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Computational details 

Considering relatively large molecular size of the intermolecular rare-earth/phosphorus 

(RE/P) Lewis pair system (2 and 3), the two-layer ONIOM (B3PW91:HF) approach,S1 as 

implanted in Gaussian 16 program,S2 was used for their geometrical optimizations and 

subsequent analytic frequency calculations. In the ONIOM(B3PW91:HF) calculations, the 

substituent 2,6-tBu2-C6H3 in the ancillary ligand is placed in the outside layer treated by the 

Hartree-Fock (HF) method for saving computational time and consideration of steric effects 

(Figure S1). The other atoms, including those in the monomer molecules, constitute the inner 

layer. The common method of calculating the ONIOM energy of whole system is given in the 

previous work.S3 In the HF calculation, the LANL2MB basis set was used for C and H atoms. In 

the B3PW91 calculation,S4-S6 the 6-31G* basis set was considered for C, H, O and P atoms. The 

Sc atoms were treated by the Stuttgart/Dresden effective core potential (ECP) and the associated 

basis sets.S7-S8 All optimizations were carried out in the gas phase without any symmetry 

constraint. The transition state structures are shown to connect the reactant and product on either 

side via intrinsic reaction coordinate (IRC) following. This basis set is denoted as “BSI”. For the 

intramolecular rare-earth/phosphorus (RE/P) Lewis pair system (1, 4−9), the B3PW91 hybrid 

exchange-correlation functional was utilized for geometry optimization and the 6-31G* basis set 

was considered for C, H, O, N and P atoms. The Sc atoms were treated by the Stuttgart/Dresden 

effective core potential (ECP) and the associated basis sets. This basis set is denoted as “BSII”. 

Such a computational strategy has been widely used for the study of organometallic systems.S9-

S11 To obtain more reliable relative energies, the single-point calculations of optimized structures 

were carried out at the level of M06S12/BSIII, taking into account solvation effect of toluene with 

the SMDS13 solvation model. In the BSIII, the 6-311G (d, p) basis set was used for nonmetal 

atoms, while the basis sets together with associated pseudopotentials for Sc atoms are the same 

as that in geometry optimization. Therefore, unless otherwise mentioned, the free energy (∆G, 

298.15 K, 1 atm) in solution, which was used for description of energy profiles, was obtained 

from the solvation single-point calculation and the gas-phase Gibbs free energy correction. 

Considering the overestimation of the entropy contribution, the free energies were corrected by 

+2.6 (or −2.6) kcal/mol for one-to-two (or two-to-one) molecular conversions, based on the free-

volume theory.S14 The 3D molecular structures displayed in this paper were drawn by using 
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CYLview.S15 

All the ETS-NOCVS16 calculations were performed by employing the B3LYP-D3/DZP S17 

level of theory as implemented in the Amsterdam density functional (ADF) package.S18 The 

relativistic effect of Sc atom was considered by the zero-order regular approximation (ZORA).S19 

The extended transition state (ETS) method decomposes the total interaction energy (ΔEint) into 

four chemically relevant components, that is, ΔEint = ΔEPauli +ΔEelstat + ΔEorbital + ΔEdisp, in which 

ΔEPauli, ΔEelstat, ΔEorbital, and ΔEdisp represent the Pauli repulsion, electrostatic interaction, orbital 

interaction, and dispersion interaction, respectively. Furthermore, the ΔEorbital term could be 

attributed to the specific orbital interaction in terms of the natural orbital for chemical valence 

(NOCV) eigenvalues. The ETS-NOCV approach offers a technique to analyze the orbital 

interaction through the deformation density. 

 

Figure S1. Structure of Lewis acid investigated. The gray part is involved in the low-level 

calculation during the optimization. 

 

Figure S2. Computed energy profiles for 2/PEt3 mediated monometallic pathway for the 

insertion of MMA. Free energies are relative to isolated reactants. 
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Figure S3. Computed energy profiles for 3/PEt3 mediated monometallic pathway for the 

insertion of MMA. Free energies are relative to isolated reactants. 

 

Figure S4. Geometric parameters (distances in Å) of 2A, 2C, 3A, 3C, 2TSDE and 3TSDE. 
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