Electronic Supplementary Information

MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na-S batteries

Qiuju Yang^{a,b}, Tingting Yang^{a,b}, Wei Gao^{a,b}, Yuruo Qi*^{a,b}, Bingshu Guo^{a,b}, Wei Zhong^{a,b}, Jian Jiang^{a,b} and Maowen Xu*^{a,b}

^a Key Laboratory of Luminescent and Real Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China;

^b Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China.

E-mail: <u>qiyuruojy@swu.edu.cn;</u> xumaowen@swu.edu.cn

1. Material characterization

The morphologies and structures of the prepared aerogels were examined by FESEM (JSM-7800F, Japan) and TEM (JEM-2100, Japan). EDS mapping was used to analyze the elemental composition and distribution of the product. The crystal structures were recorded through XRD (MAXima-X XRD-7000, Cu K α radiation, λ =1.5416 Å). HR Evolution (Horiba) with 532 nm laser was used to collected Raman spectrum. In-situ Raman was recorded by jointing EL-CELL (Germany) and CHI 760E on the basis of ex-situ Raman. The specific surface area and pore volume were measured by BET (Quadrasorb evo 2QDS-MP-30). The sulfur content was acquired from TGA (Q50, USA) under nitrogen atmosphere. The elemental composition of the material was tested by XPS (ESCALAB 250Xi electron spectrometer, Thermo Scientific). UV-Vis spectra were obtained by a Shimadzu UV-2550 spectrophotometer.

2. Electrochemical measurements

The electrochemical performances of MG-Co@S were explored by assembling CR2032 cells with Na metal as the counter electrode in the glove box. The working electrodes were fabricated by slurry coating method. In detail, MG-Co@S, polyvinylidene fluoride and acetylene black were mixed in the mass ratio of 8:1:1 with an appropriate amount N-methyl-2-pyrrolidone. After the slurry was uniformly coated on the aluminum foil, it was dried at 60 °C for 12 h under vacuum. The electrolyte was 1.0 M NaPF6 dissolved in 1,3-dioxolane (DOL) and Diethylene glycol

dimethyl ether (DIGLYME) (1 : 1 Vol%). The separator was glass fiber membrane (Whatman GF/A). All specific capacity calculations were based on the mass of sulfur (1 C = 1675 mA h g⁻¹). Cyclic voltammetry (CV) curves were recorded by CHI 760E (Shanghai Chenhua, China) with a scan rate of 0.1 mV s⁻¹. The galvanostatic charge/discharge test was conducted by Land battery test system (CT2001A, Wuhan Kingnuo Electronic Co., China) in the voltage range of 0.5 - 2.8 V (vs. Na/Na⁺) after 8 hours of standing. EIS was tested by Zennium electrochemical workstation.

Supplementary Figures

Figure. S1 Illustration for the preparation of MG-Co@S composite.

Figure. S2 Illustration of the exfoliated process of the few-layered $Ti_3C_2T_x$.

Figure S3 (a) SEM image of $Ti_3C_2T_x$ MXene before delamination; (b) SEM and (c-d) TEM images of $Ti_3C_2T_x$ MXene flakes after delamination under ultrasonic.

Figure S4 (a) SEM images of MG.

Figure S5 (a) N_2 adsorption and desorption curves and (b) pore size distribution curve of pure $Ti_3C_2T_x$.

Figure S6 XPS spectrum of (a) Ti 2p and (b) Co 2p for MG-Co composite.

Figure S7 (a) N₂ adsorption and desorption curves and (b) pore size distribution curve

of MG-Co@S.

Figure S8 (a) charge/discharge profiles and (b) cycling performance of MG-Co at 0.5

Figure S9 (a) Comparison the sulfur content of this work with other literatures (b) TGA curve, (c) rate capability and (d) cycling performance at 0.5 C of MG-Co@S with higher sulfur loading.

C.

Figure S10 (a) Polysulfides adsorption by MG-Co, (b) UV-vis absorption spectras of Na_2S_6 solution before and after adding MG-Co, (c) the high-resolution XPS spectra of Ti 2p and Co 2p after adsorption of Na_2S_6 .

Materials	S (wt%)	Electrolyte	Rate	Final		
				Cycles	capacity (mA h g ⁻¹)	Ref.
MG-Co@S	42	1.0 M NaPF6 in DOL:DIGLYME	0.5 C	200	360	This work
CFC/S	24.4	1.5 M NaClO ₄ and 0.2 M NaNO ₃ in TEGDME	0.1 C	300	120	S1
S Nanosheets @Cu foam	29.5	1.0 M NaClO ₄ in PC:EC+5% FEC	50 mA g ⁻¹	5	377	S2
cPANS	31	0.8 M NaClO ₄ in EC:DEC	220 mA g ⁻	500	150	S3
PCMs-S	34	1.0 M NaClO ₄ in PC:EC+5% FEC	100 mA g- 1	350	300	S4
S@Ni-NCFs	36	1.0 M NaClO ₄ in TEGDME	0.5 C	270	233	S5

Table S1 The comparisons of the performance between different cathode materialsfor RT Na-S batteries.

rGO/VO ₂ /S	40	1.0 M NaClO4 in TEGDME	2 C	1000	156	S6
S@iMCHS	46	1.0 M NaClO ₄ in PC:EC+5% FEC	100 mA g ⁻ 1	200	292	S7
S@Co _n -HC	47	1.0 M NaClO ₄ in PC:EC+5% FEC	100 mA g ⁻ 1	600	508	S8
cZIF-8/S	50	1.0 M NaClO ₄ in TEGDME	0.2 C	250	450	S9
HSMC-Cu-S	50	1.0 M NaClO ₄ in EC:DMC	0.03 C	110	610	S10
CNT@GNR/S	63	1.0 M NaClO ₄ in PC:EC	0.2 C	300	350	S11

References

[1] Q. Q. Lu, X. Y. Wang, J. Cao, C. Chen, K. N. Chen, Z. F. Zhao, Z. Q. Niu, J. Chen, Energy Storage Mater. 8 (2017) 77-84.

[2] B. W. Zhang, Y. D. Liu, Y. X. Wang, L. Zhang, M. Z. Chen, W. H. Lai, S. L.

Chou, H. K. Liu, S. X. Dou, ACS Appl. Mater. Interfaces 9 (2017) 24446-24450.

- [3] T. H. Hwang, D. S. Jung, J. S. Kim, B. G. Kim, J. W. Choi, Nano Lett. 13 (2013)4532-4538.
- [4] L. Zhang, B. W. Zhang, Y. H. Dou, Y. X. Wang, M. Al-Mamun, X. L. Hu, H. Liu.ACS Appl. Mater. Interfaces 10 (2018) 20422.
- [5] B. S. Guo, W. Y. Du, T. T. Yang, J. H. Deng, D. Y. Liu, Y. R. Qi, J. Jiang, S. J.Bao, M. W. Xu, Adv. Sci. (2020) 1902617.
- [6] W. Y. Du, Y. K. Wu, T. T. Yang, B. S. Guo, D. Y. Liu, S. J. Bao, M. W. Xu, Chem. Eng. J. 379 (2020) 122359.
- [7] Y. X. Wang, J. P. Yang, W. H. Lai, S. L. Chou, Q. F. Gu, H. K. Liu, D. Y. Zhao, S. X. Dou, J. Am. Chem. Soc. 138 (2016) 16576-16579.
- [8] B. W. Zhang, T. Sheng, Y. D. Liu, Y. X. Wang, L. Zhang, W. H. Lai, L. Wang, J.
- P. Yang, Q. F. Gu, S. L. Chou, H. K. Liu, S. X. Dou, Nat. Commun. 9 (2018) 4082.
- [9] Y. M. Chen, W. F. Liang, S. Li, F. Zou, S. M. Bhaway, Z. Qiang, M. Gao, B. D. Vogt, Y. Zhu, J. Mater. Chem. A 4 (2016) 12471-12478.
- [10] S. Y. Zheng, P. Han, Z. Han, P. Li, H. J. Zhang, J. H. Yang, Adv. Energy Mater.(2014), 1400226.
- [11] A. P. V. K. Saroja, K. Muthusamy, R. Sundara, Adv. Mater. Interfaces. (2019), 1801873.