Electronic Supplementary Information

Luminescent Modulation, Near White Light Emission, Selective Luminescence Sensing, and Anticounterfeit via a Series of Ln-MOFs with π -Conjugated and Uncoordinated Lewis Basic Triazolyl Ligand

Lu-Lu Ma, Guo-Ping Yang*, Gao-Peng Li, Peng-Feng Zhang, Jing Jin, Yao Wang, Jiao-Min Wang and Yao-Yu Wang*

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, P. R. China. E-mail: ygp@nwu.edu.cn; wyaoyu@nwu.edu.cn.

Contents

- Section S1. Materials and General Methods.
- Table S1. Selected bond lengths (Å) and bond angles (°) for 1-Eu, 1-Tb and 1-Gd.
- Table S2. Summary of the quantum yields of the reported white-light-emission doped MOFs.
- Table S3. The quenching constants of 1-Eu and reported MOFs for NB.
- Table S4. Results of ICP analyses of Eu³⁺.
- Figure S1. Coordination geometry of Eu^{3+} in **1-Eu**, (a) a distorted trigondodecahedron geometryr
- (b) a distorted tetrakaidecahedron geometry.
- Figure S2. Three coordination modes of L^{2-} in **1-Eu**.
- Figure S3. PXRD patterns of **1-Eu** simulated from the X-ray single-crystal structure and assynthesized samples of **1-Eu**, **1-Tb** and **1-Gd**.
- Figure S4. PXRD patterns of doped samples.
- Figure S5. The TGA plots of 1-Eu, 1-Tb and 1-Gd under N_2 environment.
- Figure S6. The FT-IR spectrometer of 1-Eu, 1-Tb and 1-Gd.
- Figure S7. Solid state excitation spectra of H_2L (a), 1-Gd(b), 1-Eu(c) and 1-Tb(d).
- Figure S8. Solid-state emission spectra of $H_2L(a)$, **1-Gd** (b).
- Figure S9. Luminescence decay lifetimes of 1-Eu(a), 1-Tb(b) and 1-Gd(c) measured at the excitation.
- Figure S10. Linear correlation for the plot of (I_0/I) -1 vs concentration of nitrobenzene in low concentration range.
- Figure S11. UV-Vis adsorption spectrum of H₂L, and the excitation spectrum of 1-Eu.
- Figure S12. The PXRD patterns of 1-Eu treated by small organic molecules solution.
- Figure S13. The PXRD patterns of 1-Eu treated by multi-cycle fluorescence quenching.

Section S1. Materials and General Methods. All materials were purchased commercially and used directly without any treatment. Thermogravimetric analysis (TGA) was performed on a NETZSCH STA 449C equipment under a N₂ atmosphere (10 °C min⁻¹). Powder X-ray diffraction (PXRD) was carried out on a Bruker D8 ADVANCE powder X-ray diffractometer with Cu-K α radiation (λ =1.5418 Å) at room temperature. Fourier transform infrared (FT-IR) spectroscopy was recorded as KBr pellets on an EQUINOX55 FT-IR spectrometer in 4000-400 cm⁻¹. Elemental analyses (C, H, and N) were obtained with a PerkinElmer 2400C elemental analyzer. Luminescent spectra were determined on an Edinburgh FLS920 fluorescence spectrometer. UV-vis spectroscopic data were collected on a Hitachi U-3310 spectrometer. The quantum efficiency was tested by an integrating sphere on a FluoroMax-4 spectrophotometer.

I-Eu			
Eu(1)-Eu(2)	4.0710(4)	Eu(2)-O(4)#3	2.5059(17)
Eu(1)-O(7)#1	2.3347(18)	Eu(2)-O(12)#4	2.4327(19)
Eu(1)-O(1)	2.5994(18)	Eu(2)-O(5)	2.4424(17)
Eu(1)-O(5)	2.5453(18)	Eu(2)-O(3)#3	2.3848(19)
Eu(1)-O(10)#1	2.3615(19)	Eu(2)-O(11)#4	2.4309(19)
Eu(1)-O(2)	2.4748(19)	O(7)-Eu(1)#4	2.3346(18)
Eu(1)-O(6)	2.5601(18)	O(8)-Eu(2)#4	2.3188(18)
Eu(1)-O(13)	2.412(2)	O(4)-Eu(2)#3	2.5059(17)
Eu(1)-N(3)#2	2.571(2)	O(12)-Eu(2)#1	2.4329(19)
Eu(1)-O(14)	2.378(3)	O(3)-Eu(2)#3	2.3849(19)
Eu(2)-O(9)	2.3050(18)	O(10)-Eu(1)#4	2.3616(18)
Eu(2)-O(8)#1	2.3189(18)	O(11)-Eu(2)#1	2.4309(19)
Eu(2)-O(1)	2.4257(17)	N(3)-Eu(1)#2	2.571(2)
O(7)#1-Eu(1)-Eu(2)	64.65(5)	O(14)-Eu(1)-O(13)	144.10(9)
O(7)#1-Eu(1)-O(1)	76.43(6)	O(14)-Eu(1)-N(3)#2	88.98(12)
O(7)#1-Eu(1)-O(5)	81.27(6)	O(9)-Eu(2)-Eu(1)	104.77(4)
O(7)#1-Eu(1)-O(10)#1	82.05(7)	O(9)-Eu(2)-O(8)#1	81.93(7)
O(7)#1-Eu(1)-O(6)	129.43(6)	O(9)-Eu(2)-O(1)	141.66(6)
O(7)#1-Eu(1)-O(13)	80.45(8)	O(9)-Eu(2)-O(4)#3	74.15(6)
O(7)#1-Eu(1)-N(3)#2	152.05(7)	O(9)-Eu(2)-O(12)#4	121.97(6)
O(7)#1-Eu(1)-O(14)	86.33(11)	O(9)-Eu(2)-O(5)	78.22(6)
O(1)-Eu(1)-Eu(2)	34.48(4)	O(9)-Eu(2)-O(3)#3	126.76(6)
O(5)-Eu(1)-Eu(2)	34.47(4)	O(9)-Eu(2)-O(11)#4	88.87(7)
O(5)-Eu(1)-O(1)	65.03(6)	O(8)#1-Eu(2)-Eu(1)	68.37(5)
O(5)-Eu(1)-O(6)	51.07(5)	O(8)#1-Eu(2)-O(1)	77.40(6)
O(5)-Eu(1)-N(3)#2	124.07(6)	O(8)#1-Eu(2)-O(4)#3	77.83(6)
O(10)#1-Eu(1)-Eu(2)	146.70(5)	O(8)#1-Eu(2)-O(12)#4	149.01(6)

Table S1. Selected bond lengths (Å) and bond angles (°) for 1-Eu, 1-Tb and 1-Gd.

O(10)#1-Eu(1)-O(1)	139.62(6)	O(8)#1-Eu(2)-O(5)	88.13(6)
O(10)#1-Eu(1)-O(5)	144.13(6)	O(8)#1-Eu(2)-O(3)#3	79.26(7)
O(10)#1-Eu(1)-O(2)	129.77(7)	O(8)#1-Eu(2)-O(11)#4	154.76(6)
O(10)#1-Eu(1)-O(6)	125.28(7)	O(1)-Eu(2)-Eu(1)	37.35(4)
O(10)#1-Eu(1)-N(3)#2	70.33(7)	O(1)-Eu(2)-O(4)#3	130.73(6)
O(10)#1-Eu(1)-O(14)	71.75(9)	O(1)-Eu(2)-O(12)#4	71.69(6)
O(2)-Eu(1)-Eu(2)	75.43(4)	O(1)-Eu(2)-O(5)	69.24(6)
O(2)-Eu(1)-O(1)	51.33(6)	O(1)-Eu(2)-O(11)#4	121.94(6)
O(2)-Eu(1)-O(5)	85.22(6)	O(4)#3-Eu(2)-Eu(1)	145.86(4)
O(2)-Eu(1)-O(6)	71.43(6)	O(12)#4-Eu(2)-Eu(1)	85.34(5)
O(2)-Eu(1)-N(3)#2	72.05(7)	O(12)#4-Eu(2)-O(4)#3	124.96(6)
O(6)-Eu(1)-Eu(2)	79.87(4)	O(12)#4-Eu(2)-O(5)	79.09(6)
O(6)-Eu(1)-O(1)	94.50(6)	O(5)-Eu(2)-Eu(1)	36.14(4)
O(6)-Eu(1)-N(3)#2	73.17(7)	O(5)-Eu(2)-O(4)#3	150.42(6)
O(13)-Eu(1)-Eu(2)	99.77(5)	O(3)#3-Eu(2)-Eu(1)	113.33(5)
O(13)-Eu(1)-O(1)	69.60(7)	O(3)#3-Eu(2)-O(1)	80.50(6)
O(13)-Eu(1)-O(5)	133.84(7)	O(3)#3-Eu(2)-O(4)#3	53.37(6)
O(13)-Eu(1)-O(2)	72.85(7)	O(3)#3-Eu(2)-O(12)#4	97.49(7)
O(13)-Eu(1)-O(6)	143.12(7)	O(3)#3-Eu(2)-O(5)	149.14(6)
O(13)-Eu(1)-N(3)#2	87.48(8)	O(3)#3-Eu(2)-O(11)#4	87.76(7)
N(3)#2-Eu(1)-Eu(2)	142.84(5)	O(11)#4-Eu(2)-Eu(1)	136.87(5)
N(3)#2-Eu(1)-O(1)	122.65(6)	O(11)#4-Eu(2)-O(4)#3	77.05(6)
O(14)-Eu(1)-Eu(2)	104.40(10)	O(11)#4-Eu(2)-O(12)#4	53.75(6)
O(14)-Eu(1)-O(1)	138.85(10)	O(11)#4-Eu(2)-O(5)	113.02(6)
O(14)-Eu(1)-O(5)	75.69(9)	Eu(2)-O(1)-Eu(1)	108.17(7)
O(14)-Eu(1)-O(2)	138.91(9)	Eu(2)-O(5)-Eu(1)	109.39(6)
O(14)-Eu(1)-O(6)	68.23(8)		
1-Tb			
Tb(2)-O(6)	2.308(2)	Tb(1)-O(11)	2.280(2)
Tb(2)-O(10)#1	2.531(2)	Tb(1)-O(13)	2.406(2)
Tb(2)-O(9)	2.531(2)	Tb(1)-O(1)	2.496(2)
Tb(2)-O(3)	2.590(2)	Tb(1)-O(9)	2.412(2)
Tb(2)-O(12)	2.344(2)	Tb(1)-O(3)	2.402(2)
Tb(2)-O(4)	2.444(2)	Tb(1)-O(5)	2.288(2)
Tb(2)-O(7)	2.384(3)	Tb(1)-O(2)	2.360(2)
Tb(2)-O(8)	2.359(3)	Tb(1)-O(14)#1	2.409(2)
Tb(2)-N(3)#2	2.541(3)	O(6)-Tb(2)-O(10)#1	129.65(8)
O(6)-Tb(2)-O(9)	81.33(8)	O(8)-Tb(2)-O(10)#1	68.37(9)
O(6)-Tb(2)-O(3)	76.46(8)	O(8)-Tb(2)-O(9)	75.90(10)
O(6)-Tb(2)-O(12)	81.36(8)	O(8)-Tb(2)-O(3)	138.59(11)
O(6)-Tb(2)-O(4)	127.04(8)	O(8)-Tb(2)-O(4)	139.14(10)
O(6)-Tb(2)-O(7)	81.04(10)	O(8)-Tb(2)-O(7)	144.11(10)
O(6)-Tb(2)-O(8)	85.82(12)	O(8)-Tb(2)-N(3)#2	88.53(13)

O(6)-Tb(2)-C(23)#1	106.58(9)	O(11)-Tb(1)-O(13)	120.97(8)
O(6)-Tb(2)-C(5)#3	101.61(9)	O(11)-Tb(1)-O(1)	74.22(8)
O(10)#1-Tb(2)-O(3)	94.85(7)	O(11)-Tb(1)-O(9)	78.14(8)
O(10)#1-Tb(2)-N(3)#2	72.66(8)	O(11)-Tb(1)-O(3)	142.08(8)
O(10)#1-Tb(2)-C(23)#1	25.33(8)	O(11)-Tb(1)-O(5)	82.35(9)
O(10)#1-Tb(2)-C(5)#3	84.59(9)	O(11)-Tb(1)-O(2)	127.42(8)
O(9)-Tb(2)-O(10)#1	51.46(7)	O(11)-Tb(1)-O(14)#1	87.24(8)
O(9)-Tb(2)-O(3)	64.71(7)	O(13)-Tb(1)-O(1)	125.04(8)
O(9)-Tb(2)-N(3)#2	123.97(8)	O(13)-Tb(1)-O(9)	78.82(8)
O(12)-Tb(2)-O(10)#1	125.58(9)	O(13)-Tb(1)-O(14)#1	54.21(8)
O(12)-Tb(2)-O(9)	144.40(8)	O(9)-Tb(1)-O(1)	150.35(8)
O(12)-Tb(2)-O(3)	139.03(8)	O(3)-Tb(1)-O(13)	71.88(8)
O(12)-Tb(2)-O(4)	129.78(9)	O(3)-Tb(1)-O(1)	130.78(8)
O(12)-Tb(2)-O(7)	73.07(10)	O(3)-Tb(1)-O(9)	69.40(8)
O(12)-Tb(2)-O(8)	72.01(10)	O(3)-Tb(1)-O(14)#1	122.75(8)
O(12)-Tb(2)-N(3)#2	70.53(9)	O(5)-Tb(1)-O(13)	149.47(8)
O(4)-Tb(2)-O(10)#1	71.47(8)	O(5)-Tb(1)-O(1)	77.72(8)
O(4)-Tb(2)-O(9)	85.12(8)	O(5)-Tb(1)-O(9)	88.27(8)
O(4)-Tb(2)-O(3)	51.66(7)	O(5)-Tb(1)-O(3)	77.71(8)
O(4)-Tb(2)-N(3)#2	72.53(9)	O(5)-Tb(1)-O(2)	80.08(9)
O(7)-Tb(2)-O(10)#1	142.70(9)	O(5)-Tb(1)-O(14)#1	154.31(8)
O(7)-Tb(2)-O(9)	133.82(8)	O(2)-Tb(1)-O(13)	97.11(9)
O(7)-Tb(2)-O(3)	69.77(8)	O(2)-Tb(1)-O(1)	53.74(8)
O(7)-Tb(2)-O(4)	72.54(9)	O(2)-Tb(1)-O(9)	149.32(8)
O(7)-Tb(2)-N(3)#2	87.57(10)	O(2)-Tb(1)-O(3)	80.38(8)
O(14)#1-Tb(1)-O(1)	76.86(8)	O(2)-Tb(1)-O(14)#1	87.90(9)
O(14)#1-Tb(1)-O(9)	112.53(8)		
1-Gd			
Gd(1)-Gd(2)	4.0680(5)	Gd(2)-O(12)#1	2.421(4)
Gd(1)-O(8)#1	2.545(4)	Gd(2)-O(2)	2.506(4)
Gd(1)-O(3)#2	2.612(4)	Gd(2)-O(1)	2.375(4)
Gd(1)-O(6)	2.314(4)	Gd(2)-O(11)#1	2.425(4)
Gd(1)-O(10)#3	2.372(4)	Gd(2)-O(5)	2.306(4)
Gd(1)-O(7)#1	2.574(4)	O(8)-Gd(1)#3	2.545(4)
Gd(1)-O(4)#2	2.472(4)	O(3)-Gd(1)#2	2.612(4)
Gd(1)-N(3)#4	2.556(5)	O(3)-Gd(2)#2	2.442(4)
Gd(1)-O(14)	2.378(5)	O(10)-Gd(1)#1	2.372(4)
Gd(1)-O(15)	2.412(5)	O(7)-Gd(1)#3	2.574(4)
Gd(2)-O(3)#2	2.442(4)	O(7)-Gd(2)#3	2.431(4)
Gd(2)-O(9)	2.296(4)	O(12)-Gd(2)#3	2.421(4)
Gd(2)-O(7)#1	2.431(4)	O(4)-Gd(1)#2	2.472(4)
O(8)#1-Gd(1)-Gd(2)	79.78(9)	O(11)-Gd(2)#3	2.425(4)
O(8)#1-Gd(1)-O(3)#2	94.63(13)	N(3)-Gd(1)#5	2.556(5)
O(8)#1-Gd(1)-O(7)#1	50.86(13)	O(15)-Gd(1)-O(4)#2	71.97(17)

O(8)#1-Gd(1)-N(3)#4	73.09(15)	O(15)-Gd(1)-N(3)#4	88.16(18)
O(3)#2-Gd(1)-Gd(2)	35.00(9)	O(3)#2-Gd(2)-Gd(1)	37.84(9)
O(6)-Gd(1)-Gd(2)	64.31(11)	O(3)#2-Gd(2)-O(2)	130.35(13)
O(6)-Gd(1)-O(8)#1	129.00(15)	O(9)-Gd(2)-Gd(1)	104.87(10)
O(6)-Gd(1)-O(3)#2	76.51(14)	O(9)-Gd(2)-O(3)#2	142.31(14)
O(6)-Gd(1)-O(10)#3	81.92(15)	O(9)-Gd(2)-O(7)#1	77.76(14)
O(6)-Gd(1)-O(7)#1	81.06(15)	O(9)-Gd(2)-O(12)#1	120.75(15)
O(6)-Gd(1)-O(4)#2	126.47(15)	O(9)-Gd(2)-O(2)	74.42(14)
O(6)-Gd(1)-N(3)#4	151.88(16)	O(9)-Gd(2)-O(1)	127.13(15)
O(6)-Gd(1)-O(14)	86.9(2)	O(9)-Gd(2)-O(11)#1	87.04(15)
O(6)-Gd(1)-O(15)	81.00(19)	O(9)-Gd(2)-O(5)	82.54(15)
O(10)#3-Gd(1)-Gd(2)	146.23(10)	O(7)#1-Gd(2)-Gd(1)	36.83(9)
O(10)#3-Gd(1)-O(8)#1	126.06(15)	O(7)#1-Gd(2)-O(3)#2	70.23(13)
O(10)#3-Gd(1)-O(3)#2	138.65(15)	O(7)#1-Gd(2)-O(2)	150.38(14)
O(10)#3-Gd(1)-O(7)#1	144.57(15)	O(12)#1-Gd(2)-Gd(1)	85.66(10)
O(10)#3-Gd(1)-O(4)#2	129.33(15)	O(12)#1-Gd(2)-O(3)#2	72.17(14)
O(10)#3-Gd(1)-N(3)#4	70.09(15)	O(12)#1-Gd(2)-O(7)#1	78.63(15)
O(10)#3-Gd(1)-O(14)	71.60(18)	O(12)#1-Gd(2)-O(2)	124.84(15)
O(10)#3-Gd(1)-O(15)	73.22(17)	O(12)#1-Gd(2)-O(11)#1	53.20(14)
O(7)#1-Gd(1)-Gd(2)	34.47(9)	O(2)-Gd(2)-Gd(1)	145.83(10)
O(7)#1-Gd(1)-O(3)#2	65.42(12)	O(1)-Gd(2)-Gd(1)	113.41(10)
O(4)#2-Gd(1)-Gd(2)	75.63(10)	O(1)-Gd(2)-O(3)#2	80.09(14)
O(4)#2-Gd(1)-O(8)#1	71.84(15)	O(1)-Gd(2)-O(7)#1	149.82(14)
O(4)#2-Gd(1)-O(3)#2	50.98(13)	O(1)-Gd(2)-O(12)#1	97.78(16)
O(4)#2-Gd(1)-O(7)#1	85.41(14)	O(1)-Gd(2)-O(2)	53.36(14)
O(4)#2-Gd(1)-N(3)#4	73.13(15)	O(1)-Gd(2)-O(11)#1	89.54(16)
N(3)#4-Gd(1)-Gd(2)	143.57(11)	O(11)#1-Gd(2)-Gd(1)	136.04(10)
N(3)#4-Gd(1)-O(3)#2	123.44(15)	O(11)#1-Gd(2)-O(3)#2	122.34(14)
N(3)#4-Gd(1)-O(7)#1	123.85(14)	O(11)#1-Gd(2)-O(7)#1	110.67(14)
O(14)-Gd(1)-Gd(2)	105.35(17)	O(11)#1-Gd(2)-O(2)	78.02(14)
O(14)-Gd(1)-O(8)#1	68.36(16)	O(5)-Gd(2)-Gd(1)	67.94(11)
O(14)-Gd(1)-O(3)#2	140.31(19)	O(5)-Gd(2)-O(3)#2	77.26(14)
O(14)-Gd(1)-O(7)#1	76.64(18)	O(5)-Gd(2)-O(7)#1	88.33(15)
O(14)-Gd(1)-O(4)#2	139.18(17)	O(5)-Gd(2)-O(12)#1	149.27(15)
O(14)-Gd(1)-N(3)#4	86.9(2)	O(5)-Gd(2)-O(2)	78.24(15)
O(14)-Gd(1)-O(15)	144.02(18)	O(5)-Gd(2)-O(1)	79.71(16)
O(15)-Gd(1)-Gd(2)	99.60(13)	O(5)-Gd(2)-O(11)#1	155.88(15)
O(15)-Gd(1)-O(8)#1	142.72(17)	Gd(2)#2-O(3)-Gd(1)#2	107.16(14)
O(15)-Gd(1)-O(3)#2	68.89(15)	Gd(2)#3-O(7)-Gd(1)#3	108.71(15)
O(15)-Gd(1)-O(7)#1	133.59(16)		

1-Eu: #1 -x+1/2,y-1/2,-z+1/2; #2 -x+1,-y+1,-z+1; #3 -x+1,y,-z+1/2; #4 -x+1/2,y+1/2,-z+1/2; **1-Tb:** #1 -x+3/2,y-1/2,-z+1/2; #2 x,-y+1,z-1/2; #3 -x+1,y,-z+1/2; #4 -x+3/2,y+1/2,-z+1/2; #5 x,-y+1,z+1/2; **1-Gd:** #1 -x+1/2,y+1/2,-z+3/2; #2 -x+1,y,-z+3/2; #3 -x+1/2,y-1/2,-z+3/2; #4 x,-y+1,z+1/2; #5 x,-y+1,z-1/2;

Complex	Quantum yield	Ref.
La _{0.6} Eu _{0.1} Tb _{0.3} -BTPCA	47.33 %	1
Eu _{0.005} Tb _{0.995} -BTPCA	46.15 %	1
$Eu_{0.01}Gd_{0.6015}Tb_{0.3885}$	36.49 %	This work
$Eu_{0.0855}Gd_{0.6285}Tb_{0.2860}$	22.4 %	2
HMA-Tb ₁₀ Eu ₁	11.41 %	3
0.5% Eu ³⁺ -doped 2-Tb	11.4 %	4

Table S2. Summary of the quantum yields of the reported white-light-emission doped MOFs.

Table S3. The quenching constants of 1-Eu and reported MOFs for NB.

Complex	Quenching Constants (K/M ⁻¹)	Ref.
[Cd(IPA)(DIB)](n)	1.7×10^{-4}	5
$[Zn_2(4,4'-nba)_2(1,4-bib)_2]_n$	1.59×10^{4}	6
$\{[Eu_2(L)_3 \cdot DMF \cdot H_2O] \cdot DMF \cdot H_2O\}_n$	1.5143×10^4	This work
$\{MgL(H_2O)_2\}_n$	1.07×10^{4}	7
$Ln_2(NSBPDC)_3(H_2O)_4] \cdot x(H_2O)$	6.5512×10^{3}	8
Zn ₃ (BTC) ₂ : Eu(III)	3.957×10 ³	9
$[Zn(H_2L^{2-})(H_2O)]_n$	3.26×10^{3}	10
$\{[Zn(L)](DMF)_3\}_n$	2.875×10^{3}	11

Table S4. Results of ICP Analyses of Eu³⁺.

Samples	Concentration of Eu ³⁺ (ppb)
NB@CH ₃ OH	6.375
Filter liquor of recycle 1-Eu	6.813

Figure S1. (a) A distorted trigondodecahedron geometry.

Figure S1. (b) A distorted tetrakaidecahedron geometry.

Figure S2. Three coordination modes of L²⁻ in 1-Eu, $(\eta^2 \mu_2 \chi^2, \eta^2 \mu_1 \chi^2 \text{ and } \eta^2 \mu_2 \chi^3)$.

Figure S3. PXRD patterns of **1-Eu** simulated from the X-ray single-crystal structure and assynthesized samples of **1-Eu**, **1-Tb** and **1-Gd**.

Figure S4. PXRD patterns of doped samples.

Figure S5. The TGA plots of 1-Eu, 1-Tb and 1-Gd under N₂ environment.

Figure S6. The FT-IR spectrometer of 1-Eu, 1-Tb and 1-Gd.

Figure S7. Solid state excitation spectra of H₂L (a), 1-Gd(b), 1-Eu(c) and 1-Tb(d).

Figure S8. Solid-state emission spectra of H₂L(a), 1-Gd (b).

Figure S9. Luminescence decay lifetimes of 1-Eu (a), 1-Tb (b) and 1-Gd (c) measured at the excitation.

Figure S10. Linear correlation for the plot of (I_0/I) -1 vs concentration of nitrobenzene in low concentration range.

Figure S11. UV-Vis adsorption spectra of nitrobenzene in CH₃OH solution and excitation spectrum of **1-Eu** in CH₃OH solution.

Figure S12. The PXRD patterns of 1-Eu treated by small organic molecules solutions.

Figure S13. The PXRD patterns of 1-Eu treated by multi-cycle fluorescence quenching.

References:

- 1. Q. Tang, S. Liu, Y. Liu, D. He, J. Miao, X. Wang, Y. Ji and Z. Zheng, Color tuning and white light emission via in situ doping of luminescent lanthanide metal-organic frameworks, *Inorg. Chem.*, 2014, **53**, 289-293.
- X.-Y. Li, W.-J. Shi, X.-Q. Wang, L.-N. Ma, L. Hou and Y.-Y. Wang, Luminescence Modulation, White Light Emission, and Energy Transfer in a Family of Lanthanide Metal-Organic Frameworks Based on a Planar π-Conjugated Ligand, *Cryst. Growth Des.*, 2017, 17, 4217-4224.
- 3. H. Liu, T. Chu, Z. Rao, S. Wang, Y. Yang and W.-T. Wong, The Tunable White-Light and Multicolor Emission in An Electrodeposited Thin Film of Mixed Lanthanide Coordination Polymers, *Adv. Opt. Mater.*, 2015, **3**, 1545-1550.
- Z.-F. Liu, M.-F. Wu, S.-H. Wang, F.-K. Zheng, G.-E. Wang, J. Chen, Y. Xiao, A. Q. Wu, G.-C. Guo and J.-S. Huang, Eu³⁺-doped Tb³⁺ metal-organic frameworks emitting tunable three primary colors towards white light, *J. Mater. Chem. C*, 2013, 1, 4634-4639.
- X. Wang, Y. Han, X. X. Han, X. Hou, J.-J. Wang and F. Fu, Highly selective and sensitive detection of Hg²⁺, Cr₂O₇²⁻, and nitrobenzene/2,4-dinitrophenol in water via two fluorescent Cd-CPs, *New J. Chem.*, 2018, 42, 19844-19852.
- T.-Y. Xu, J.-M. Li, Y.-H. Han, A.-R. Wang, K.-H. He and Z.-F. Shi, A new 3D four-fold interpenetrated dia-like luminescent Zn(II)-based metal-organic framework: the sensitive detection of Fe³⁺, Cr₂O₇²⁻, and CrO₄²⁻ in water, and nitrobenzene in ethanol, *New J. Chem.*, 2020, 44, 4011-4022.
- Y. S. Xue, W. Cheng, J. P. Cao and Y. Xu, 3D Enantiomorphic Mg-Based Metal-Organic Frameworks as Chemical Sensor of Nitrobenzene and Efficient Catalyst for CO₂ Cycloaddition, *Chem-Asian J.*, 2019, 14, 1949-1957.
- 8. L.-L. Ren, Y.-Y. Cui, A.-L. Cheng and E.-Q. Gao, Water-stable lanthanide-based metalorganic frameworks for rapid and sensitive detection of nitrobenzene derivatives, *J. Solid State Chem.*, 2019, **270**, 463-469.
- S. Xian, H.-L. Chen, W.-L. Feng, X.-Z. Yang, Y.-Q. Wang and B.-X. Li, Eu(III) doped zinc metal organic framework material and its sensing detection for nitrobenzene, *J. Solid State Chem.*, 2019, 280, 120984.
- Q. Zhao and C.-D. Si, A Novel Zinc Luminescent Coordination Polymer Based on a Tetracarboxylate Acid Ligand for the Detection of Nitrobenzene, *Cryst. Res. Technol.*, 2019, 54, 1800155.
- L. Wei, J. Lou, L. Liu, X.-Z. Ma, J. Li, R. Pan and Y.-X. Zhang, Zn(II)-Containing Metal-Organic Framework for Fluorescence Detection of Nitrobenzene and Prevention Effect on Hypertension via Down-Regulating the Expression of Vitamin D Receptor, J. Clust. Sci., 2019, **31**, 479-486.