.57	193	
Light sources : 420nm			
ZnO nanorods	0.23	68	
ZnO/ZnS nanorods	0.49	145	

The responsivity and EQE of devices were evaluated by the following equations,

 $R = I_{photocurrent} / P_{power\ of\ light}$

$$EQE = R \times (hC/e\lambda)$$

where I photocurrent was photocurrent enhancement, P power of light was power of light source, h was Plank constant, C indicated the light velocity, $^{\lambda}$ was the excited wavelength and e indicated the electronic charge. 1

S7 Thermal stability test

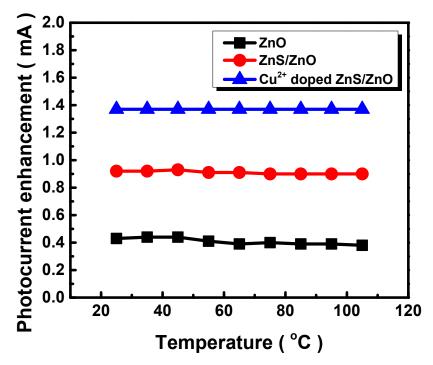


Figure S6 Thermal stability test of various ZnO-based photodetectors.

Table S2 Comparative table of the ZnO-based photodetectors

	Range of detection	Bias (V)	Responsivity (A/W)	Detectivity (10 12 cmHz ^{1/2} W ⁻¹)	$ au_{ m Rise}/ au_{ m Decay}$	I _{on} /I _{off}	Reference
Fe doped ZnO/ZnO core- shell nanorods	350-365 nm	8	3.66	NA	22 s/ >1200 s	>100	2
ZnO NW-Co ₃ O ₄	Visible	0.1	0.022	4.12	6 s/NA	NA	3
ZnO/Cu ₂ O Core- shell nanowires	UV	0	7.67X10 ⁻⁶	NA	<90 ms/<90 ms	NA	4
Branched ZnS-ZnO Heterostructure Nanofilms	UV	10	1.6X10 ⁻⁷	NA	0.77 s/0.73 s	6.21	5
Type-II ZnO/ZnS Core/Shell Nanowire Array	Visible	1.5	0.54	NA	NA	4.25	6
Cu ²⁺ doped ZnS/ZnO nanorods	254-580 nm	4	0.73	127.2	17 ms/19 ms	22800.0	This work

Reference

- 1. A. Janotti and C. G. Van de Walle, Oxygen vacancies in ZnO, Appl. Phys. Lett., 2005, 87(12), 122102.
- 2. R. Azimirad, A. Khayatian, S. Safa and M. Almasi Kashi, Enhancing photoresponsivity of ultra violet photodetectors based on Fe doped ZnO/ZnO shell/core nanorods, *J. Alloys Compd.*, 2014, **615**, 227-233.
- P. Ghamgosar, F. Rigoni, M. G. Kohan, S. You, E. A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina and A. Vomiero, Self-Powered Photodetectors Based on Core–Shell ZnO–Co₃O₄ Nanowire Heterojunctions, ACS Appl. Mater. Interfaces., 2019, 11, 23454-23462.
- P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino and A. Vomiero, ZnO-Cu₂O core-shell nanowires as stable and fast response photodetectors, Nano Energy., 2018, 51, 308-316.

- 5. W. Tian, C. Zhang, T. Zhai, S. L. Li, X. Wang, J. Liu, X. Jie, D. Liu, M. Liao and Y. Koide, Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms, *Adv. Mater.*, 2014, **26**, 3088-3093.
- 6. S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou and Z. L. Wang, Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array, *ACS nano*, 2015, **9**, 6419-6427.