Y₂(Te₄O₁₀)(SO₄): A New Sulfate Tellurite with a Unique

Te₄O₁₀ Polyanion and Large Birefringence

Peng-Fei Li^{a,c}, Chun-Li Hu^a, Fang Kong^{*,a}, Shao-Ming Ying^{*,b}, Jiang-Gao Mao^a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.

^b Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China ^c College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350116, P. R. China.

E-mail: kongfang@fjirsm.ac.cn; ysm@ndnu.edu.cn

Supporting Information

Table S1 Calculated bond valences for compounds Y ₃ (TeO ₃) ₂ (SO ₄) ₂ (OH)(H ₂ O) and
$Y_2 Te_4 O_{10}(SO_4)$
Table S2 Band gaps of some reported yttrium tellurites. 4
Table S3 State energies (eV) of the lowest conduction band and the highest valence band of
$Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ and $Y_2Te_4O_{10}(SO_4)$ 4
Computational Method5
Figure S1 Simulated and experimental powder X-ray diffractometer powder patterns of
$Y_{3}(TeO_{3})_{2}(SO_{4})_{2}(OH)(H_{2}O) \ (a) \ and \ Y_{2}Te_{4}O_{10}(SO_{4}) \ (b). \ (b). \ (b)$
Figure S2 Coordination modes of $Y(1)$ and $Y(2)$ in $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ 7
Figure S3 Coordination environment of $Te(1)O_3$ group in $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ 7
Figure S4 Coordination modes of $Y(1)$ and $Y(2)$ in $Y_2(Te_4O_{10})(SO_4)$ 8
Figure S5 $(Te_4O_{10})^{4-}$ 1D polyanionic chains in Ba ₂ (VO ₃)[Te ₄ O ₉ (OH)] (a), HoCl(Te ₂ O ₅) (b)
and $Nd_2(MoO_4)(Te_4O_{10})$ (c)
Figure S6 View of the structure of $Y_2(Te_4O_{10})(SO_4)$ along c-axis 9
Figure S7 Infrared spectra of $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ (a) and $Y_2(Te_4O_{10})(SO_4)$ (b)10
References

Compound	David	Bond	Devidence lawse	DVC	
	Bond	lengths	Bond-valence	BA2	
	Te(1)-O(1)	1.847(5)	1.421		
	Te(1)-O(2)	1.874(4)	1.321	4.118	
	Te(1)-O(3)	1.859(5)	1.376		
	Y(1)-O(1)#1	2.353(5)	0.405		
	Y(1)-O(1)#2	2.353(5)	0.405		
	Y(1)-O(3)	2.267(5)	0.512		
	Y(1)-O(3)#3	2.267(5)	0.512	2 200	
	Y(1)-O(4)	2.442(6)	0.319	3.300	
	Y(1)-O(5)	2.322(7)	0.441		
	Y(1)-O(8)#4	2.404(5)	0.353		
	Y(1)-O(8)#5	2.404(5)	0.353		
$Y_3(1eO_3)_2(SO_4)_2$	Y(2)-O(1)#1	2.336(4)	0.425		
$(OH)(H_2O)$	Y(2)-O(2)	2.401(5)	0.356		
	Y(2)-O(2)#6	2.290(5)	0.481		
	Y(2)-O(3)	2.405(5)	0.352	2.040	
	Y(2)-O(4)	2.317(10)	0.441	3.242	
	Y(2)-O(6)	2.449(5)	0.313		
	Y(2)-O(7)#7	2.307(5)	0.459		
	Y(2)-O(9)#6	2.344(5)	0.415		
	S(1)-O(6)	1.487(6)	1.448		
	S(1)-O(7)	1.460(5)	1.558	6.102	
	S(1)-O(8)	1.485(4)	1.456		
	S(1)-O(9)	1.441(5)	1.640		
	Te(1)-O(1)	1.863(7)	1.361		
	Te(1)-O(2)	1.909(8)	1.202	3.984	
	Te(1)-O(3)	1.847(8)	1.421		
	Te(2)-O(3)#1	2.495(8)	0.247		
	Te(2)-O(4)	1.855(7)	1.391	4 1 2 4	
	Te(2)-O(5)	1.864(8)	1.357	4.134	
	Te(2)-O(6)	1.929(8)	1.139		
$Y_2 Ie_4 O_{10}(SO_4)$	Te(3)-O(6)#2	1.943(8)	1.096		
	Te(3)-O(7)	1.863(7)	1.361	4.021	
	Te(3)-O(8)	1.883(8)	1.289	4.021	
	Te(3)-O(9)#3	2.454(7)	0.275		
	Te(4)-O(1)#4	2.336(8)	0.379		
	Te(4)-O(2)#5	2.020(8)	0.890	4.128	
	Te(4)-O(9)	1.870(8)	1.335		

Table S1 Calculated bond valences for compounds $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ and $Y_2Te_4O_{10}(SO_4)$.

Te(4)-O(10)	1.821(8)	1.524	
Y(1)-O(3)#1	2.358(8)	0.400	
Y(1)-O(4)#6	2.354(7)	0.404	
Y(1)-O(5)	2.401(8)	0.356	
Y(1)-O(7)	2.436(8)	0.324	2.062
Y(1)-O(8)#7	2.357(8)	0.401	2.962
Y(1)-O(9)#3	2.473(7)	0.293	
Y(1)-O(11)	2.314(8)	0.451	
Y(1)-O(12)#3	2.426(8)	0.333	
Y(2)-O(1)#1	2.389(8)	0.368	
Y(2)-O(4)	2.272(7)	0.505	
Y(2)-O(5)#2	2.331(8)	0.430	3.101
Y(2)-O(7)	2.297(7)	0.472	
Y(2)-O(8)#8	2.464(7)	0.300	
Y(2)-O(9)#9	2.441(7)	0.320	
Y(2)-(10)#10	2.148(8)	0.706	
S(1)-O(11)	1.456(8)	1.575	
S(1)-O(12)	1.487(8)	1.448	6 108
S(1)-O(13)	1.448(9)	1.609	0.100
S(1)-O(14)	1.480(8)	1.476	

Symmetry transformations used to generate equivalent atoms:

For Y₃(TeO₃)₂(SO₄)₂(OH)(H₂O): #1 x-1, y, z #2 x-1, -y+3/2, z #3 x, -y+3/2, z #4 -x-1, -y+1, -z+1 #5 -x-1, y+1/2, -z+1 #6 -x, -y+1, -z+2 #7 -x-1, -y+1, -z+2

For Y₂Te₄O₁₀(SO₄): #1 -x+1, -y+1, -z+1 #2 -x+1, -y+1, -z+2 #3 -x, -y+2, -z+2 #4 x, y+1, z+1 #5 x-1, y+1, z+1 #6 x-1, y, z #7 -x, -y+1, -z+2 #8 x+1, y, z #9 -x+1, -y+2, -z+2 #10 x+1, y-1, z-1

Compounds	Space Group	Eg (eV)	Ref.
YVTe ₂ O ₈	C2/m	2.2	8
CsYTe ₃ O ₈	<i>R</i> -3	3.4	6
YNbTe ₂ O ₈	C2/m	3.4	5
RbY(TeO ₃) ₂	Pnma	3.6	6
KY(TeO ₃) ₂	Pnma	3.8	6
NaYTe ₄ O ₁₀	P4 ₂ /nbc	3.9	6
$Y_2(Te_4O_{10})(SO_4)$	<i>P</i> -1	4.10	This work
$Na_2Y_3Cl_3(TeO_3)_4$	<i>C</i> 2/ <i>c</i>	4.26	7
$Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$	$P2_1/m$	4.40	This work

 Table S2 Band gaps of some reported yttrium tellurites.

Table S3 State energies (eV) of the lowest conduction band and the highest valence band of $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ and $Y_2(Te_4O_{10})(SO_4)$.

Compound	k-point	L-CB	H-VB
	Z (0.000, 0.000, 0.500)	1.710489	-0.12089
	G (0.000, 0.000, 0.000)	1.892469	-0.13787
	Y (0.000, 0.500, 0.000)	1.962409	-0.15599
Y ₃ (TeO ₃) ₂ (SO ₄) ₂ (OH)(H ₂ O)	A (-0.500, 0.500, 0.000)	2.096052	-0.00904
	B (-0.500, 0.000, 0.000)	2.080662	0
	D (-0.500, 0.000, 0.500)	1.892063	-0.01012
	E (-0.500, 0.500, 0.500)	1.890435	-0.02000
	C (0.000, 0.500, 0.500)	1.738010	-0.14745
Y ₂ (Te ₄ O ₁₀)(SO ₄)	G (0.000, 0.000, 0.000)	3.659691	-0.00043
	F (0.000, 0.500, 0.000)	3.845670	-0.07314
	Q (0.000, 0.000, 0.500)	3.815348	0
	Z (0.000, 0.000, 0.500)	3.747897	-0.06240
	G (0.000, 0.000, 0.000)	3.659691	-0.00043

Computational Method

Single-crystal structural data of compounds $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ and $Y_2(Te_4O_{10})(SO_4)$ were used for the theoretical calculations. The electronic structures were performed using a plane-wave basis set and pseudo-potentials within density functional theory (DFT) implemented in the total-energy code CASTEP [1]. For the exchange and correlation functional, we chose Perdew–Burke–Ernzerhof (PBE) in the generalized gradient approximation (GGA) [2]. The interactions between the ionic cores and the electrons were described by the ultrasoft pseudopotential [3]. The following valence-electron configurations were considered in the computation: Y- $4d^14p^65s^2$, Te- $5s^25p^4$, O- $2s^22p^4$, S- $3s^23p^4$ and H- $1s^1$. The numbers of plane waves included in the basis sets were determined by cutoff energy of 750 eV and 340 eV for $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ and $Y_2(Te_4O_{10})(SO_4)$ respectively. The numerical integration of the Brillouin zone was performed using Monkhorst-Pack k-point sampling of $4 \times 3 \times 3$ for $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ and $Y_2(Te_4O_{10})(SO_4)$ respectively. The other parameters and convergent criteria were the default values of CASTEP code.

The calculations of linear optical properties in terms of the complex dielectric function $\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$ were made. The imaginary part of the dielectric function ε_2 was given in the following equation:

$$\frac{8\pi^{2}h^{2}e^{2}}{\epsilon^{ij}_{2}(\omega)} = \frac{8\pi^{2}h^{2}e^{2}}{(m^{2}V)}\sum_{k}\sum_{cv}(f_{c}-f_{v})\frac{p_{cv}^{i}(k)p_{cv}^{j}(k)}{E_{vc}^{2}}\delta\left[\frac{E_{c}(k)-E_{v}(k)-h\omega}{E_{v}(k)-h\omega}\right]$$

The f_c and f_v represent the Fermi distribution functions of the conduction and valence band. The term $p^i{}_{cv}(k)$ denotes the momentum matrix element transition from the energy level c of the conduction band to the level v of the valence band at the *k*th point in the Brillouin zone (BZ), and *V* is the volume of the unit cell.

The real part $\varepsilon_1(\omega)$ of the dielectric function $\varepsilon(\omega)$ follows from the Kramer–Kronig relationship. All the other optical constants may be derived from $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$. For

example, the refractive index $n(\omega)$ can be calculated using the following expression[4]:

Figure S1. Simulated and experimental powder X-ray diffractometer patterns of $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ (a) and $Y_2(Te_4O_{10})(SO_4)$ (b).

Figure S2 Coordination modes of Y(1) and Y(2) in $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$.

Figure S3 Coordination environment of $Te(1)O_3$ group in $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$.

Figure S4 Coordination modes of Y(1) and Y(2) in $Y_2(Te_4O_{10})(SO_4)$.

Figure S5 $(Te_4O_{10})^{4-}$ 1D polyanionic chains in Ba₂(VO₃)[Te₄O₉(OH)] (a), HoCl(Te₂O₅)(b) and Nd₂(MoO₄)(Te₄O₁₀) (c).

Figure S6 View of the structure of $Y_2(Te_4O_{10})(SO_4)$ along c-axis.

Figure S7. IR spectra of $Y_3(TeO_3)_2(SO_4)_2(OH)(H_2O)$ (a) and $Y_2(Te_4O_{10})(SO_4)$ (b).

References

- [1] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. J. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, *Phys-Condens Mat.*, 2002, **14**, 2717.
- [2] V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, *Int. J. Quantum. Chem.*, 2000, **77**, 895-910.

[3] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865.

[4] S. Saha and T. P. Sinha, Electronic structure, chemical bonding, and optical properties of paraelectric $BaTiO_3$, 2000, **62**, 8828-8834.

[5] Y. H. Kim, B. Y. Jeon, T. S. You and K. M. Ok, New quaternary oxides with both families of second-order Jahn–Teller (SOJT) distortive cations: Solid-state synthesis, structure determination, and characterization of $YNbTe_2O_8$ and $YNbSe_2O_8$, *J. Alloy. Compd.*, 2015, **637**, 155-161.

- Y. Kim, D. W. Lee and K. M. Ok, Rich Structural Chemistry in New Alkali Metal Yttrium Tellurites: Three-Dimensional Frameworks of NaYTe₄O₁₀, KY(TeO₃)₂, RbY(TeO₃)₂, and a Novel Variant of Hexagonal Tungsten Bronze, CsYTe₃O₈, *Inorg. Chem.*, 2015, **54**, 389-395.
- [7] S. Zitzer, F. Schleifenbaum and T. Schleid, Na₂Y₃Cl₃[TeO₃]₄: Synthesis, Crystal Structure and Spectroscopic Properties of the Bulk Material and its Luminescent Eu³⁺-doped Samples, *Z. Naturforsch.*, 2014, **69**, 150-158.
- [8] Y. H. Kim, D. W. Lee and K. M. Ok, Noncentrosymmetric YVSe₂O₈ and Centrosymmetric YVTe₂O₈: Macroscopic Centricities Influenced by the Size of Lone Pair Cation Linkers, *Inorg. Chem.*, 2014, **53**, 1250-1256.