Supporting Information

Comparative study of aryl halides in Pd-mediated reactions: key factors beyond the oxidative addition step

Alexey S. Galushko, Darya O. Prima, Julia V. Burykina, Valentine P. Ananikov*

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia

E-mail: val@ioc.ac.ru; http://AnanikovLab.ru

Contents

Size distribution of palladium nanoparticles before and after Heck reaction Palladium nanoparticles found in the Heck reaction mixture Overview of the «nanofishing» approach ESI-MS spectrum Nanofishing procedure for Heck reaction at 140 °C	3	
	4 8 11	
		12

Size distribution of palladium nanoparticles before and after Heck reaction

Figure S1. Size distribution of palladium nanoparticles in the initial catalyst (**A**); after Heck reaction with p-NO₂-C₆H₄Br remaining on the Pd/MWCNT (**B**); after Heck reaction with p-NO₂-C₆H₄Cl remaining on the Pd/MWCNT (**C**).

Palladium nanoparticles found in the Heck reaction mixture

Figure S2. TEM image of palladium nanoparticles captured with "nanofishing" procedure after 1 h of Heck reaction involving PhBr and Pd/MWCNT.

Figure S3. TEM image of palladium nanoparticles captured with "nanofishing" procedure after 1 h of Heck reaction involving PhBr and Pd/MWCNT.

Figure S4. TEM image of palladium nanoparticles captured with "nanofishing" procedure after 1 h of Heck reaction involving PhBr and Pd/MWCNT.

Figure S5. TEM image of palladium nanoparticles captured with "nanofishing" procedure after 1 h of Heck reaction involving PhBr and Pd/MWCNT.

Overview of the «nanofishing» approach

Figure S6. (A) Cassette for the storage of copper grids for TEM; (B) Reverse tweezers; (C) Studied solution containing nanoparticles; (D) reaction solvent for washing the grid; (E) volatile solvent (acetone) for washing grid after the reaction solvent; (F) Holder for drying in air.

Figure S7. Pick the grid with reverse tweezers.

Figure S8. Place the grid into the reaction mixture for a few seconds.

Figure S9. Wash the grid with the reaction solvent (DMF in this case).

Figure S10. Wash the grid with a volatile solvent (acetone).

Figure S11. Dry the grid in air at room temperature and analyze by TEM.

ESI-MS spectrum

Figure S12. Experimental ESI-(-)MS spectrum of the reaction mixture p-NO₂-C₆H₄-Cl and styrene with Pd/MWCNT in DMF solution. No corresponding palladium complexes were observed in the ArCl/[Pd]/styrene system.

Nanofishing procedure for Heck reaction at 140 $^\circ C$

Figure S13. TEM study of palladium nanoparticles obtained at 1 h from the reaction mixture of the Heck reaction with ArBr at 140 °C.