Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Electronic Supplement Information (ESI) for

Hexagonal tungsten oxides with large band gaps synthesized by a chemical substitution method

Geonju Park and Kang Min Ok*

Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea

*E-mail: kmok@sogang.ac.kr (K.M.O.)

Table of contents

Section	Title	page
Table S1	Selected bond distances	S2
Table S2	Bond valence sum calculations	S2
Table S3	Atomic ratios	S2
Table S4	Local dipole moment calculations	S2
Table S5	Hydrogen bond distances	S3
Figure S1	EDX spectra and elemental analysis data	S3
Figure S2	Experimental and calculated powder X-ray diffraction patterns	S4
Figure S3	IR spectra	S5
Figure S4	TGA diagrams	S6
Figure S5	PXRD patterns for calcined products	S6
Figure S6	Total and partial density of states	S7
Figure S7	Band structures	S8

K(GaF ₂) ₃ (SeO ₃) ₂							
Se(1)-O(1)#1	1.689(5)	K(1)-O(1)#3	2.834(5)				
Se(1)-O(1)#2	1.689(5)	K(1)-O(1)#8	2.834(5)				
Se(1)-O(1)	1.689(5)	K(1)-O(1)#9	2.834(5)				
Ga(1)-O(1)	1.916(4)	K(1)-O(1)#10	2.835(5)				
Ga(1)-O(1)#3	1.916(4)	K(1)-F(1)#11	2.926(4)				
Ga(1)-F(1)#3	1.9257(14)	K(1)-F(1)#12	2.926(4)				
Ga(1)- $F(1)$	1.9257(14)	K(1)-F(1)#13	2.926(4)				
Ga(1)-F(1)#1	1.9258(14)	K(1)-F(1)	2.926(4)				
Ga(1)-F(1)#4	1.9258(14)	K(1)-F(1)#2	2.926(4)				
K(1)-O(1)#6	2.834(5)	K(1)-F(1)#1	2.926(4)				
K(1)-O(1)#7	2.834(5)						
#1 -x+y,-x+1,z #2 -y+1,x-	-y+1,z #3 -x+1/3,-y+2/3,-z-	+2/3 #4 x-y+1/3,x-1/3,-z+	-2/3 #5 x-1/3,y-2/3,z+1/3				
#6 x-y+1/3,x+2/3,-z+2/3	#7 y+1/3,-x+y+2/3,-z+2/3	#8 -y+1/3,x-y+2/3,z-1/3	#9 x+1/3,y+2/3,z-1/3 #10 -				
x+y+1/3,-x+2/3,z-1/3	#11 -x+2/3,-y+4/3,-z+1/3	#12 y-1/3,-x+y+1/3,-z+1/3	#13 x-y+2/3,x+1/3,-z+1/3				
	NH4(GaF	(SeO ₃) ₂					
Se(1)-O(1)#1	1.689(5)	Ga(1)-F(2)	1.9218(16)				
Se(1)-O(1)	1.689(5)	Ga(1)-F(2)#2	1.9218(16)				
Se(1)-O(1)#2 1.689(5)		Ga(1)-F(1)#4	1.9275(15)				
Se(2)-O(2)	1.704(5)	Ga(1)-F(1)	1.9275(15)				
Se(2)-O(2)#3 1.704(5)		N(1)-H(1)	0.99(3)				
Se(2)-O(2)#4 1.704(5)		N(1)-H(2)	0.98(3)				
Ga(1)-O(2)	1.913(5)	N(1)-H(1)#1	0.99(3)				
Ga(1)-O(1)	1.919(5)	N(1)-H(1)#2	0.99(3)				
#1 -y+1,x-y+1,z #2 -x+y,-x+1,z #3 -y,x-y,z #4 -x+y,-x,z							

Table S1. Selected bond distances (Å) for $A(GaF_2)_3(SeO_3)_2$ (A = K and NH₄).

Table S2. Bond valence sum calculations for A(GaF₂)₃(SeO₃)₂ (A = K and NH₄).

$K(GaF_2)$	$_3(SeO_3)_2$	NH ₄ (GaF ₂) ₃ (SeO ₃) ₂		
Se(1)	4.17	Se(1)	4.17	
Ga(1)	2.96	Se(2)	4.00	
K(1)	1.38	Ga(1)	2.97	
F(1)	0.96	F(1)	0.87	
O(1)	2.14	F(2)	0.88	
		O(1)	1.99	
		O(2)	1.95	

Table S3. Atomic ratios for $A(GaF_2)_3(SeO_3)_2$ (A = K and NH₄) determined by EDX analyses.

Compounds	$K(GaF_2)_3(SeO_3)_2$	NH ₄ (GaF ₂) ₃ (SeO ₃) ₂
Α	1.13	0
Ga	3.00	3.00
Se	2.14	2.19
0	8.49	5.77
F	8.36	6.83

Table	S4.	Calculated	local	dipole	moments	for	GaO ₂ F ₄	and	SeO ₃	polyhedra	in
A(GaF	'2)3(S	$(A = K)_{2}$	and I	NH ₄).							

_	Compounds	$K(GaF_2)_3(SeO_3)_2$	NH ₄ (GaF ₂) ₃ (SeO ₃) ₂
	$Ga(1)O_2F_4$	0	0.20
	$Se(1)O_3$	6.75	6.92
	$Se(2)O_3$		7.21

D-HA	d(D-H)	d(HA)	d(DA)
N(1)-H(1)O(2)	0.99(3)	2.04(3)	3.006(9)
N(1)-H(2)F(1)#1	0.98(3)	2.790(13)	3.303(10)
N(1)-H(2)F(1)#2	0.98(3)	2.790(13)	3.303(10)
N(1)-H(2)F(1)#3	0.98(3)	2.790(13)	3.303(10)
#1	-x,-y+1,z-1/2 #2 y,-x+	-y,z-1/2 #3 x-y+1,x+1,	z-1/2

Table S5. Hydrogen bond distances for NH₄(GaF₂)₃(SeO₃)₂.

Figure S1. EDX spectra for A(GaF₂)₃(SeO₃)₂ (A = K and NH₄).

(a) $K(GaF_2)_3(SeO_3)_2$

(b) $NH_4(GaF_2)_3(SeO_3)_2$

Elemental analysis for $NH_4(GaF_2)_3(SeO_3)_2$ observed (calculated): N, 2.2915% (2.35%); H, 0.9486% (0.68%).

Figure S2. Experimental and calculated powder X-ray diffraction patterns for $A(GaF_2)_3(SeO_3)_2$ (A = K and NH₄).

(a) $K(GaF_2)_3(SeO_3)_2$

(b)
$$NH_4(GaF_2)_3(SeO_3)_2$$

Figure S3. IR spectra for $A(GaF_2)_3(SeO_3)_2$ (A = K and NH₄).

(a) $K(GaF_2)_3(SeO_3)_2$ 1.02 1.00 0.98 0.96 Transmittance (%) 0.94 0.92 0.90 0.88 0.86 0.84 0.82-3500 3000 1500 1000 4000 2500 2000 500 Wavenumber (cm⁻¹)

Figure S4. TGA diagrams for A(GaF₂)₃(SeO₃)₂ (A = K and NH₄).

Figure S5. PXRD patterns for calcined products of A(GaF₂)₃(SeO₃)₂ (A = K and NH₄).

Figure S6. Total and partial density of states for A(GaF₂)₃(SeO₃)₂ (A = K and NH₄).

(a) $K(GaF_2)_3(SeO_3)_2$

Figure S7. Band structures for $A(GaF_2)_3(SeO_3)_2$ (A = K and NH₄).

(a) $K(GaF_2)_3(SeO_3)_2$

(b)
$$NH_4(GaF_2)_3(SeO_3)_2$$

S8