Electronic Supplementary Information

Free-standing and flexible 0D CeO_2 nanodots/1D La(OH)₃ nanofibers heterojunctions net as a novel efficient and easily recyclable photocatalyst

Kun Wang,^a Yujun Liang,^{*a} Jian Yang,^a Gui Yang,^a Zikang Zeng,^a Rui Xu^b and Xianjun Xie^{*b}

^{*a*} Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. Email: yujunliang@sohu.com.

^b State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan 430074, China. Email: xjxie@cug.edu.cn.

Synthesis of CeO₂ nanodots

CeO₂ nanodots were prepared by a facile molten salt process. In a typical process, 1 mmol Ce(NO₃)₃·6H₂O was mixed with 2 g NaOH and 8 g KOH uniformly grinded thoroughly for over 20 min in an agate mortar. After that, the grinded mixture was placed in a 50 mL Telfonlined oxidation-resisting steel autoclave with 1.5 mL of deionized water, then heated to 150 °C for 8 h. Finally, the obtained samples were washed with deionized water and ethanol for several times, and then dried at 80 °C over night.

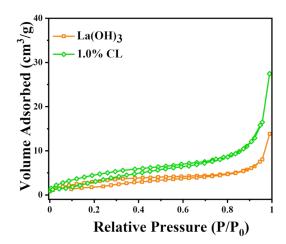


Fig. S1 N₂ adsorption/desorption isotherms of La(OH)₃ and 1.0% CL.

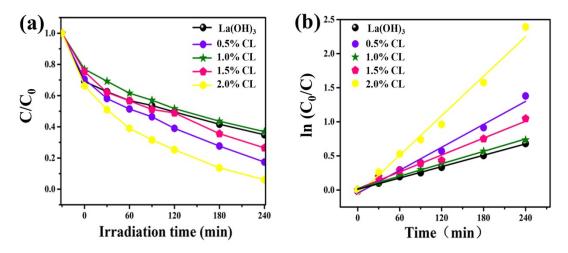


Fig. S2 (a) The photocatalytic activities of the CL and pure La(OH)₃ for MO degradation and (b) the pseudo-first-order reaction kinetics curves for MO degradation.

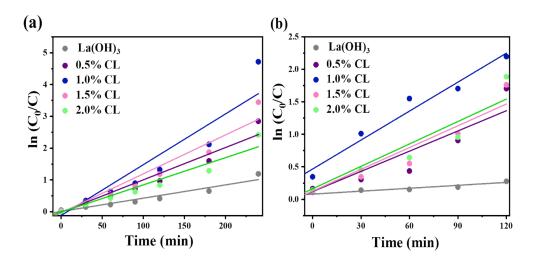


Fig. S3 (a, b) The pseudo-first-order kinetics curves for RhB degradation and Cr(VI) reduction.

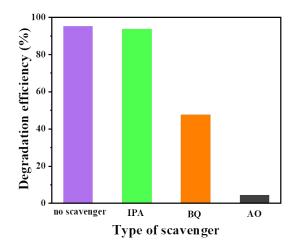


Fig. S4 Radical trapping experiments of 1.0% CL.