Support information for

Natural arrangement of AgCu bimetallic nanostructures through Oleylamine reduction

R. M. Freire,^a J. Rojas-Nunez,^b A. L. Elias-Arriaga,^c K. Fujisawa,^c L. Troncoso,^d J. C. Denardin,^b S. E. Baltazar^{b,*}

^aInstitute of Applied Chemical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile.

^bDepartamento de Física and CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago, Chile.

^cDepartment of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

^dInstituto de Materiales y Procesos Termomecánicos, Universidad Austral de Chile, General Lagos, 2086, 5111187, Valdivia, Chile.

E-mail addresses of all authors: R. M. Freire <u>rafael.melo@uautonoma.cl</u> J. Rojas <u>javes.ronu@gmail.com</u> A. L. Elias <u>aue4@psu.edu</u> K. F kuf15@psu.edu L. T. Aguilera <u>loreto.troncoso@uach.cl</u> J. C. Denardin jcdenardin@gmail.com S. E. Baltazar <u>samuel.baltazar@usach.cl</u> *Corresponding Author: S. E. Baltazar E-mail address: samuel.baltazar@usach.cl

Compound	AgCu10-90	AgCu50-50	AgCu90-10			
Phase 1						
Space group	Fm-3m	Fm-3m	Fm-3m			
	Ag 4a (0 0 0)	Ag 4a(0 0 0)	Ag 4a(0 0 0)			
B _{iso} (Ų)	5.46(8)	1.33(2)	2.05(13)			
a _o (Å)	4.094(4)	4.093()	4.094(1)			
V(ų)	68.61(12)	68.57(3)	68.61(2)			
Phase 2						
Space group	Fm-3m	Fm-3m	Fm-3m			
	Cu <i>4a (0 0 0)</i>	Cu <i>4a(0 0 0)</i>	Cu <i>4a(0 0 0)</i>			
Biso(Ų)	4.942(6)	2.91(6)	8.963(18)			
ao(Å)	3.628(3)	3.625(1)	3.631(2)			
V(ų)	47.74(7)	47.63(3)	47.87(4)			
Reliability factors	AgCu10-90	AgCu50-50	AgCu90-10			
χ2	2.59	10.6	4.97			
Rp(%)	4.11	7.44	6.76			
Rwp(%)	5.66	10.6	9.47			
Rbragg Phase 1(%)	8.21	6.48	5.33			
Rbragg Phase 2(%)	2.42	5.12	3.39			

Table S1. Cristalographic data obtained from the Rietveld Refinement.

 Table S2. Cu-Ag energies relative to lowest energy configuration.

Energy Difference (meV/atom)						
Label	Number of atoms	Cu@Ag	Ag@Cu	Ag-Cu*		
AgCu9010		0.00	4.07	7.74		
AgCu5050	4213 (5 nm)	0.00	12.67	9.13		
AgCu1090		0.39	25.00	0.00		
AgCu9010		0.00	8.84	1.94		
AgCu5050	10000 (6.5 nm)	0.00	17.35	3.08		
AgCu1090		0.62	25.67	0.00		

* Ag-Cu denotes the janus configuration.

Figure S1. EDX spectrum image of AgCu bimetallic NPs. (a) Low-magnification HAADF-STEM image of AgCu9010 NPs. Elemental maps of (b) silver, (c) copper and (d) overlap elements, where green and red denote Cu and Ag, respectively. The scale bar in (a) represents 30 nm.

Figure S2. EDX spectrum image of AgCu bimetallic NPs. (a) Low-magnification HAADF-STEM image of AgCu5050 NPs. Elemental maps of (b) silver, (c) copper and (d) overlap elements, where green and red denote Cu and Ag, respectively. The scale bar in (a) represents 50 nm.

Figure S3. EDX spectrum image of AgCu bimetallic NPs. (a) Low-magnification HAADF-STEM image of AgCu1090 NPs. Elemental maps of (b) silver, (c) copper and (d) overlap elements, where green and red denote Cu and Ag, respectively. The scale bar in (a) represents 30 nm.

Figure S4. Cross section of the most stable atomic configuration along all sizes and concentrations of AgCu bimetallic NPs.

Figure S5. Size distribution graphs for AgCu5050 (a) and AgCu9010 (b). Each graph was built considering the measurement of 120 NPs randomly chosen from 4 different micrographs taken from distinct regions of the TEM grid. The data were fit using a normal and lognormal functions for (a) and (b), respectively.