Electronic Supplementary Material (ESI)

The Achievement of Intrinsic White-Light-Emitting by Hybridization Deformable Haloplumbates with Rigid Luminescent Naphthalene Motif

Xiang-Ling Lin,^a Bin Chen,^a You-Ren Huang,^a Kai-Yue Song,^a Pan-Ke Zhou,^a Lu-Lu Zong,^a Hao-Hong Li*^{a,b}, Zhi-Rong Chen*^{a,b}

Table Caption:

Table S1 Crystal data and structure refinements for 1-3

Table S2 Selected bond lengths (Å) of 1-3

Table S3 Hydrogen bridging details of 1-3

Figure Caption:

Fig. S1 FT-IR spectra of 1-3

Fig. S2 (a) 1D chain constructed from edge- and face-sharing of PbO_6Cl_2 dodecahedrons; (b) the view of 1D $(Pb_4Br_2)^{6+}$ zigzag chain; (c) chelate-bridging coordinated mode of 2,6-ndc²⁻

Fig. S3 1D chains constructed from edge -sharing of PbO_6X_2 (X=Br, I) pentagonal bipyramids for 2 (a) and (b); (c) 3D networks of 2 and 3

Fig. S4 The simulated (red) and experimental (green) PXRD of the crystal 1 (a); 2 (b); 3 (c); UV-Vis spectra of solutions after after filtrating the soaked crystals (d)

Fig. S5 The TGA curves of 1-3 (a); The PXRD of 1 (b) and 2 (c) and 3 (d) before and after chemical treatment

Fig. S6 The UV-Vis absorption spectra of 1-3 (a), Kubelka-Munk plots of 1 (b), 2(c), 3(d)

Fig. S7 Solid-state emission spectra of 2,6-H2ndc ligand

Fig. S8 The photoluminescence decay curves (black) and the fit plot (red) of 1 (a); 2 (b); 3 (c) at room temperature

Fig. S9 Photoluminescence measured by heating from 303 to 443K (for 1, a), 303 to 423 K (for 2, b) and 303 to 403 K (for 3, c)

Fig. S10 Photoluminescence of bulk crystals and grinded powder for compounds 1 (a), 2 (b), 3 (c) measured at room temperature

Fig. S11 The SEM images of bulk crystals and grinded powder of 1 (a, b), 2 (c, d), 3 (e, f)

Compound	1	2	3	
Empirical formula	$C_{54}H_{38}Cl_2N_2O_{16}Pb_4$	$C_{52}H_{36}Br_2N_2O_{16}Pb_4$	$C_{52}H_{40}I_2N_2O_{16}Pb_4$	
Formula weight	1870.61	1933.41	2031.42	
Temperature/K	175	175	175	
Crystal system	Monoclinic	Monoclinic	Monoclinic	
Space group	<i>C</i> 2/c	<i>C</i> 2/c	<i>C</i> 2/c	
a/Å	17.500(4)	17.548(3)	17.433(2)	
b/Å	23.051(4)	23.128(3)	22.934(3)	
$c/{ m \AA}$	8.0270(14)	8.0703(12)	7.9945(10)	
β/°	116.673(4)	116.872(2)	116.603(2)	
Volume/Å ³	2893.4(9)	2921.5(8)	2857.8(6)	
Ζ	2	2	2	
$D_{\rm c}/{\rm g}\cdot{\rm cm}^3$	2.145	2.198	2.361	
µ/mm ⁻¹	11.762	12.923	12.894	
F(000)	1728	1776.0	1856	
In day manage	-20 \leq h \leq 20, -19 \leq	$-19 \le h \le 21, -28 \le k$	k $-10 \le h \le 20, -27 \le k$	
Index ranges	$k \le 27, -9 \le l \le 9$	\leq 25, -9 \leq 1 \leq 9	\leq 23, -9 \leq 1 \leq 9	
Reflections collected	8750	8506	4713	
Independent reflections	2485 [R _{int} = 0.0274]	$2886 [R_{int} = 0.0240]$	2444 [$R_{int} = 0.0178$]	
Reflections, observed	2352	2743	2425	
No. of parameters refined	180	174	175	
Goodness-of-fit on F ²	1.072	1.120	1.12	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0214, wR_2 = 0.0562$	$R_1 = 0.0367, wR_2 = 0.0955$	$R_1 = 0.0621, wR_2 = 0.1794$	
Largest diff. peak/hole / e Å ⁻	1.475, -0.739	1.78, -4.17	2.40, -5.95	

Table S1 Crystal data and structure refinements for 1-3

Table S2 Selected bond lengths (Å) of 1-3

		1			
Pb(1)-O(1)	2.401(4)	Pb(1)-O(2)	2.797(5)	Pb(1)-O(2)#1	2.563(4)
Pb(1)-O(3)	2.532(4)	Pb(1)-O(4)	2.485(4)	Pb(1)-O(4)#3	2.485(4)
Pb(1)-Cl(1)	3.163(10)	Pb(1)-Cl(1)#2	3.186(3)		
O(1)-Pb(1)-O(4)	77.79(13)	O(1)-Pb(1)-O(3)	77.89(15)	O(4)-Pb(1)-O(3)	52.50(13)
O(1)-Pb(1)-O(2)#1	87.04(13)	O(4)-Pb(1)-O(2)#1	73.90(12)	O(3)-Pb(1)-O(2)#1	126.14(12)
O(1)-Pb(1)-Cl(1)	152.11(9)	O(4)-Pb(1)-Cl(1)	74.63(9)	O(3)-Pb(1)-Cl(1)	88.54(10)
O(2)#1-Pb(1)-Cl(1)	81.45(8)				

Symmetry of	codes: #1 x,-	y+1,z-1/2; #2	2 -x,y,-z-1/2	; #3 x,-y+1,:	z+1/2		
				2			
Pb(1)-O(1)		2.321(15)	Pb(1)-O(2)	2.791(22)	Pb(1)-O(2)#1	2.543(16)
Pb(1)-O(3)		2.537(16)	Pb(1)-O(3)#3		2.837(16)	Pb(1)-O(4)	2.549(16)
Pb(1)-Br(1))	3.2037(8)	Pb(1)-Br(1)#2		3.2374(8)		
O(1)-Pb(1)-	·O(3)	76.9(6)	O(1)-Pb(1)-O(2)#1	87.7(6)	O(3)-Pb(1)-O(2)#1	72.1(5)
O(1)-Pb(1)-	·O(4)	77.0(6)	O(3)-Pb(1)-O(4)	54.9(5)	O(2)#1-Pb(1)-O(4)	126.8(5)
O(1)-Pb(1)-	Br(1)	151.4(4)	O(3)-Pb(1)-Br(1)	74.6(3)	O(2)#1-Pb(1)-Br(1)	81.3(4)
O(4)-Pb(1)-	Br(1)	88.6(4)	O(1)-Pb(1)-Br(1)#2	128.7(4)	O(3)-Pb(1)-Br(1)#2	141.1(4)
O(2)#1-Pb(I-Pb(1)-Br(1)#2 129.1(4)		O(4)-Pb(1)-Br(1)#2		98.4(4)	Br(1)-Pb(1)-Br(1)#2	77.33(2)
Symmetry of	codes: #1 x,-	y+1,z+1/2; #	2 -x+1,y,-z+	-3/2; #3 x,-y	r+1,z-1/2		
				3			
Pb(1)-O(1)		2.384(9)	Pb(1)-O(2)	2.792(9)	Pb(1)-O(2)#1	2.530(9)
Pb(1)-O(3) 2.512(9)		2.512(9)	Pb(1)-O(4)		2.474(9)	Pb(1)-O(4)#3	2.904(10)
Pb(1)-I(1)	-I(1) 3.1520(6)		Pb(1)-I(1)#2		3.1750(6)		
O(1)-Pb(1)-O(4) 78.3(3		78.3(3)	O(1)-Pb(1)-O(3)		77.8(3)	O(4)-Pb(1)-O(3)	52.4(3)
O(1)-Pb(1)-	O(1)-Pb(1)-O(2)#1 86.6(3)		O(4)-Pb(1)-O(2)#1		74.0(3)	O(3)-Pb(1)-O(2)#1	126.1(3)
O(1)-Pb(1)-	O(1)-Pb(1)-I(1) 152.2(2)		O(4)-Pb(1)-I(1)		74.3(2)	O(3)-Pb(1)-I(1)	89.0(2)
O(2)#1-Pb(1)-I(1) 81.6(2)		81.6(2)	O(1)-Pb(1)-I(1)#2		127.5(2)	O(4)-Pb(1)-I(1)#2	140.2(2)
O(3)-Pb(1)-I(1)#2 99.28(19)		O(2)#1-Pb(1)-I(1)#2		129.69(19)			
Symmetry of	codes: #1 x,-	y+1,z-1/2;	#2 -x,y,-z+1	/2; #3 x,-y+	-1,z+1/2		
		Tal	ble S3 Hydr	ogen bridg	ing details of	1-3	
Compound	D–H…A		D–H/Å	H…A/Å	D…A/Å	∠(D–H…A)/°	Symmetry
							codes
1	C(6)-H(6))…O(1)	0.93	2.45	2.7664	100	Intra
	С(12)-Н(C(12)-H(12)····O(2)		2.44	3.3581	168	x,y,1+z
2	C(8)-H(8)…O(1)		0.95	2.46	3.395(11)	169	x,y,1+z
C(7	C(7)-H(7))····O(1)	0.93	2.43	3.3428(4)	168	x,y,1+z
з С(11)-Н(11)····O(2)	0.93	2.39	2.7206(4)	101	Intra

Fig. S1 FT-IR spectra of 1-3

(a**)**

(b)

Fig. S2 (a) 1D chain constructed from edge- and face-sharing of PbO₆Cl₂ dodecahedrons; (b) the view of 1D

(Pb₄Br₂)⁶⁺ zigzag chain; (c) chelate-bridging coordinated mode of 2,6-ndc²⁻

(b)

(c)

Fig. S3 1D chains constructed from edge -sharing of PbO₆X₂ (X=Br, I) pentagonal bipyramids for 2 (a) and

(b); (c) 3D networks of 2 and 3

(c)

Fig. S4 The simulated (red) and experimental (green) PXRD of the crystal 1 (a); 2 (b); 3 (c); UV-Vis spectra

of solutions after after filtrating the soaked crystals (d)

Fig. S5 The TGA curves of 1-3

Fig. S6 The UV-Vis absorption spectra of 1-3 (a), Kubelka-Munk plots of 1 (b), 2(c), 3(d)

Fig. S7 Solid-state emission spectra of 2,6-H₂ndc ligand

Fig. S8 The photoluminescence decay curves (black) and the fit plot (red) of 1 (a); 2 (b); 3 (c) at room

temperature

Fig. S9 Photoluminescence measured by heating from 303 to 443K (for 1, a), 303 to 423 K (for 2, b) and 303

(a)

Fig. S10 Photoluminescence of bulk crystals and grinded powder for compounds 1 (a), 2 (b), 3 (c) measured

at room temperature

(b)

c

(d)

(e)

Fig. S11 The SEM images of bulk crystals and grinded powder of 1 (a, b), 2 (c, d), 3 (e, f)