Supplementary Material

Tuning magnetic anisotropy by the p-bonding features of the axial ligands and the electronic effects of gold(I) atoms in CoN_4X_2 (X =N, O) field induced Single-Ion Magnets nodes of 2D { $Co(L)_2[Au(CN)_2]_2$ } metal-organic frameworks.

María A. Palacios, Ismael F. Díaz-Ortega, Hiroyuki Nojiri, Elizaveta A. Suturina, Mykhaylo Ozerov, J. Krzystek, Enrique Colacio

Compound	1(DMSO)	3 (py)	4(bzpy)	5 (naphthalene)
Formula	$C_8H_{12}Au_2CoN_4O_2S_2$	$C_7H_5AuCo_{0.5}N_3$	$C_{28}H_{18}Au_2CoN_6O_2$	$C_{34}H_{26}Au_2CoN_6$
M _r	713.20	357.57	923.35	971.47
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /c	P2 ₁ /c	$P2_1/c$	C2/c
a (Å)	7.4006(3)	7.1352(3)	13.1531(5)	20.2748(17)
b (Å)	14.3681(5)	13.9841(6)	13.5483(5)	10.4871(7)
c (Å)	14.9002(6)	8.4042(4)	15.5142(5)	16.0466(12)
a (°)	90	90	90	90
β (°)	93.6693(18)	95.735(2)	93.7020(17)	115.017(2)
γ (°)	90	90	90	90
V (Å ³)	1581.13(11)	834.37(6)	2758.90(17)	3091.8(4)
Z	4	4	4	4
Dc (g cm ⁻¹)	2.996	2.847	2.223	2.087
$m(MoK_a) (mm^{-1})$	19.813	18.528	11.240	10.031
T (K)	100(2)	293(2)	100(2)	100(2)
Observed reflections a	4075 (3335)	2135 (2103)	6398 (4724)	3190 (3120)
R _{int}	0.0362	0.0333	0.0585	0.0611
Parameters	176	106	352	199
GOF	1.320	0.747	0.814	0.700
R ₁ ^{b,a}	0.0485 (0.0372)	0.0182 (0.0179)	0.0562 (0.0317)	0.0290 (0.0276)

 Table S1.- Crystallographic data for complexes 1, 3-5.

wR ₂ ^{c,a}	0.1747 (0.1669)	0.0768 (0.0701)	0.1176 (0.0945)	0.0750 (0.0737)						
^a Values in parenthese	^a Values in parentheses for reflections with $I > 2\sigma(I)$.									
^b $\mathbf{R}_1 = \mathbf{F}\mathbf{o} - \mathbf{F}\mathbf{c} /\Sigma \mathbf{F}\mathbf{o} .$										
^c wR ₂ = { Σ [w(Fo ² - Fc ²) ²] / Σ [w(Fo ²) ²]} ^{1/2} .										

 Table S2.- Continuous Shape Measures calculations for 1-5.

S H A P E v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu							
JPPY-65 C5vJohnson pentagonal pyramid J2TPR-64 D3hTrigonal prismOC-63 OhOctahedronPPY-62 C5vPentagonal pyramidHP-61 D6hHexagon							
JPPY-6	5 C5v	Johnson p	pentagonal p	yramid J2			
TPR-6	4 D3h	Trigonal	prism				
OC-6	3 Oh	Octahedro	n				
PPY-6	2 C5v	Pentagona	al pyramid				
HP-6	1 D6h	Hexagon					
Complex 1							
-	-	JPPY-6 29.637,	TPR-6 32.528.	OC-6	PPY-6	HP-6 3	3.075,
Complex 2							
Structure []	ML6]	JPPY-6	TPR-6	OC-6	PPY-6	HP-6,	32.149,
15.542,	0.103,	28.650,	31.823.				

Complex 3

Structure [ML6]		JPPY-6	TPR-6	OC-6	PPY-6	HP-6, 33.742,
16.677,	16.677, 0.003,		33.079.			

Complex 4

 Structure [ML6]
 JPPY-6
 TPR-6
 OC-6
 PPY-6
 HP-6, 32.096,

 15.669,
 0.126,
 28.596,
 32.303.
 Complex 5

Structure [[ML6]	JPPY	-6 T	PR-6	OC-6	PPY-6	HP-6	,
32.547,	15.837,	0.070,	29.003	33.	231			

Table S3. SOC-CASSCF(7,5)/NEVPT2 computed eigenvalues of the effective g-tensor of the lowest Kramers doublet (the values calculated including gold(I) atoms are given in red color)

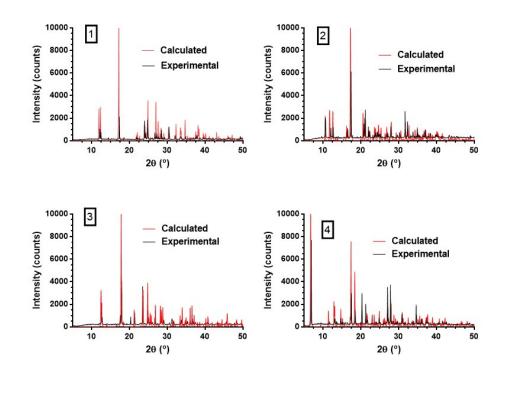
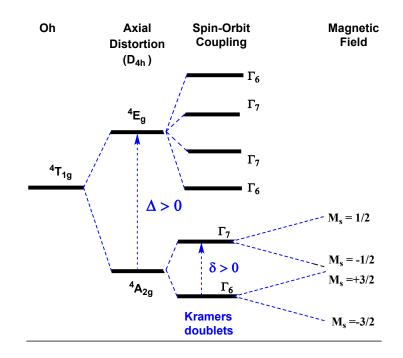

Compound	g ' ₁	g'2	g'3
DMF	2.610	4.864	5.598
	2.176	2.805	7.363
DMSO	2.433	3.344	6.940
	1.924	3.324	6.900
Pyridine	1.985	3.614	6.684
	2.262	4.217	6.104
PyPhCO	1.956	4.130	6.294
	2.622	4.598	5.570

Table S4. $S_{\text{eff}} = 1/2$ Hamiltonian parameters determined from HFEPR of the investigated complexes.


	g_{x}	$g_{ m y}$	gz
Co-Au-DMSO 1	6.05	3.59	1.92
Co-Au-DMF 2	2.65	2.95	6.55
Co-Au-Py 3	5.21	4.60	2.58
Co-Au-BzPy 4	3.15	3.78	5.58

	Method	D, cm ⁻¹	E/D	$\delta = 2\sqrt{D^2 + 3E^2}$	g1	g ₂	g ₃	$\frac{1}{3}\sqrt{g_1^2+g_2^2+g_3^2}$	g' 1	g'2	g′3	relaxation time (s) at 2K and 0.1 Tesla
1 DMSO	calculation	80	0.203	170	1.918	2.437	2.795	2.410	1.92	3.32	6.90	
	Susceptibility	68(1)	fixed 0	136	-	-	-	2.610(7)	2.61	2.61	5.03	
	HFEPR+FIRMS	71.8	0.17	150	2.10	2.47	2.48					
	HFEPR								1.92	3.59	6.05	
	AC SQUID											9*10-4
2 DMF	calculation	111	0.253	242	1.683	2.198	2.989	2.352	2.176	2.805	7.363	
	Susceptibility	90(2)	fixed 0	180	-	-	-	2.687(6)	2.42	2.42	7.02	
	FIRMS			258								
	HFEPR								2.65	2.95	6.55	
	AC SQUID											2.8*10 ⁻⁴
3 Py	calculation	85	0.095	172	1.938	2.578	2.713	2.433	2.26	4.22	6.10	
	Susceptibility	75(2)	fixed 0	140	-	-	-	2.531(7)	2.89	2.89	4.80	
	HFEPR+FIRMS	91.3	0.04	183	2.46	2.46	2.60					
	FIRMS											
	HFEPR								2.58	4.60	5.21	
	AC SQUID											4.7*10-4
4 PyPhCO	calculation	99	0.053	199	1.926	2.551	2.701	2.416	2.62	4.60	5.57	
	Susceptibility	80(1)	fixed 0	160	-	-	-	2.605(1)	2.92	2.92	6.46	
	FIRMS			193?								
	HFEPR								3.15	3.78	5.58	
	AC SQUID											2.6*10-4

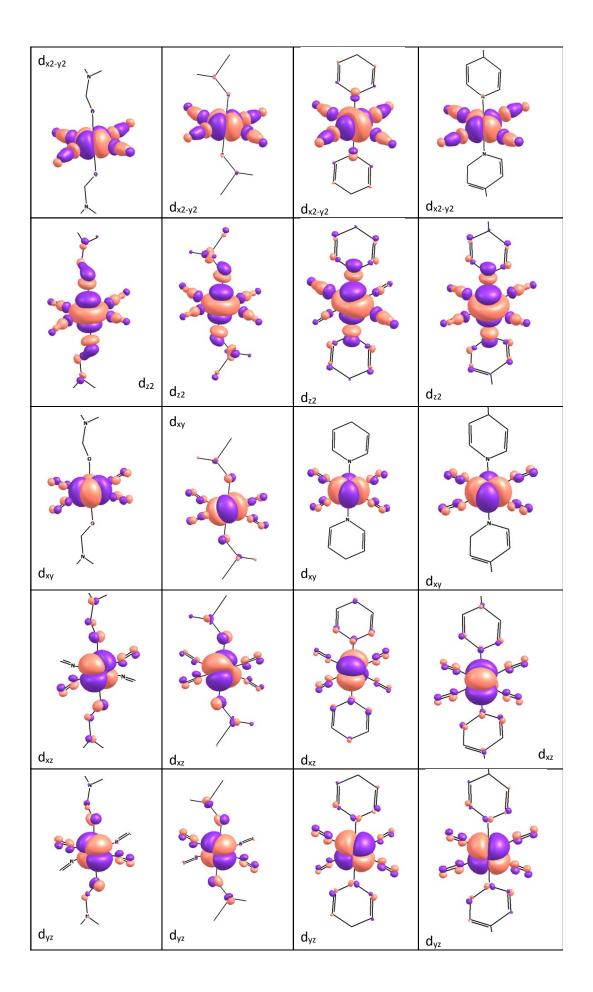

 Table S5. Spin Hamiltonian parameters computed with SOC-CASSCF(7,5)/NEVPT2 for 1-4 and obtained by different experimental techniques.

Figure S1. Experimental XRPD for bulk samples of complexes 1-4 (red colour) and those derived from their X-Ray crystal structures (black colour)

Figure S2.- *Simplified* Energy Level Diagram for the Splitting of the ${}^{4}T_{Ig}$ Ground State by an axial crystal field, second-order SOC and external magnetic field. D is the axial orbital splitting of the ${}^{4}T_{1g}$, while d is the energy gap between the $\pm 3/2$ and $\pm 1/2$ Kramers doublet provoked by the second order SOC.

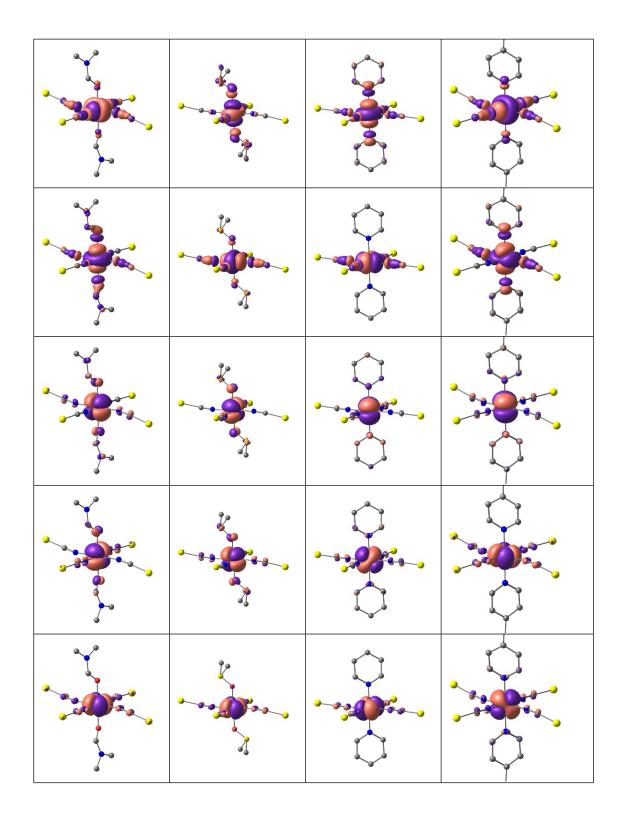
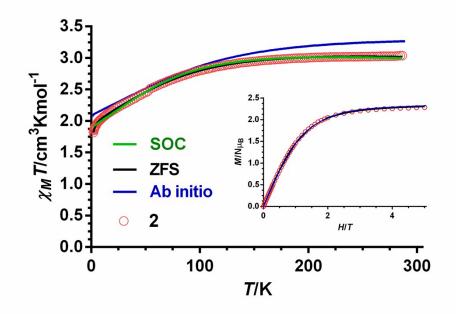
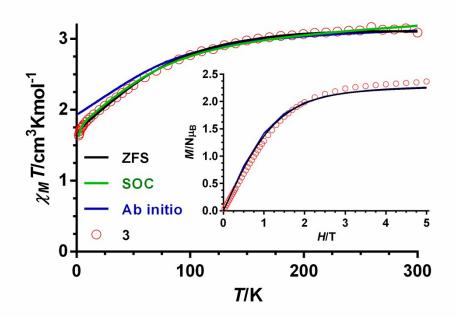




Figure S3. Ab initio ligand field orbitals excluding gold (I) atoms

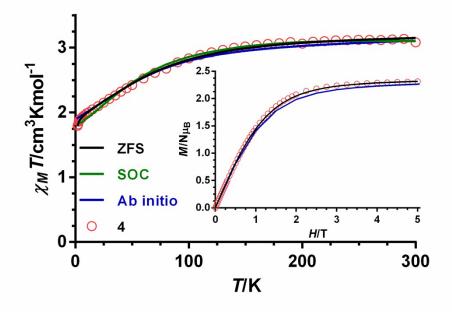

Figure S4. Ab initio ligand field orbitals including gold (I) atoms

Figure S5 .- Temperature dependence of $\chi_M T$ for compound **2** (red circles). Black and green solid lines represent the best fit to equations 1 and 2, respectively. Blue solid line generated from the *ab* initio calculated energy levels including gold(I) atoms.

Figure S6 .- Temperature dependence of $\chi_M T$ for compound **3** (red circles). Black and green solid lines represent the best fit to equations 1 and 2, respectively. Blue solid line generated from the *ab* initio calculated energy levels including gold(I) atoms.

Figure S7.- Temperature dependence of $\chi_M T$ for compound **4** (red circles). Black and green solid lines represent the best fit to equations 1 and 2, respectively. Blue solid line generated from the *ab* initio calculated energy levels including gold(I) atoms.

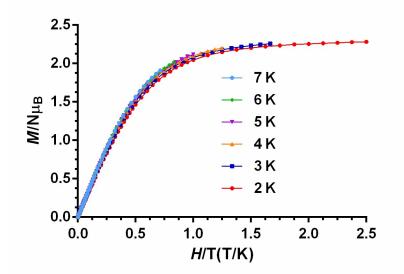


Figure S8.- M vs H/T isotherms for compound 2 at the indicated temperatures.

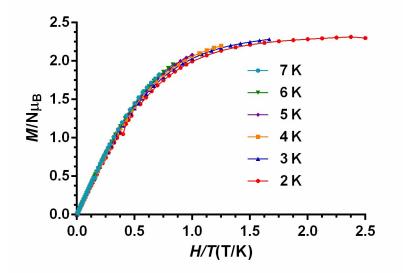


Figure **S9**.- M vs H/T isotherms for compound **3** at the indicated temperatures.

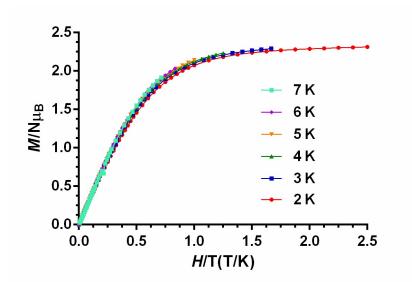
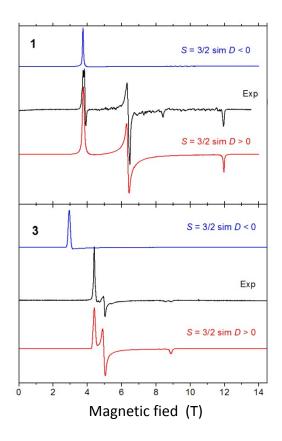



Figure S10.- M vs H/T isotherms for compound 4 at the indicated temperatures.

Figure S11. Top: an EPR spectrum of **1** at 321.6 GHz and 7 K accompanied by simulations using S = 3/2 spin Hamiltonian parameters: $|D| = 71.8 \text{ cm}^{-1}$, $|E| = 12.4 \text{ cm}^{-1}$ (E/D = 0.17); $g_x = 2.47$; $g_y = 2.48$; $g_z = 2.10$. Bottom: an EPR spectrum of **3** at 321.6 GHz and 10 K accompanied by simulations using S = 3/2 spin Hamiltonian parameters: $|D| = 91.3 \text{ cm}^{-1}$, $|E| = 3.65 \text{ cm}^{-1}$ (E/D = 0.04); $g_x = 2.46$; $g_y = 2.46$; $g_z = 2.60$. The g_z value is tentative only since there are two features in the same high-*g* spectral range and either one could be the parallel turning point. The HFEPR spectra of **2** and **4** cannot be simulated using S = 3/2 spin Hamiltonian parameters but only an effective S = 1/2 Hamiltonian (Figure S12)

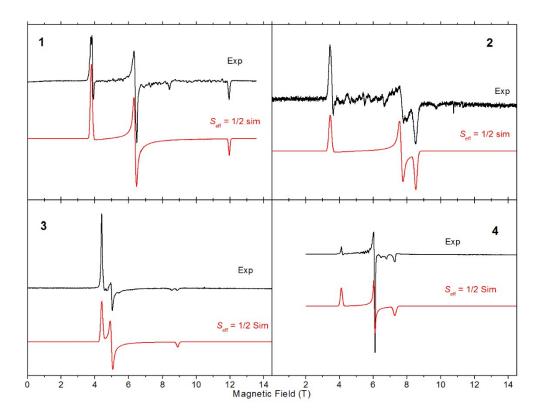


Figure S12.- HFEPR spectra of 1-4 at 321.6 GHz (1, 3 and 4), 316.8 GHz (2), and 7 K (1 and 4) and 10 K (2 and 3). Simulations using an effective S = 1/2 Hamiltonian appear as red lines. Hamiltonian parameters appear above in Table S4.

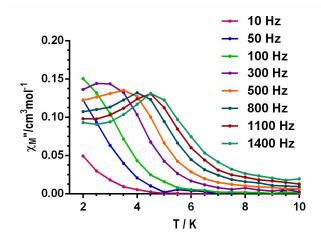
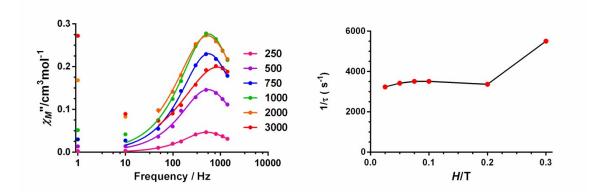



Figure S13.- Temperature dependence of the out-of-phase (χ ") for 1 under a H_{dc} = 0.1 T Oe at different frequencies

Figure S14.- Field dependence of the out-of-phase signal (χ''_M) at 2 K for 2 (left). Field dependence of the relaxation times for 2 (right).

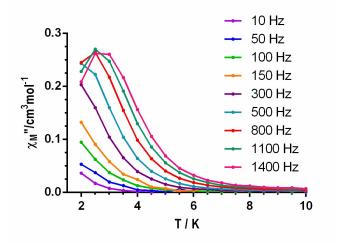


Figure S15.- Temperature dependence of the out-of-phase (χ ") for 2 under a H_{dc} = 0.1 T Oe at different frequencies

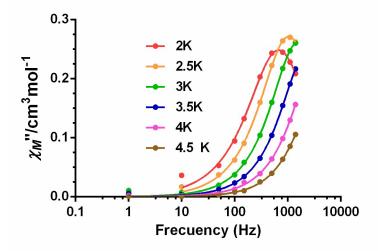
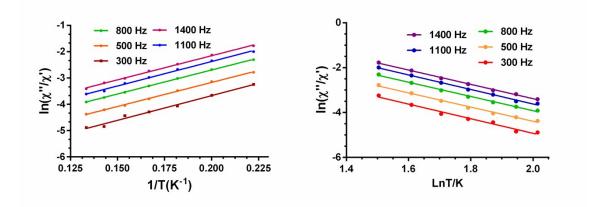



Figure S16.- Frequency dependence of the out-of-phase (χ ") for 2 under a H_{dc} = 0.1 T at different temperatures.

Figure S17.- Temperature dependence of the ratio of the in-phase and out-of-phase ac components at different frequencies under a magnetic field of 0.1 T for **2**. Solid lines correspond to the fit of the experimental data to equation 6 (left) and equation 7 (right).

Figure S18.- Field dependence of the out-of-phase signal ($\chi"_M)$ at 2 K for 3

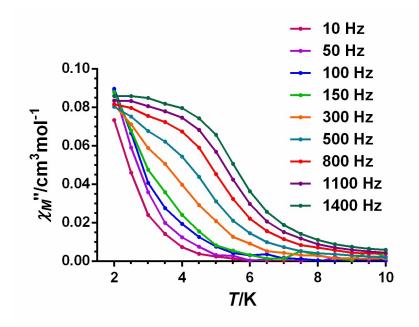


Figure S19.- Temperature dependence of the out-of-phase (χ ") for 3 under a H_{dc} = 0.1 T Oe at different frequencies

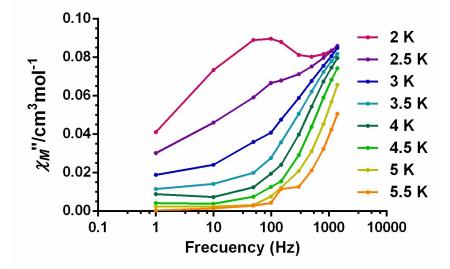
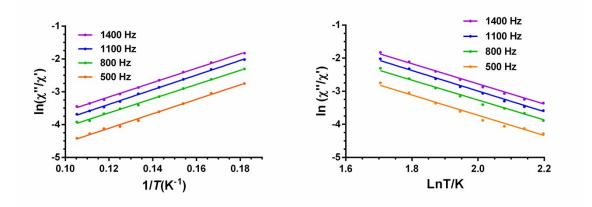
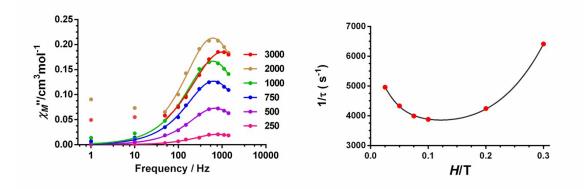
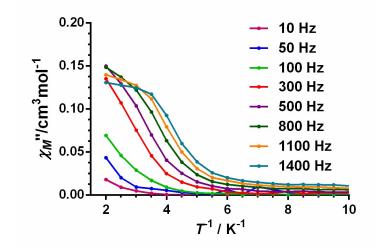
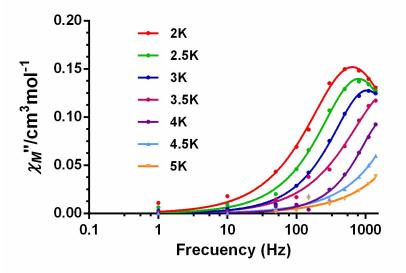
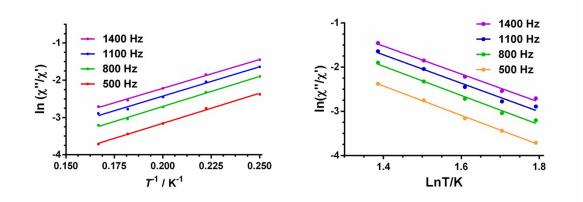
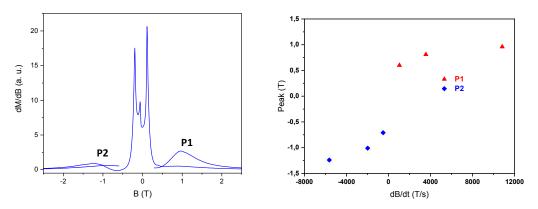




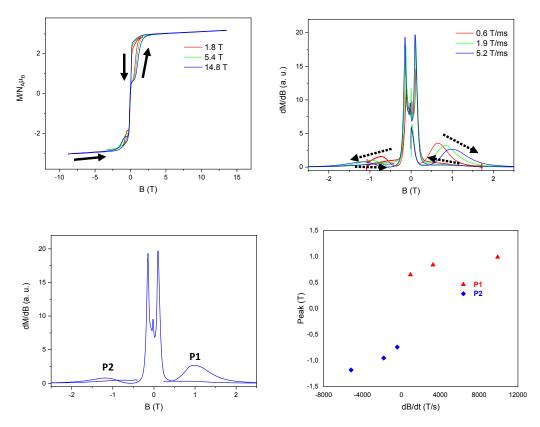
Figure S20.- Frequency dependence of the out-of-phase (χ ") for 3 under a H_{dc} = 0.1 T at different temperatures.

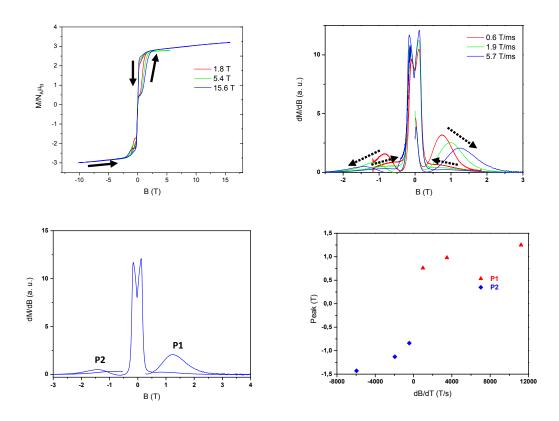
Figure S21.- Temperature dependence of the ratio of the in-phase and out-of-phase ac components at different frequencies under a magnetic field of 0.1 T for **3**. Solid lines correspond to the fit of the experimental data to equation 6 (left) and equation 7 (right).

Figure S22.- Field dependence of the out-of-phase signal (χ''_M) at 2 K for 4 (left). Field dependence of the relaxation times for 4 (right).


Figure S23.- Temperature dependence of the out-of-phase (χ ") for 4 under a H_{dc} = 0.1 T Oe at different frequencies


Figure S24.- Frequency dependence of the out-of–phase (χ '') for **4** under a H_{dc} = 0.1 T at different temperatures.


Figure S25.- Temperature dependence of the ratio of the in-phase and out-of-phase ac components at different frequencies under a magnetic field of 0.1 T for **4**. Solid lines correspond to the fit of the experimental data to equation 6 (left) and equation 7 (right).

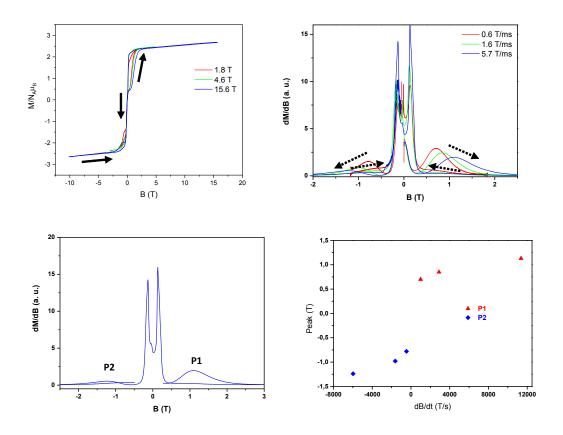

Figure S26.- Differential of magnetization measured at 0.4 K and 5.2 T/ms (left) and sweep rate dependence of peaks P1-P2 (right) for compound **1**.

Figure S27.- Pulse-field (top left) and differentiate (top right) magnetizations curves for **2** at 0.4 K and at different scan field rates. Differential of magnetization measured at 0.4 K and 5.2 T/ms (bottom left) and sweep rate dependence of peaks P1-P2 (bottom right) for compound **2**.

Figure S28.- Pulse-field (top left) and differentiate (top right) magnetizations curves for **3** at 0.4 K and at different scan field rates. Differential of magnetization measured at 0.4 K and 5.2 T/ms (bottom left) and sweep rate dependence of peaks P1-P2 (bottom right) for compound **3**.

Figure S29.- Pulse-field (top left) and differentiate (top right) magnetizations curves for **4** at 0.4 K and at different scan field rates. Differential of magnetization measured at 0.4 K and 5.2 T/ms (bottom left) and sweep rate dependence of peaks P1-P2 (bottom right) for compound **4**.