Supplementary material

Turn-on fluorescent probe toward glyphosate and Cr³⁺ based on Cd(II)-metal organic framework with Lewis basic sites

Theanchai Wiwasuku,^a Jaursup Boonmak,^a* Rodjana Burakam,^a Sarinya Hadsadee,^b Siriporn Jungsuttiwong,^b Sareeya Bureekaew,^c Vinich Promarak,^d and Sujittra Youngme^a

^a. Materials Chemistry Research Centre, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

^{b.}Center for Organic Electronic and Alternative Energy, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

^c School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong , 21210, Thailand.

^d. School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand. *E-mail: <u>jaursup@kku.ac.th</u>

Parameter	1	1-NH ₂
Empirical formula	$C_{18}H_{12}CdN_4O_4\\$	$C_{18}H_{13}CdN_5O_4$
Formula weight	460.72	475.73
Crystal system	Orthorhombic	Orthorhombic
Space group	Cmca	Cmca
a (Å)	13.6401(5)	13.7017(6)
b (Å)	20.7509(7)	20.9274(8)
c (Å)	14.4681(5)	14.7410(7)
α (°)	90	90
β (°)	90	90
γ (°)	90	90
V (Å ³)	4095.1(2)	4226.8(3)
Z	8	8
D _{calc} (gcm ⁻³)	1.495	1.495
Data/res/parameters	2538/173/151	2258/183/157
GOF on F^2	0.794	0.902
$R_1^{a}, wR_2^{b} [I > 2\alpha(I)]$	0.0375/0.1063	0.0.0449/0.1419
R_1^a , w R_2^b (all data)	0.0448/0.1117 0.0614/0.1518	

Table S1 Crystallographic data and structural refinement for 1 and $1-NH_2$

 ${}^{a}R_{1} = \sum \left\| F_{0} \right\| - \left\| F_{c} \right\| / \sum \left\| F_{o} \right\|, \ {}^{b}wR_{2} = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2} \right]^{\frac{1}{2}}$

	Distances (Å)	
Cd1—O2	2.300(3)	
Cd1—N1	2.320(3)	
Cd1—N1 ¹	2.320(3)	
Cd1—O1 ²	2.346(4)	
Cd1—O4 ³	2.365(3)	
Cd1—O3 ³	2.393(3)	
Cd1—O3 ³	2.607(3)	
	Angles (°)	
O2—Cd1—N1	92.97(9)	
O2—Cd1—N1 ¹	92.97(9)	
N1—Cd1—N1 ¹	170.43(17)	
O2-Cd1-O1 ²	130.10(11)	
N1—Cd1—O1 ²	85.22(8)	
N1 ¹ —Cd1—O1 ²	85.21(8)	
O2—Cd1—O4 ³	84.71(12)	
N1—Cd1—O4 ³	94.01(8)	
N11—Cd1—O43	94.01(8)	
O1 ² —Cd1—O4 ³	145.18(11)	
O2—Cd1—O3 ³	139.75(11)	
N1—Cd1—O3 ³	90.16(8)	
N11-Cd1-O33	90.15(8)	
O1 ² —Cd1—O3 ³	90.15(10)	
O4 ³ —Cd1—O3 ³	55.03(11)	
O2—Cd1—O1	52.76(11)	
N1—Cd1—O1	88.81(8)	
N1 ¹ —Cd1—O1	88.81(8)	
O1 ² —Cd1—O1	77.34(12)	
O43—Cd1—O1	137.47(11)	
O3 ³ —Cd1—O1	167.49(11)	

Table S2 Selected bond distances (Å) and angle (°) for compound 1

Symmetry codes: (1) 1-x, +y, +z; (2) 1-x, 1-y, 1-z; (3) +x, -1/2+y, 1/2-z; (4) +x, 1/2+y, 1/2-z

	Distances (Å)	
Cd1—O1	2.242(5)	
Cd1—O21	2.326(6)	
Cd1—O4 ²	2.327(5)	
Cd1—N1 ³	2.340(5)	
Cd1—N1	2.340(5)	
Cd1—O3 ²	2.423(5)	
	Angles (°)	
O1—Cd1—O2 ¹	128.61(18)	
O1—Cd1—O4 ²	142.39(18)	
O2 ¹ —Cd1—O4 ²	89.00(16)	
O1—Cd1—N1 ³	91.69(11)	
O2 ¹ —Cd1—N1 ³	85.73(11)	
O4 ² —Cd1— N1 ³	91.17(10)	
O1—Cd1—N1	91.69(11)	
O2 ¹ —Cd1—N1	85.73(11)	
O4 ² —Cd1—N1	91.17(10)	
N1 ³ —Cd1—N1	171.1(2)	
O1—Cd1—O3 ²	88.19(18)	
O2 ¹ —Cd1—O3 ²	143.20(17)	
O42—Cd1—O32	54.20(17)	
N1 ³ —Cd1—O3 ²	94.16(11)	
N1—Cd1—O3 ²	94.16(11)	

Table S3 Selected bond distances (Å) and angle (°) for compound $1\text{-}NH_2$

Symmetry codes: (1) *1-x, -y, 1-z*; (2) +*x, -1/2+y, 1/2-z*; (3) *1-x, +y, +z*; (4) +*x, 1/2+y, 1/2-z*

Fig. S1 Chemical structures of the selected pesticides.

Fig. S2 (a) Topological feature of **1-NH**₂ along *a* axis. (b) 2-fold interpenetrated 3D framework

of $1\text{-}NH_2$ in space filling mode.

Fig. S3 FT-IR spectra of 1 and 1-NH₂.

Fig. S4 PXRD patterns for the simulated and as-synthesized 1 and 1-NH₂.

Fig. S5 TGA curves for as-synthesized 1 and 1-NH₂ and desolvated 1-NH₂.

Fig. S6 (a) N_2 adsorption isotherm of desolvated **1-NH**₂ at 77 K (inset: pore size distribution of desolvated **1-NH**₂) (b) Gas adsorption isotherms of desolvated **1-NH**₂ at 295 K.

Blank reading	Fluorescent intensity		
(only 1-NH ₂)	at 434 nm		
Reading 1	4437.849		
Reading 2	4614.951		
Reading 3	4526.954		
Reading 4	4558.367		
Reading 5	4460.107		
Reading 6	4387.441		
Reading 7	4377.512		
Reading 8	4462.322		
Reading 9	4533.827		
Reading 10	4670.202		
Standard deviation (δ)	95.4051		
Slope from calibration graph (m)	11375.0506		
LOD $(3\delta/m)$	0.025 µM		

Table S4 Calculation of standard deviation of fluorescence intensity for glyphosate sensing

Fluorescent material	Fluorescent response	Mechanism	LOD	Ref.
MOFs				
Fe ₃ O ₄ @SiO ₂ @UiO-67	Enhancement	Electron transfer	1 µM	[1]
[Cd(NH ₂ -bdc)(azp)]·DMF	Enhancement	Structural dissociation inhibited PET	25 nM	This work
Other fluorescent materials				
lgG-Carbon dot	Enhancement	Immune Reaction	47 nM	[2]
Carbon dot	Enhancement	Competitive affinity	95 nM	[3]
Carbon dot	Quenching	Fluorescent-resonance energy transfer	0.6 μΜ	[4]
Graphene quantum dots-silver nanoparticles	Quenching	Reduction of metal- enhanced fluorescence	53 nM	[5]
Calixarene-grafted Ruthenium(II)bipyridine Doped Silica NPs	Enhancement	Switch on FRET	0.79 μΜ	[6]

Table S5 Fluorescent sensor for glyphosate detection based on MOF and other fluorescent materials

Fig. S7 The linear enhancement response of bulk phase $1-NH_2$ toward glyphosate.

Fig. S8 (a) Fluorescence response of 1-NH₂ toward glyphosate at different times.b) Plot of time dependent fluorescence intensity at 434 nm.

Fig. S9 (a) Fluorescent intensity response of **1-NH**₂ at 434 nm in the presence of the selected OPPs (black bar) and **1-NH**₂ + glyphosate upon the addition of interferent OPPs (gray bar) (total concentration of OPPs is 50 μ M). (b) Fluorescent intensity response of **1-NH**₂ at 434 nm in the presence of the selected metal ions (black bar) and **1-NH**₂ + Cr³⁺ upon the addition of interferent cations (gray bar) (total concentration of metal ions is 50 μ M).

Fig. S10 UV-Vis absorption spectra of different metal ions in DMF.

Blank reading	Fluorescent intensity	
(only $1-NH_2$)	at 434 nm	
Reading 1	751.551	
Reading 2	745.172	
Reading 3	726.349	
Reading 4	753.238	
Reading 5	707.114	
Reading 6	722.223	
Reading 7	726.112	
Reading 8	717.274	
Reading 9	728.123	
Reading 10	770.443	
Standard deviation (δ)	19.4889	
Slope from calibration graph (m)	98.7274	
LOD $(3\delta/m)$	0.60 µM	

Table S6 Calculation of standard deviation of fluorescence intensity for Cr^{3+} sensing

Fig. S11 The linear enhancement response of bulk phase $1-NH_2$ toward Cr^{3+} .

Fluorescent material	Fluorescent response	Mechanism	LOD	Ref.
MOFs				
$[Zn(L)(H_2O)] \cdot H_2O$	Quenching	Inner filter affect	2.44 µM	[7]
$[Eu_2(tpbpc)_4 \cdot CO_3 \cdot H_2O] \cdot DMF$	Quenching	Inner filter affect & antenna effect inhibition	70 µM	[8]
$[Zn_2(tpeb)_2(2,3-ndc)_2] \cdot H_2O$	Quenching	Weak coordination	16 nM	[9]
$Tb@[Cd_4(NDIC)_4(DMF)_5(H_2O)] \cdot DMF$	Quenching	Collapse of the structure	0.075 μM	[10]
[Zn ₃ (bpdc) ₂ (pdc) (DMF)]·6DMF	Quenching	Coordination inhibited energy transfer	25.1 μM	[11]
$[Zn_2(TPOM)(NH_2-bdc)_2] \cdot 4H_2O$	Enhancement	Chelation enhanced fluorescence	4.9 µM	[12]
[Co ₃ (BIBT) ₃ (BTC) ₂ (H ₂ O) ₂]·solvents	Enhancement	Absorbance caused enhancement (ACE)	0.1 µM	[13]
[Cd(NH ₂ -bdc)(azp)]·DMF	Enhancement	Structural dissociation inhibited PET	0.6 µM	This work
Other fluorescent materials				
TGA-CdSe QDs	Quenching	Coordination modified valence band and conduction band energies	11.3 nM	[14]
RDC-1	Enhancement	Internal charge transfer	17.8 nM	[15]
Coumarin-Pyrazolone	Quenching	Nonfluorescent complex formation	37 pM	[16]
Gold nanoparticle	Enhancement	Aggregation induced emission	0.02 µM	[17]
PIN/CDS nanocomposite	Enhancement	Chelation enhanced fluorescence	0.47 µM	[18]

Table S7 Fluorescent sensor for Cr³⁺ detection based on various MOFs and other fluorescent materials

L = 5-(2-methylpyridin-4-yl)isophthalate; tpbpc = 4'-[4,2';6',4"]-terpyridin-4'-yl-biphenyl-4-carboxylate; tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene; 2,3-ndc = 2,3-naphthalenedicarboxylic acid; NDIC = 5-(5-norbonene-2,3-dicarboxymide)isophthalic acid; bpdc = 4,4'-biphenyldicarboxylic acid; pdc = pyridine-3,5-dicarboxylate, TPOM = tetrakis(4-pyridyloxymethylene)methane)

Fig. S12 (a) Fluorescence response of 1-NH₂ toward Cr³⁺ ion (20 μM) at 0-32 min.
(b) Plot of time dependent fluorescence intensity at 434 nm.

Fig. S13 The fluorescent response of $1-NH_2$, 1 and free NH_2-H_2bdc with the addition of 50 μ M Cr^{3+} ion.

Fig. S14. (a) Fluorescent spectra and (b) fluorescent intensities of $1-NH_2$ in the presence of 50 μ M of different interfering species with respect to the emission at 434 nm in DMF media. (c) Fluorescent spectra and (d) fluorescent intensities of $1-NH_2$ the presence of the interfering species without Cr³⁺ (black bar) and with Cr³⁺ (red bar).

Fig. S15. (a) Fluorescent spectra and (b) fluorescent intensities of $1-NH_2$ in the presence of 50 μ M of different interfering species with respect to the emission at 434 nm in ethanol media. (c) Fluorescent spectra and (d) fluorescent intensities of $1-NH_2$ the presence of the interfering species without glyphosate (black bar) and with glyphosate (red bar).

Fig. S16 Fluorescent emission of NH_2 - H_2bdc , azp ligand, 1- NH_2 , and 1- NH_2 + glyphosate in ethanol media (a) and NH_2 - H_2bdc , azp ligand, 1- NH_2 , and 1- NH_2 + Cr^{3+} in DMF.

Fig. S17 PXRD patterns of as-synthesized and 1-NH₂ treated with Cr³⁺ for 1 day.

Fig. S18 ESI-MS spectra of 1-NH₂ upon the addition of (a) Cr³⁺ and (b) glyphosate.

References

[1] Q. Yang, J. Wang, X. Chen, W. Yang, H. Pei, N. Hu, Z. Li, Y. Suo, T. Li and J. Wang, The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. *J. Mater. Chem. A*, 2018, **6**, 2184–2192.

[2] D. Wang, B. Lin, Y. Cao, M. Guo and Y. Yu, A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads. *J. Agric. Food Chem.*, 2016, **64**, 6042–6050.

[3] L. Wang, Y. Bi, J. Gao, Y. Li, H. Ding and L. Ding, Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. *RSC Adv.*, 2016, **6**, 85820–85828.

[4] Y. Yuan, J. Jiang, S. Liu, J. Yang, H. zhang, J. Yan and X. Hu, Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation. Sens. Actuators B Chem., 2017, **242**, 545-553

[5] J. JimÃl'nez-LÃ, spez, E. Llorent-Martà nez, P. OrtegaBarrales and A. Ruiz-Medina, Graphene quantum dots-silver nanoparticles as a novel sensitive and selective luminescence probe for the detection of glyphosate in food samples. Talanta, 2020, **207**, 120344.

[6] B. C. M. A. Ashwin, C. Saravanan, T. Stalin, P. MuthuâA^{*}E-^{*}Mareeswaran and S. Rajagopal, FRET-based solid-state luminescent glyphosate sensor using calixarene-grafted

ruthenium(ii)bipyridine doped silica nanoparticles. ChemPhysChem, 2018, **19**, 2768–2775. [7] X.-Y. Guo, F. Zhao, J.-J. Liu, Z.-L. Liu, and Y.-Q. Wang, An ultrastable zinc(ii)–organic framework as a recyclable multiresponsive luminescent sensor for Cr(iii), Cr(vi) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity. J. Mater. Chem. A, 2017, **5**, 20035–20043. [8] J. Liu, G. Ji, J. Xiao, and Z. Liu, Ultrastable 1D europium complex for simultaneous and quantitative sensing of Cr(III) and Cr(VI) ions in aqueous solution with high selectivity and sensitivity. Inorg. Chem., 2017, **56**, 4197–4205.

[9] T.-Y. Gu, M. Dai, D. J. Young, Z.-G. Ren, and J.-P. Lang, Luminescent Zn(II) coordination polymers for highly selective sensing of Cr(III) and Cr(VI) in water. Inorg. Chem., 2017, **56**, 4668–4678.

[10] Y. Wang, H. Yang, G. Cheng, Y. W, and S. Lin, A new Tb(II)-functionalized layer-like Cd-MOF as luminescent probe for highselectively sensing of Cr³⁺. CrystEngComm, 2017, **19**, 7270–7276.

[11] X. Meng, M.-J. Wei, H.-N. Wang, H.-Y. Zang, and Z.-Y. Zhou, Multifunctional luminescent Zn(ii)-based metal-organic framework for high proton-conductivity and detection of Cr³⁺ ions in the presence of mixed metal ions. Dalton Trans., 2018, **47**, 1383–1387.

[12] R. Lv, J. Wang, Y. Zhang, H. Li, L. Yang, S. Liao, W. Gu and X. Liu, An amino-decorated dualfunctional metal-organic framework for highly selective sensing of Cr(III) and Cr(VI) ions and detection of nitroaromatic explosives. J. Mater. Chem. A, 2016, **4**, 15494–15500.

[13] X.-M. Tian, S.-L. Yao, C.-Q. Qiu, T.-F. Zheng, Y.-Q. Chen, H. Huang, J.-L. Chen, S.-L. Liu, and H.-R. Wen, Turn-On Luminescent Sensor toward Fe³⁺, Cr³⁺, and Al³⁺ Based on a Co(II) Metal–Organic Framework with Open Functional Sites. Inorg. Chem. 2020, **59**, 2803–2810.

[14] G. C. de Souza, ÃL'den E.A. de Santana, P. A. da Silva, D. V. Freitas, M. Navarro, A. P. S. Paim and A. F. Lavorante, Employment of electrochemically synthesized TGA-CdSe quantum dots for Cr³⁺ determination in vitamin supplements. Talanta, 2015, **144**, 986 – 991.

[15] O. Sunnapu, N. G. Kotla, B. Maddiboyina, G. S. Asthana, J. Shanmugapriya, K. Sekar, S. Singaravadivel and G. Sivaraman, Rhodamine based effective chemosensor for Chromium(III) and their application in live cell imaging. Sens. Actuators B Chem., 2017, **246**, 761 – 768.

[16] K. Saravana Mani, R. Rajamanikandan, G. Ravikumar, B. Vijaya Pandiyan, P. Kolandaivel, M. Ilanchelian and S. P. Rajendran, Highly sensitive coumarin-pyrazolone probe for the detection of Cr^{3+} and the application in living cells. ACS Omega, 2018, **3**, 17212–17219.

[17] L. Wang, J. Liu, Z. Zhou, M. Xu and B. Wang, Convenient fluorescence detection of Cr(iii) in aqueous solution based on the gold nanoparticle mediated release of the acridine orange probe. Anal. Methods, 2017, **9**, 1786–1791.

[18] M. Faraz, A. Abbasi, F. K. Naqvi, N. Khare, R. Prasad, I. Barman and R. Pandey, Polyindole/cadmium sulphide nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr^{3+} , Fe^{3+} , and Sn^{2+} ions. Sens. Actuators B Chem., 2018, **269**, 195 – 202.