Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Electronic Supplementary Information (ESI)

For

Bis-heteroleptic Ru(II) Polypyridine Complex-Based Luminescent Probes for Nerve Agent Simulant and Organophosphate Pesticide

Bhaskar Sen,^a Monosh Rabha,^a Sanjoy Kumar Sheet,^a Debaprasad Koner,^b Nirmalendu Saha,^b Snehadrinarayan Khatua^{*a}

^aCentre for Advanced Studies, Department of Chemistry, North Eastern Hill University,

Shillong, Meghalaya 793022, India.

^bDepartment of Zoology, North Eastern Hill University, Shillong, Meghalaya 793022,

India.

*Email: <u>snehadri@gmail.com;</u> <u>skhatua@nehu.ac.in</u>

Ta	ble of Contents	Page no
1	List of compounds	S2
2	NMR spectra of L	S2 S3
2	ESI-MS spectrum of L	S3 S4
4	NMR spectra of 1 [P F ₄] ₂	S4-S5
5	ESI-MS spectrum of 1[PF ₆] ₂	S6
6	NMR spectra of $2[PF_6]_2$	S7-S9
7	ESI-MS spectrum of $2[\mathbf{PF}_6]_2$	S10
8	CV of compounds $1[PF_6]_2$, $2[PF_6]_2$, $[Ru(phen)_3]^{2+}$ and $[Ru(bpy)_3]^{2+}$	S11
9	Energy level diagram from TD-DFT of 1 [PF ₆] ₂	S11
10	UV spectra of $2[PF_6]_2$ with DCP and other analytes	S12
11	PL spectra of $2[PF_6]_2$ with DCP and other analytes	S12
12	Detection limit and time course study of 2[PF ₆] ₂	S13
13	Determination of pK_a values of $1[PF_6]_2$ and $2[PF_6]_2$	S13-S14
14	pH effect on PL spectra of $1[PF_6]_2$ and $2[PF_6]_2$	S14
15	Kinetic study of 2[PF ₆] ₂	S15
16	ESI-MS spectrum of 1[PF ₆] ₂ and DCP mixture	S15
17	Energy level diagram from TD-DFT of $1-(DCP)_2$	S16
18	UV spectra of $2[PF_6]_2$ with dichlorvos and other analytes	S16
19	PL spectra of $2[PF_6]_2$ with dichlorvos and other analytes	S17
20	Time course study of $1[PF_6]_2$ and $2[PF_6]_2$ with dichlorvos	S17
21	Crystal data and structure refinement tables of complex 1 and 2	S18-S19
22	Bond lengths and angles tables of complex 1 and 2	S20
23	Theoretical UV-vis tables of complex 1 and $1-(DCP)_2$	S21

Chart S1. List of Compounds used in this study

Figure S1. ¹H NMR spectrum of L in DMSO- d_6 : D₂O (25:1; v/v; in the presence of 0.25 mM NaOH).

Figure S2. ¹³C NMR spectrum of L in DMSO- d_6 : D₂O (25:1; v/v; in presence of 0.25 mM NaOH).

Figure S3. ESI-mass spectrum of L in methanol.

Figure S4. ¹H NMR spectrum of $1[PF_6]_2$ in CD₃CN.

Figure S5. ¹³C NMR spectrum of $1[PF_6]_2$ in CD₃CN.

Figure S6. Partial ¹H-¹H COSY NMR spectrum of 1[PF₆]₂ in CD₃CN.

Figure S7. a) ESI-MS spectrum of $1[PF_6]_2$ in CH₃CN and b) isotopic distribution of mass spectrum of $1[PF_6]_2$ of experimentally obtained (red), simulated (black).

Figure S8. ¹H NMR spectrum of $2[PF_6]_2$ in CD₃CN.

Figure S9. ¹³C NMR spectrum of $2[PF_6]_2$ in CD₃CN.

Figure S10. Partial ¹H-¹H COSY NMR spectrum of $2[PF_6]_2$ in CD₃CN.

Figure S11. Partial ¹H-¹³C HSQC NMR spectrum of 2[PF₆]₂ in CD₃CN.

Figure S12. Partial ¹H-¹³C HMBC NMR spectrum of 2[PF₆]₂ in CD₃CN.

Figure S13. a) ESI-MS spectrum of $2[PF_6]_2$ in CH₃CN and b) isotopic distribution of mass spectrum of $2[PF_6]_2$ of experimentally obtained (black), simulated (red).

Figure S14. Cyclic voltammogram of 1.0 mM (a) $1[PF_6]_2$, (b) $2[PF_6]_2$, (c) $[Ru(phen)_3](PF_6)_2$ and (d) $[Ru(bpy)_3](PF_6)_2$ in dry and degassed acetonitrile in the presence of 0.1 M tetra-*n*-butylammonium perchlorate (Bu₄NClO₄) as a supporting electrolyte and potential axis was calibrated with Ferrocene.

Figure S15. Energy level diagram obtained from TD-DFT (B3LYP/6-31G (d,p) // LANL2DZ) describing the dominant transitions that consisting of the ¹MLCT absorption band for compound **1** in water. [isovalue = 0.03].

Figure S16. (a) UV–vis selectivity of $2[PF_6]_2$ with various analytes (10 equiv) in the presence of Et₃N (100 μ M). (b) UV–vis titration of $2[PF_6]_2$ upon gradual addition of DCP (0–0.25 mM) in the presence of Et₃N (100 μ M) in aqueous-CH₃CN solution (H₂O: CH₃CN = 9:1, v/v) at 25 °C. ([probe] = 25 μ M; Inset: plot of A₄₃₅/A₃₇₀ vs concentration of DCP).

Figure S17. (a) PL selectivity study of $2[PF_6]_2$ upon addition of DCP and other competitive analytes (15 equiv.) in the presence of Et₃N (100 μ M) in aqueous-CH₃CN solution (H₂O:CH₃CN; 9:1; v/v) at 25 °C. *Inset:* photograph of probe in the absence/presence of DCP upon irradiation of UV light at 365 nm. (b) PL titration of $2[PF_6]_2$ with DCP (0-375 μ M) in the presence of Et₃N (100 μ M) in aqueous-CH₃CN solution (H₂O:CH₃CN; 9:1; v/v) at 25 °C. ([probe] = 25 μ M; $\lambda_{ex} = 450$ nm).

Figure S18. (a) Calibration plot of $2[PF_6]_2$ with DCP obtained from PL titration experiment over a concentration range 0–130 μ M at 25 °C. (b) Time course study of the PL response of $2[PF_6]_2$ upon addition of 15 equiv. of DCP in the presence of Et₃N (100 μ M) in aqueous-CH₃CN solution (H₂O:CH₃CN; 9:1; v/v) at 25 °C. ([probe] = 25 μ M; $\lambda_{ex} = 450$ nm).

Determination of pK_a

The average pKa values of $1[PF_6]_2$ and $2[PF_6]_2$ were determined by UV-vis spectroscopic experiment of the complexes (25 μ M) at different pH ranging from 1.7 to 9.0. The volume of 0.1 M Na₂HPO₄ and 0.1 M HCl has been varied to obtain a variety of pH solutions. The % changes in absorption at 490 nm for $1[PF_6]_2$ (at 370 nm for $2[PF_6]_2$) was monitored with various pH and plotted against pH, which gave a sigmoid curve. The pK_a of an acid (HA) denotes the pH, where the concentration of the acid (HA) and its conjugate base (A⁻) is equal. At the inflection point of the sigmoid curve, [HA] is nearly equal to the [A⁻] and usually gives the pK_a value of the compound.

Figure S19. pH effect (1.7-9.0) on the UV-vis spectra of (a) $1[PF_6]_2$ (25 μ M) and (b) $2[PF_6]_2$ (25 μ M). (c) Plot of percent change in absorbance with pH (c) at 490 nm of $1[PF_6]_2$ and (d) at 370 nm of $2[PF_6]_2$.

Figure S20. pH effect on the PL response of (a) $1[PF_6]_2$ (25 μ M) and (b) $2[PF_6]_2$ (25 μ M). ($\lambda_{ex} = 450 \text{ nm}$; λ_{em} for compound $1[PF_6]_2 = 610 \text{ nm}$; λ_{em} for compound $2[PF_6]_2 = 618 \text{ nm}$).

Figure S21. (a) Pseudo first-order kinetic plot for the luminescence enhancement of $2[PF_6]_2$ upon the reaction with DCP (54.19–216.57 ppm) in the presence of Et₃N (100 μ M) in aqueous-CH₃CN solution (H₂O:CH₃CN; 9:1; v/v). (b) Linear correlation between $\ln[(I_{max}-I_t)/I_{max}]$ and time obtained from the reaction of $2[PF_6]_2$ with DCP (216.57 ppm). ([probe] = 25 μ M, $\lambda_{ex} = 450$ nm and $\lambda_{em} = 618$ nm).

Figure S22. ESI-HRMS mass spectrum of a mixture of $1[PF_6]_2$ (2.0 mM) and DCP (8.0 mM) in CH₃CN.

Figure S23. Energy level diagram obtained from TD-DFT (B3LYP/6-31G (d,p) // LANL2DZ) describing the dominant transitions that consisting of the ¹MLCT absorption band for compound $1-(DCP)_2$ in water. [isovalue = 0.03].

Figure S24. (a) UV–vis selectivity of $2[PF_6]_2$ with various pesticides (25 equiv). (b) UV-vis titration of $2[PF_6]_2$ upon gradual addition of Dichlorvos (0–625 μ M) in the presence of Et₃N (100 μ M) in aqueous-CH₃CN solution (H₂O: CH₃CN = 9:1, v/v) at 25 °C. ([probe] = 25 μ M; *Inset*: plot of A₄₃₅/A₃₇₀ vs concentration of Dichlorvos).

Figure S25. (a) PL selectivity of $2[PF_6]_2$ in presence of dichlorvos and other pesticides in the presence of Et₃N (100 μ M) in aqueous-CH₃CN solution (H₂O:CH₃CN; 9:1; v/v) at 25 °C. Inset: photographs of probes with/without dichlorvos under UV irradiation (365 nm). (b) PL titration of $2[PF_6]_2$ with dichlorvos (0–625 μ M) in aqueous-CH₃CN solution (H₂O:CH₃CN; 9:1; v/v). Inset: Plot of PL intensity *vs* concentration of dichlorvos. ([probe] = 25 μ M; $\lambda_{ex} = 450$ nm).

Figure S26. PL intensity of (a) $1[PF_6]_2$ and (b) $2[PF_6]_2$ in presence of dichlorvos (25 equiv.) with time in the presence of Et₃N (100 μ M) in aqueous-CH₃CN solution (H₂O: CH₃CN; 9:1; v/v). ($\lambda_{ex} = 450$ nm and $\lambda_{em} = 610$ nm for $1[PF_6]_2$ and 618 nm for $2[PF_6]_2$).

Empirical formula	$C_{36}H_{28}N_6O_5Ru$		
Formula weight	725.71		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>C</i> 2/c		
Unit cell dimensions	a = 27.2978(13) Å	$\alpha = 90^{\circ}$.	
	<i>b</i> = 12.9642(6) Å	$\beta = 95.730(5)^{\circ}$.	
	c = 18.5018(9) Å	$\gamma = 90^{\circ}$.	
Volume	6515.0(5) Å ³		
Ζ	8		
Density (calculated)	1.480 Mg/m ³		
Absorption coefficient	0.534 mm ⁻¹		
F(000)	2960		
Crystal size	0.240 x 0.180 x 0.100 mm	3	
Theta range for data collection	3.000 to 26.372°.		
Index ranges	-33<=h<=34, -14<=k<=16	6, -23<=l<=22	
Reflections collected	17750		
Independent reflections	6636 [<i>R</i> (int) = 0.0368]		
Completeness to theta = 25.242° 99.7 %			
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	6636 / 0 / 423		
Goodness-of-fit on F^2	1.091		
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]^a$	R1 = 0.0591, w $R2 = 0.1778$		
R indices (all data) ^a	R1 = 0.0791, w $R2 = 0.1958$		
Largest diff. peak and hole	1.361 and -0.562 e.Å ⁻³		

 Table S1. Crystal data and structure refinement for complex 1.

^a $R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; wR2 = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2}\}^{1/2}$

Empirical formula	$C_{32}H_{22}F_6KN_6O_2PRu$		
Formula weight	807.69		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	P4 ₂ /mbc		
Unit cell dimensions	a = 17.6705(11) Å	$\alpha = 90^{\circ}$.	
	b = 17.6705(11) Å	$\beta = 90^{\circ}$.	
	<i>c</i> = 21.2817(18) Å	$\gamma = 90^{\circ}$.	
Volume	6645.1(10) Å ³		
Ζ	8		
Density (calculated)	1.615 Mg/m ³		
Absorption coefficient	0.719 mm ⁻¹		
F(000)	3232		
Crystal size	0.210 x 0.140 x 0.100 mm	3	
Theta range for data collection	3.211 to 28.778°.		
Index ranges	-13<=h<=23, -14<=k<=21	l, - 27< = 1< = 20	
Reflections collected	18230		
Independent reflections	4056 [<i>R</i> (int) = 0.1058]		
Completeness to theta = 26.000° 99.0 %			
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	4056 / 1 / 239		
Goodness-of-fit on F^2	1.045		
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]^a$	R1 = 0.1352, wR2 = 0.3178		
R indices (all data) ^a	R1 = 0.2062, wR2 = 0.3845		
Largest diff. peak and hole	1.787 and -1.283 e.Å ⁻³		

 Table S2. Crystal data and structure refinement for complex 2.

^a $R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; wR2 = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2}\}^{1/2}$

Bond lengths (Å)				
N(1)-Ru(1)	2.074(4)	N(2)-Ru(1)	2.076(4)	
N(3)-Ru(1)	2.060(5)	N(4)-Ru(1)	2.045(4)	
N(5)-Ru(1)	2.067(5)	N(6)-Ru(1)	2.052(5)	
	Bond angles	(°)		
N(4)-Ru(1)-N(6)	92.02(18)	N(4)-Ru(1)-N(3)	80.24(17)	
N(6)-Ru(1)-N(3)	169.21(17)	N(4)-Ru(1)-N(5)	91.96(17)	
N(6)-Ru(1)-N(5)	79.91(19)	N(3)-Ru(1)-N(5)	92.76(18)	
N(4)-Ru(1)-N(1)	94.19(16)	N(6)-Ru(1)-N(1)	96.11(18)	
N(3)-Ru(1)-N(1)	91.97(17)	N(5)-Ru(1)-N(1)	172.80(17)	
N(4)-Ru(1)-N(2)	170.24(18)	N(6)-Ru(1)-N(2)	95.56(18)	
N(3)-Ru(1)-N(2)	93.00(18)	N(5)-Ru(1)-N(2)	95.41(17)	
N(1)-Ru(1)-N(2)	78.92(17)			

Table S3. Selected bond lengths (Å) and angles (°) around the Ru(II) in complex 1.

Table S4. Selected bond lengths (Å) and angles (°) around the Ru(II) in complex 2.

	Bon	d lengths (Å)		
Ru(1)-N(2) ^a	2.034(11)	Ru(1)-N(2)	2.034(11))
Ru(1)-N(3) ^a	2.040(10)	Ru(1)-N(3)	2.040(10))
Ru(1)-N(1) ^a	2.068(10)	Ru(1)-N(1)	2.068(10))
	Bor	nd angles (°)		
$N(2)^{a}-Ru(1)-N(2)$	176.7(6)	N(2) ^a -Ru	$(1)-N(3)^{a}$	98.0(4)
N(2)-Ru(1)-N(3) ^a	79.7(4)	N(2) ^a -Ru	u(1)-N(3)	79.7(4)
N(2)-Ru(1)-N(3)	98.0(4)	N(3) ^a -Ru	u(1)-N(3)	94.4(5)
N(2) ^a -Ru(1)-N(1) ^a	95.0(4)	N(2)-Ru($(1)-N(1)^{a}$	87.5(4)
N(3) ^a -Ru(1)-N(1) ^a	93.2(4)	N(3)-Ru($(1)-N(1)^{a}$	171.3(4)
$N(2)^{a}-Ru(1)-N(1)$	87.5(4)	N(2)-Ru((1)-N(1)	95.0(4)
$N(3)^{a}-Ru(1)-N(1)$	171.3(4)	N(3)-Ru((1)-N(1)	93.2(4)
$N(1)^{a}-Ru(1)-N(1)$	79.6(5)			

Symmetry transformations used to generate equivalent atoms:

(a) 1/2 - y, 1/2 - x, 1/2 - z

Table S5. Selected singlet state electronic transitions obtained from TD-DFT calculation at B3LYP/6-31G (d,p) // LANL2DZ level of compound 1 and $1-(DCP)_2$ in water.

Complex	Experimentally observed transition (eV/nm)	Computed vertical excitation energy (eV/nm)	Composition	Oscillator strength (f)	Contri bution (CI)
	3.24 eV (382 nm)	3.31 eV (375 nm)	$HOMO-3 \rightarrow LUMO+3$	0.05	33.0%
		3.21 eV (386 nm)	$HOMO-6 \rightarrow LUMO$	0.07	53.5%
			$HOMO \rightarrow LUMO+5$		12.4%
1					
	2.88 eV (430 nm)	2.84 eV (437 nm)	HOMO-2→LUMO+2	0.04	62.1%
	2.53 eV (490 nm)	2.57 eV (482 nm)	HOMO−2→ LUMO	0.09	66.0%
		2.99 eV (415 nm)	$HOMO-2 \rightarrow LUMO$	0.11	59.5%
1-(DCP) ₂	2.88 eV (430 nm)		$HOMO-1 \rightarrow LUMO+1$		27.7%
		2.89 eV (429 nm)	HOMO−1→ LUMO	0.01	66.4%