Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Electrochemical synthesis of carbon nano onions

Yixuan Bian, Lu Liu, Di Liu, Zhiwei Zhu, Yuanhua Shao and Meixian Li*

College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China

Corresponding Author: Meixian Li (<u>lmwx@pku.edu.cn</u>)

Figure S1. Optical graph of an electrolytic cell with a three-electrode system P2
Figure S2. TEM image of the electrolytic products P2
Figure S3. TEM images and elemental composition by EDS characterizationP3
Figure S4. Mass spectra of an electrolytic solutionP4
Figure S5. TEM images of the product after heating at 400 °C······P5
Figure S6. TEM images of product after heating at 450 °C·····P5
Figure S7. TEM images of the product after heating at 500 °C·····P5
Figure S8. TEM images of the collected products by ultrasonic dispersion and
centrifugationP6
Figure S9. STEM raw images of S-CNOs and H-CNOs as well as elemental distribution
of C and O ·····P6

Figure S1. Optical graph of an electrolytic cell with a three-electrode system.

Figure S2. TEM image of the electrolytic products consisting of amorphous carbon, Pt NPs, S-CNOs and H-CNOs.

Figure S3. TEM images and elemental composition by EDS characterization of (a) amorphous carbon, (b) S-CNOs and (c) H-CNOs.

Figure S4. Mass spectra of an electrolytic solution after electrolysis of 5 hours and structures of some stable radicals and polycyclic aromatic hydrocarbons identified by GC-MS.

Figure S5. TEM images of the product after heating at 400 °C, (a)H-CNOs, (b)S-CNOs, (c) amorphous carbon.

Figure S6. TEM images of product after heating at 450 °C, (a) H-CNOs, (b) S-CNOs, (c) Pt NPs.

Figure S7. TEM images of the product after heating at 500 °C, (a) H-CNOs, (b)S-CNOs, (c) Pt NPs.

Figure S8. TEM images of the collected products by ultrasonically dispersed in CHP for 1 h at a concentration of 1 mg/mL and then centrifuged at (a) 6000 rpm, (b) 8000 rpm, and (c) 12000 rpm, respectively.

Figure S9. STEM raw images of (a) S-CNOs and (d) H-CNOs and elemental distribution of C (b, e), O (c, f). The scale bars are 100 nm.