

# Lithium Nickel Borides: evolution of [NiB] layers driven by Li pressure

Volodymyr Gvozdetskyi,<sup>a</sup> Yang Sun,<sup>d</sup> Xin Zhao,<sup>b</sup> Gourab Bhaskar,<sup>a</sup> Scott L. Carnahan,<sup>a,b</sup> Colin P. Harmer,<sup>a,b</sup> Feng Zhang,<sup>b</sup> Raquel A. Ribeiro,<sup>c</sup> Paul C. Canfield,<sup>b,c</sup> Aaron J. Rossini,<sup>a,b</sup> Cai-Zhuang Wang,<sup>b,c</sup> Kai-Ming Ho,<sup>c</sup> Julia V. Zaikina<sup>a</sup>

<sup>a</sup> Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States

<sup>b</sup> Ames Laboratory, US DOE, Iowa State University, Ames, Iowa 50011, United States

<sup>c</sup> Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States

<sup>d</sup> Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA

## Supporting Information

## Table of Contents

| Content                                                                                                                            | Page no. |
|------------------------------------------------------------------------------------------------------------------------------------|----------|
| Table S1. Experimental details and crystallographic data for two structure models of the <i>RT</i> -Li <sub>1+x</sub> NiB          | S3       |
| Table S2. Atomic coordinates of the <i>RT(m)</i> -Li <sub>1+x</sub> NiB phase at 295 K                                             | S4       |
| Table S3. Atomic coordinates of the <i>RT(m)</i> -Li <sub>1+x</sub> NiB phase at 100 K                                             | S5       |
| Table S4. Experimental details and crystallographic data for two structure models of the <i>HT</i> -Li <sub>1+y</sub> NiB          | S6       |
| Table S5. Atomic coordinates of the <i>HT(m)</i> -Li <sub>1+y</sub> NiB phase at 295 K                                             | S7       |
| Table S6. Atomic coordinates of the <i>HT(m)</i> -Li <sub>1+y</sub> NiB phase at 100 K                                             | S8       |
| Figure S1. Structural relationship: Li, Ni <sub>2</sub> B, LiNi <sub>3</sub> B <sub>1.8</sub> , <i>RT</i> -LiNiB, <i>HT</i> -LiNiB | S9       |
| Figure S2. Optimization of the synthesis of <i>RT</i> -Li <sub>1+x</sub> NiB                                                       | S10      |
| Figure S3. PXRD pattern of <i>HT</i> -Li <sub>1+y</sub> NiB: peaks of the superstructure                                           | S11      |
| Figure S4-S5. Rietveld refinement plot of <i>RT(m)</i> -Li <sub>1+x</sub> NiB ( <i>P</i> 2 <sub>1</sub> /c)                        | S12-S13  |
| Figure S6-S7. Rietveld refinement plot of <i>RT(t)</i> -Li <sub>1+x</sub> NiB ( <i>P</i> 1)                                        | S14-S15  |
| Figure S8-S9. Rietveld refinement plot of <i>HT(m)</i> -Li <sub>1+x</sub> NiB ( <i>P</i> 2 <sub>1</sub> /c)                        | S16-S17  |
| Figure S10-S11. Rietveld refinement plot of <i>HT(t)</i> -Li <sub>1+x</sub> NiB ( <i>P</i> 1)                                      | S18-S19  |
| Table S7. Atomic coordinates of the distorted <i>HT</i> -LiNiB phase at 616 K                                                      | S20      |
| Figure S12. Li-B bonds in the structures of <i>RT</i> - and <i>HT</i> -polymorphs                                                  | S21      |
| Figure S13. <i>In-situ</i> X-ray diffraction patterns of <i>RT</i> -LiNiB and <i>HT</i> -LiNiB                                     | S22      |
| Figure S14. Evolution of <i>HT</i> -Li <sub>1+y</sub> NiB in air: PXRD patterns                                                    | S23      |
| Figure S15. Magnetic properties                                                                                                    | S24      |

**Table S1.** Experimental details and crystallographic data for two structure models of the  $RT$ - $Li_{1+x}NiB$  structure: monoclinic  $RT(m)$ , derived from the parent  $RT(m)$ - $LiNiB$ , and triclinic  $RT(t)$  with extra Li atoms within the layer. Rietveld refinement was performed on data collected using high resolution synchrotron powder X-ray diffraction (11-BM-B APS).

| Empirical formula     | $RT(m)$ - $Li_{1+x}NiB$ <sup>*</sup> |            | $RT(t)$ - $Li_{1+x}NiB$ <sup>**</sup> |             |
|-----------------------|--------------------------------------|------------|---------------------------------------|-------------|
| Formula weight, g/mol | 76.45                                |            | 77.61                                 |             |
| Space group, $Z$      | $P2_1/c$ , 16                        |            | $P1$ , 48                             |             |
| Cell parameters:      |                                      |            |                                       |             |
| $a$ , Å               | 18.277(1)                            | 18.209(1)  | 18.2763(4)                            | 18.2088(4)  |
| $b$ , Å               | 4.86606(5)                           | 4.86137(3) | 4.86589(3)                            | 4.86134(3)  |
| $c$ , Å               | 6.1818(2)                            | 6.1754(2)  | 18.5447(5)                            | 18.5264(4)  |
| $\alpha$ , °          |                                      |            | 89.9810(6)                            | 89.9808(9)  |
| $\beta$ , °           | 107.623(1)                           | 107.542(1) | 107.6202(9)                           | 107.5434(9) |
| $\gamma$ , °          |                                      |            | 90.056(2)                             | 90.067(2)   |
| $V$ , Å <sup>3</sup>  | 524.00(2)                            | 521.23(1)  | 1571.82(3)                            | 1563.67(3)  |
| Temperature, K        | 295                                  | 100        | 295                                   | 100         |
| Wavelength, Å         | $\lambda = 0.412815$                 |            |                                       |             |
| Step scan             | 0.001                                |            |                                       |             |
| 2 $\theta$ ° range    | 1-50                                 |            |                                       |             |
| Program               | GSAS II                              |            |                                       |             |
| $R_B$                 | 0.15                                 | 0.15       | 0.15                                  | 0.14        |
| $R_P$                 | 0.13                                 | 0.12       | 0.13                                  | 0.12        |
| $G.O.F.$              | 4.08                                 | 3.82       | 3.88                                  | 3.64        |

<sup>\*</sup> – Further details can be obtained from Cambridge Crystallographic Data Centre/FIZ Karlsruhe deposition service on quoting the depository number CSD-2031390 (100 K) and CSD-2031382 (295 K).

<sup>\*\*</sup> – Further details can be obtained from Cambridge Crystallographic Data Centre/FIZ Karlsruhe deposition service on quoting the depository number CSD-2031387 (100 K) and CSD-2031379 (295 K).

**Table S2.** Atomic coordinates and isotropic equivalent displacement parameters of the  $RT(m)$ - $Li_{1+x}NiB$  phase. Refined parameters based on synchrotron powder X-ray diffraction data at 295 K are listed. The coordinates of Li and B atoms were not refined but fixed to the values previously determined for  $RT^*(m)$ - $LiNiB$ .

| Site                                                                                                                               | Wyckoff site | $x$       | $y$       | $z$       | $U_{iso}, \text{Å}^2 \times 10^2$ |
|------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|-----------|-----------------------------------|
| $RT(m)$ - $Li_{1+x}NiB$ ( $mP48$ , $P2_1/c$ , $a = 18.277(1)$ , $b = 4.86606(5)$ , $c = 6.1818(2)$ Å, $\beta = 107.623(1)^\circ$ , |              |           |           |           |                                   |
| $Z = 16$ , $R_p = 0.13$ , $R_B = 0.15$ , $Goof = 4.08$ )                                                                           |              |           |           |           |                                   |
| Ni1                                                                                                                                | $4e$         | 0.0013(1) | -0.001(3) | 0.2277(3) | 1.08(2)                           |
| Ni2                                                                                                                                | $4e$         | 0.2511(1) | -0.002(4) | 0.2919(4) | 1.08(2)                           |
| Ni3                                                                                                                                | $4e$         | 0.5007(1) | 0.001(3)  | 0.2946(4) | 1.08(2)                           |
| Ni4                                                                                                                                | $4e$         | 0.7483(1) | -0.003(4) | 0.2880(4) | 1.08(2)                           |
| B1                                                                                                                                 | $4e$         | 0.01075   | 0.32589   | 0.01077   | 3.3(2)                            |
| B2                                                                                                                                 | $4e$         | 0.26075   | 0.17411   | 0.01077   | 3.3(2)                            |
| B1                                                                                                                                 | $4e$         | 0.51075   | 0.17411   | 0.01077   | 3.3(2)                            |
| B2                                                                                                                                 | $4e$         | 0.76075   | 0.17411   | 0.01077   | 3.3(2)                            |
| Li1                                                                                                                                | $4e$         | 0.13076   | 0.25407   | 0.37955   | 3.3(2)                            |
| Li2                                                                                                                                | $4e$         | 0.38076   | 0.25407   | 0.37955   | 3.3(2)                            |
| Li2                                                                                                                                | $4e$         | 0.63076   | 0.25407   | 0.37955   | 3.3(2)                            |
| Li3                                                                                                                                | $4e$         | 0.88076   | 0.25407   | 0.37955   | 3.3(2)                            |

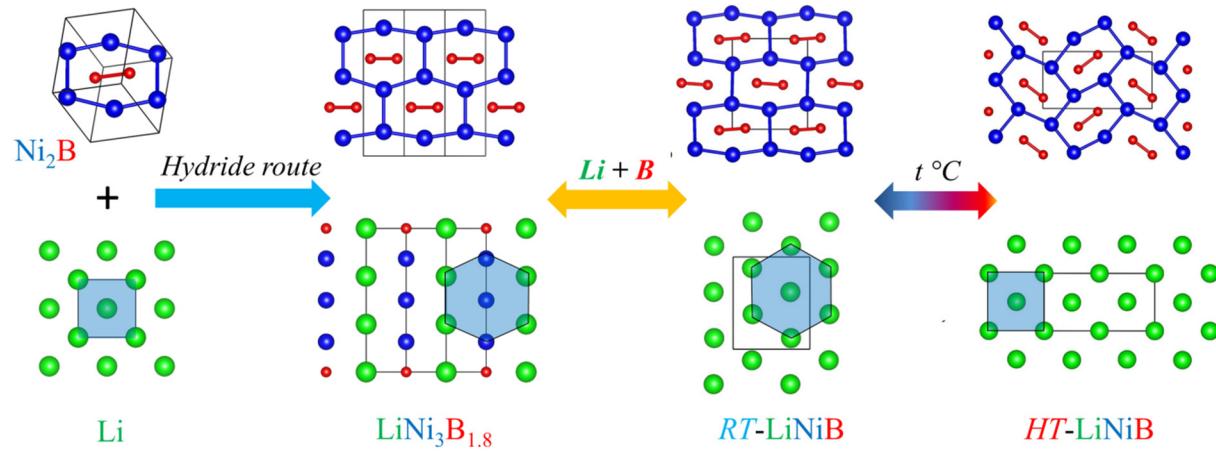
**Table S3.** Atomic coordinates and isotropic equivalent displacement parameters of the  $RT(m)$ - $Li_{1+x}NiB$  phase. Refined parameters based on synchrotron powder X-ray diffraction data at 100 K are listed. The coordinates of Li and B atoms were not refined but fixed to the values previously determined for  $RT^*(m)$ - $LiNiB$ .

| Site                                                                                                                                                                                  | Wyckoff site | $x$       | $y$       | $z$       | $U_{\text{iso}}, \text{\AA}^2 \times 10^2$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|-----------|--------------------------------------------|
| $RT(m)$ - $Li_{1+x}NiB$ ( $mP48$ , $P2_1/c$ , $a = 18.209(1)$ , $b = 4.86137(3)$ , $c = 6.1754(2)$ Å, $\beta = 107.542(1)$ °, $Z = 8$ , $R_p = 0.12$ , $R_B = 0.15$ , $Goof = 3.82$ ) |              |           |           |           |                                            |
| Ni1                                                                                                                                                                                   | $4e$         | 0.0009(1) | -0.001(3) | 0.2246(4) | 1.07(2)                                    |
| Ni2                                                                                                                                                                                   | $4e$         | 0.2509(2) | -0.001(3) | 0.2935(4) | 1.07(2)                                    |
| Ni3                                                                                                                                                                                   | $4e$         | 0.5005(1) | 0.002(3)  | 0.2930(5) | 1.07(2)                                    |
| Ni4                                                                                                                                                                                   | $4e$         | 0.7484(2) | -0.003(3) | 0.2840(5) | 1.08(2)                                    |
| B1                                                                                                                                                                                    | $4e$         | 0.01075   | 0.32589   | 0.01077   | 3.2(2)                                     |
| B2                                                                                                                                                                                    | $4e$         | 0.26075   | 0.17411   | 0.01077   | 3.2(2)                                     |
| B1                                                                                                                                                                                    | $4e$         | 0.51075   | 0.17411   | 0.01077   | 3.2(2)                                     |
| B2                                                                                                                                                                                    | $4e$         | 0.76075   | 0.17411   | 0.01077   | 3.2(2)                                     |
| Li1                                                                                                                                                                                   | $4e$         | 0.13076   | 0.25407   | 0.37955   | 3.2(2)                                     |
| Li2                                                                                                                                                                                   | $4e$         | 0.38076   | 0.25407   | 0.37955   | 3.2(2)                                     |
| Li2                                                                                                                                                                                   | $4e$         | 0.63076   | 0.25407   | 0.37955   | 3.2(2)                                     |
| Li3                                                                                                                                                                                   | $4e$         | 0.88076   | 0.25407   | 0.37955   | 3.2(2)                                     |

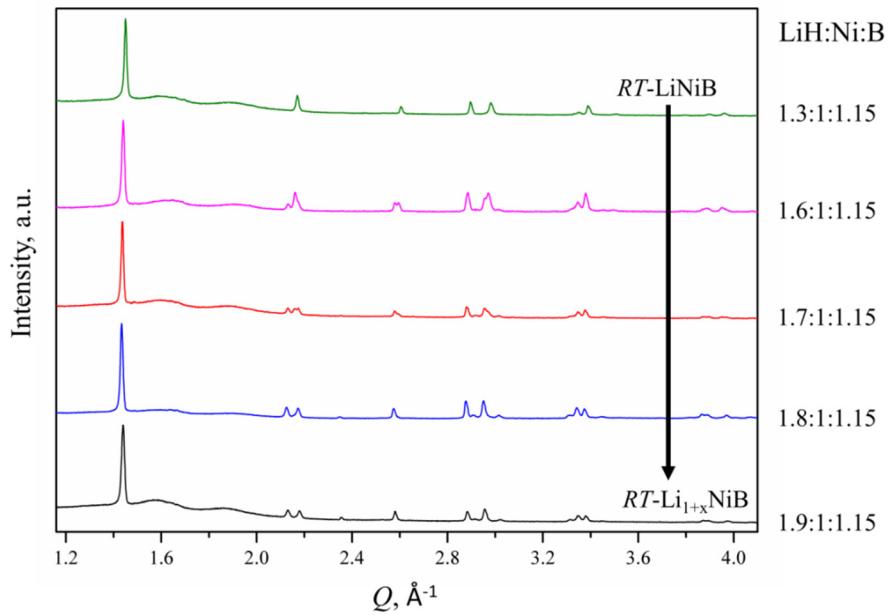
**Table S4.** Experimental details and crystallographic data for two structure models of  $HT\text{-Li}_{1+y}\text{NiB}$ : the idealized monoclinic  $HT(m)$  and triclinic  $HT(t)$  with extra Li atoms within the layer. Rietveld refinement was performed on data collected using high resolution synchrotron powder X-ray diffraction (11-BM-B APS).

| Empirical formula        | $HT(m)\text{-Li}_{1+y}\text{NiB}^*$ |            | $HT(t)\text{-Li}_{1+y}\text{NiB}^{**}$ |            |
|--------------------------|-------------------------------------|------------|----------------------------------------|------------|
| Formula weight, g/mol    | 76.45                               |            | 76.88                                  |            |
| Space group, $Z$         | $P2_1/c, 8$                         |            | $P1, 32$                               |            |
| Cell parameters:         |                                     |            |                                        |            |
| $a, \text{\AA}$          | 3.92591(7)                          | 3.92183(6) | 7.8521(1)                              | 7.8438(1)  |
| $b, \text{\AA}$          | 7.5593(1)                           | 7.5492(1)  | 15.1187(2)                             | 15.0985(3) |
| $c, \text{\AA}$          | 8.8181(2)                           | 8.7951(1)  | 8.8181(1)                              | 8.7952(2)  |
| $\alpha, {}^\circ$       |                                     |            | 89.9067(8)                             | 89.8937(8) |
| $\beta, {}^\circ$        | 92.6245(7)                          | 92.9962(6) | 92.6269(5)                             | 92.9992(6) |
| $\gamma, {}^\circ$       |                                     |            | 90.0010(6)                             | 90.0013(6) |
| $V, \text{\AA}^3$        | 261.42(1)                           | 260.04(1)  | 1045.71(4)                             | 1040.19(5) |
| Temperature, K           | 295                                 | 100        | 295                                    | 100        |
| Wavelength, $\text{\AA}$ | $\lambda = 0.412818$                |            |                                        |            |
| Step scan                | 0.001                               |            |                                        |            |
| $2\theta^\circ$ range    | 1-50                                |            |                                        |            |
| Program                  | GSAS II                             |            |                                        |            |
| $R_B$                    | 0.16                                | 0.16       | 0.12                                   | 0.14       |
| $R_P$                    | 0.11                                | 0.12       | 0.10                                   | 0.12       |
| $G.O.F.$                 | 3.46                                | 3.44       | 2.98                                   | 3.32       |

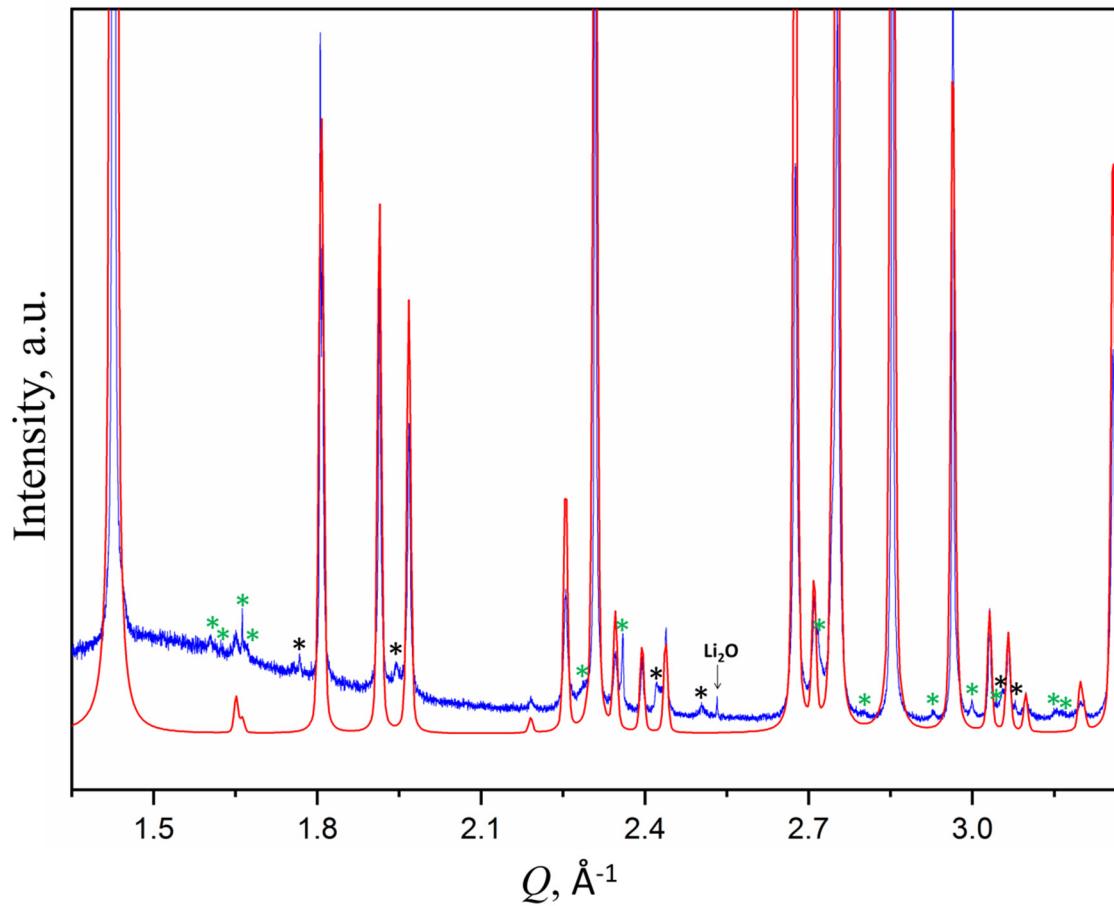
\* – Further details can be obtained from Cambridge Crystallographic Data Centre/FIZ Karlsruhe deposition service on quoting the depository number CSD-2031389 (100 K) and CSD-2031381 (295 K).


\*\* – Further details can be obtained from Cambridge Crystallographic Data Centre/FIZ Karlsruhe deposition service on quoting the depository number CSD-2031386 (100 K) and CSD-2031377 (295 K).

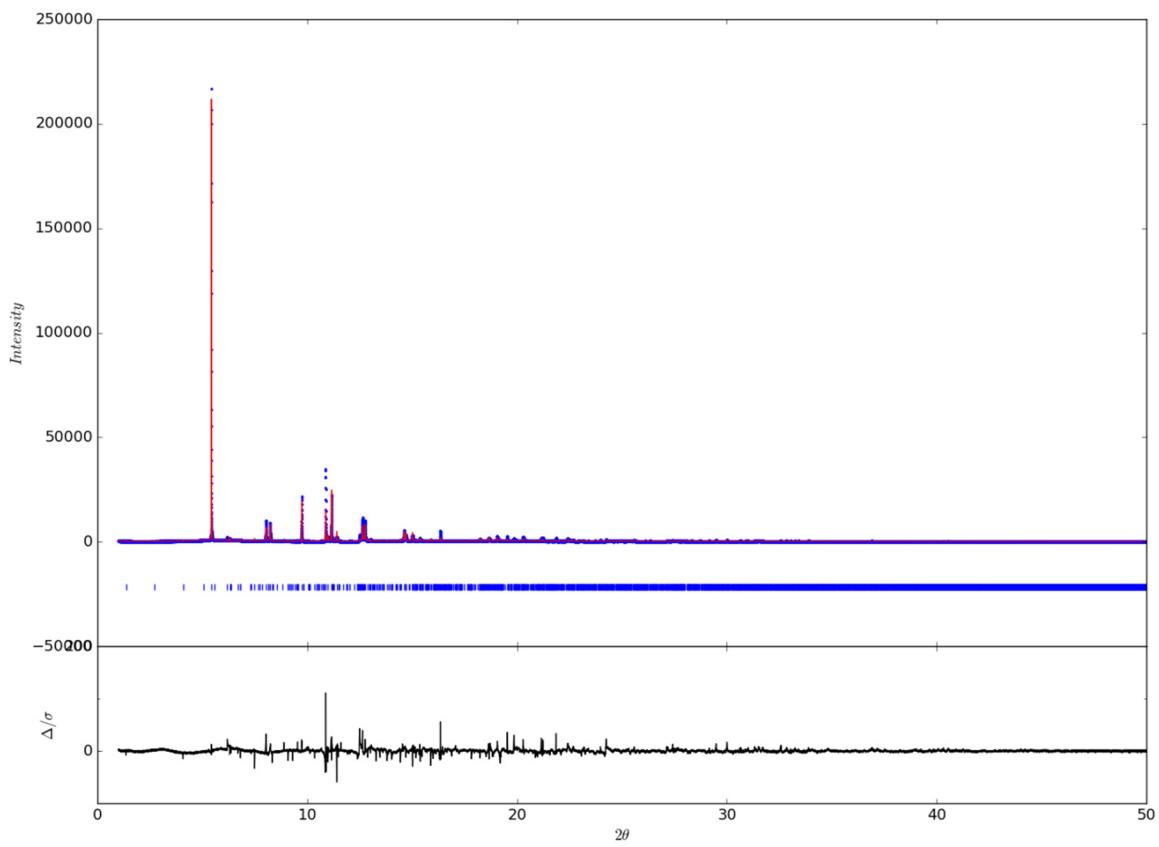
**Table S5.** Atomic coordinates and isotropic equivalent displacement parameters of the  $HT(m)$ - $Li_{1+y}NiB$  phase. Refined parameters based on synchrotron powder X-ray diffraction data at 295 K are listed. The coordinates of Li and B atoms were not refined but fixed to the values obtained from the analysis of interatomic distances and residual electron density peaks.


| Site                                                                                                                                           | Wyckoff site | $x$       | $y$       | $z$       | $U_{\text{iso}}, \text{\AA}^2 \times 10^2$ |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|-----------|--------------------------------------------|
| $HT(m)$ - $Li_{1+y}NiB$ ( $mP24$ , $P2_1/c$ , $a = 3.92591(7)$ , $b = 7.5593(1)$ , $c = 8.8181(2)$ $\text{\AA}$ , $\beta = 92.6245(7)^\circ$ , |              |           |           |           |                                            |
| $Z = 8$ , $R_p = 0.11$ , $R_B = 0.16$ , $Goof = 3.46$                                                                                          |              |           |           |           |                                            |
| Ni1                                                                                                                                            | $4e$         | 0.1177(3) | 0.7522(1) | 0.2419(2) | 0.91(2)                                    |
| Ni2                                                                                                                                            | $4e$         | 0.3789(3) | 0.4560(1) | 0.2544(2) | 0.91(2)                                    |
| B1                                                                                                                                             | $4e$         | 0.12178   | 0.00862   | 0.25223   | 3.8(2)                                     |
| B2                                                                                                                                             | $4e$         | 0.38214   | 0.18698   | 0.25598   | 3.8(2)                                     |
| Li1                                                                                                                                            | $2a$         | 0         | 0         | 0         | 3.8(2)                                     |
| Li2                                                                                                                                            | $2c$         | 0         | 0         | 1/2       | 3.8(2)                                     |
| Li3                                                                                                                                            | $4e$         | 0.50195   | 0.25063   | 0.00780   | 3.8(2)                                     |

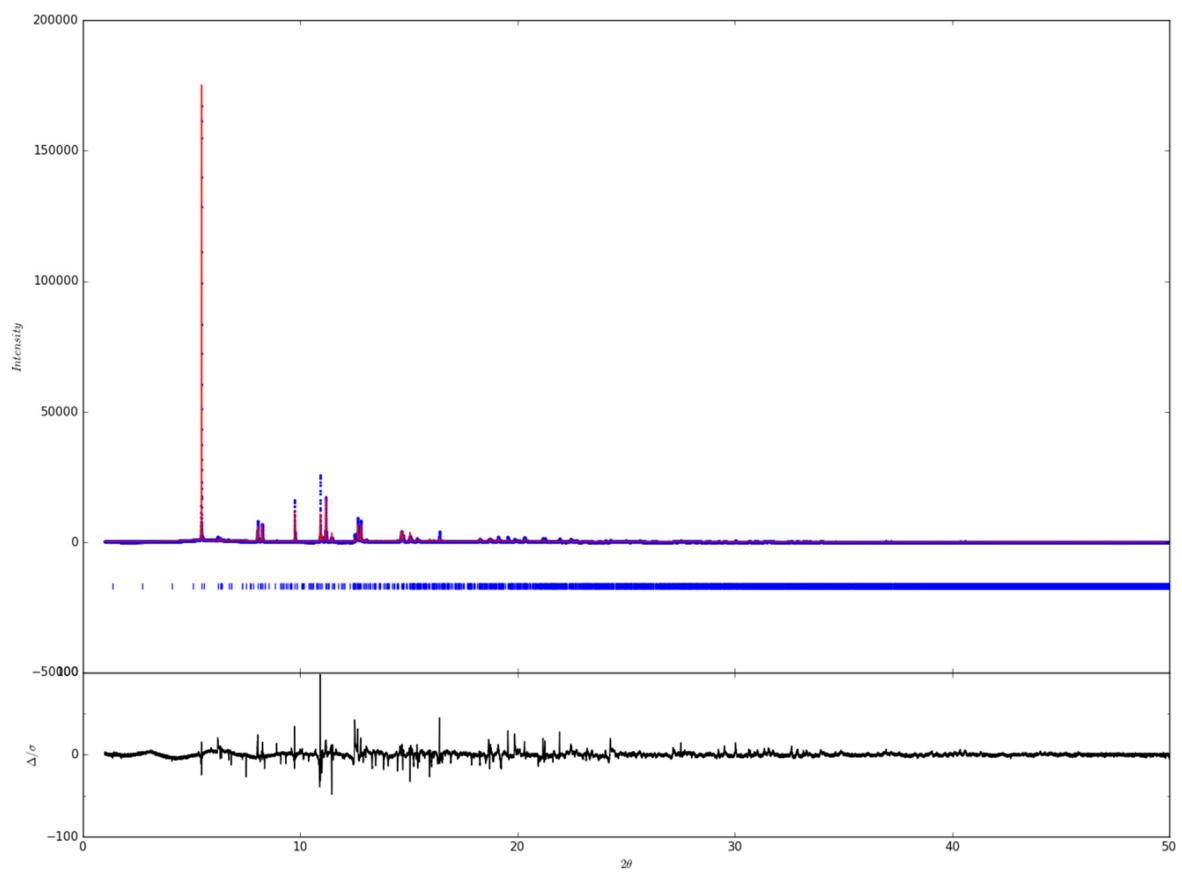
**Table S6.** Atomic coordinates and isotropic equivalent displacement parameters of the  $HT(m)$ - $Li_{1+y}NiB$  phase. Refined parameters based on synchrotron powder X-ray diffraction data at 100 K are listed.


| Site                                                                                                                               | Wyckoff site | $x$       | $y$       | $z$       | $U_{\text{iso}}, \text{\AA}^2 \times 10^2$ |
|------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|-----------|--------------------------------------------|
| $HT\text{-}Li_{1+y}NiB$ ( $mP24$ , $P2_1/c$ , $a = 3.92183(6)$ , $b = 7.5492(1)$ , $c = 8.7951(1)$ Å, $\beta = 92.9962(6)^\circ$ , |              |           |           |           |                                            |
| $Z = 8$ , $R_p = 0.12$ , $R_B = 0.16$ , $Goof = 3.44$                                                                              |              |           |           |           |                                            |
| Ni1                                                                                                                                | $4e$         | 0.1167(3) | 0.7500(1) | 0.2388(1) | 0.68(2)                                    |
| Ni2                                                                                                                                | $4e$         | 0.3783(3) | 0.4547(1) | 0.2535(2) | 0.68(2)                                    |
| B1                                                                                                                                 | $4e$         | 0.12178   | 0.00862   | 0.25223   | 3.5(2)                                     |
| B2                                                                                                                                 | $4e$         | 0.38214   | 0.18698   | 0.25598   | 3.5(2)                                     |
| Li1                                                                                                                                | $2a$         | 0         | 0         | 0         | 3.5(2)                                     |
| Li2                                                                                                                                | $2c$         | 0         | 0         | 1/2       | 3.5(2)                                     |
| Li3                                                                                                                                | $4e$         | 0.50195   | 0.25063   | 0.00780   | 3.5(2)                                     |

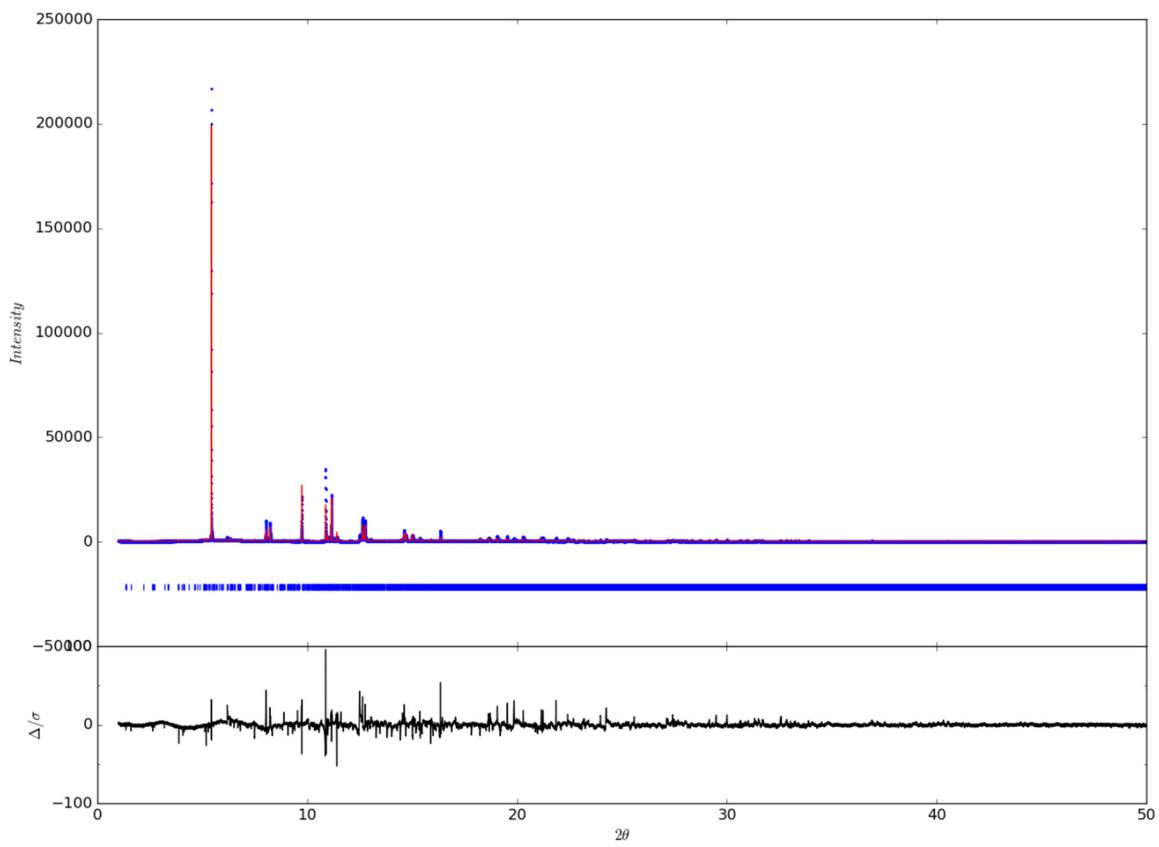



**Figure S1.** Structural relationship between Li (metal),  $\text{Ni}_2\text{B}$ ,  $\text{LiNi}_3\text{B}_{1.8}$ ,  $RT\text{-LiNiB}$ ,  $HT\text{-LiNiB}$ .

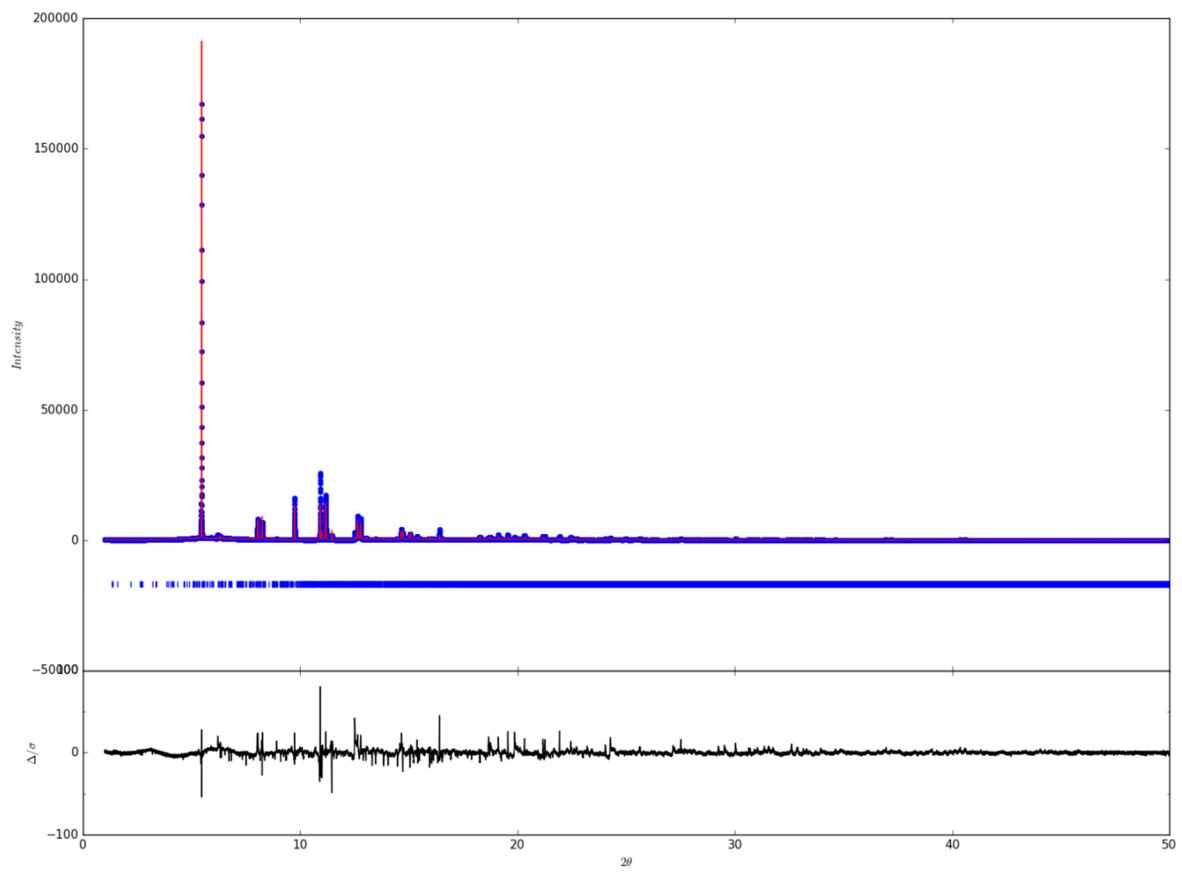



**Figure S2.** Comparison of X-ray powder diffraction patterns for the samples with the increasing of Li content in loading LiH:Ni:B compositions. Measurements were done in holders for air-sensitive samples and it contributed to the “amorphous” background at  $\sim 1.6 \text{ \AA}^{-1} Q$  and  $1.9 \text{ \AA}^{-1} Q$ . With the increasing of LiH content fraction of  $RT\text{-Li}_{1+x}\text{NiB}$  increases and reaches maximum in the sample with LiH:Ni:B = 1.9:1:1.15 loading composition.

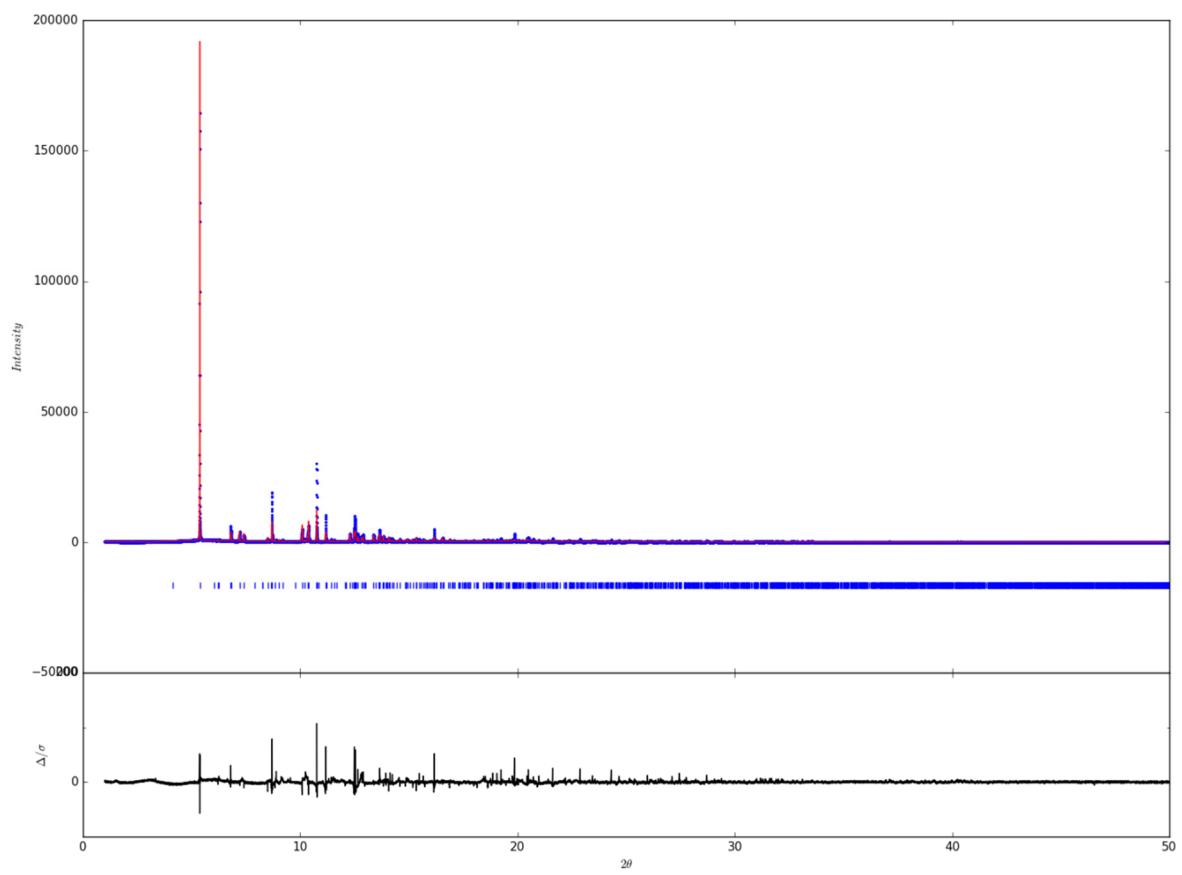



**Figure S3.** Experimental synchrotron X-ray powder pattern of  $HT\text{-Li}_{1+y}\text{NiB}$  and simulated pattern  $HT(m)\text{-Li}_{1+y}\text{NiB}$  ( $P2_1/c$ ). Weak satellite peaks that can be accounted by the supercell  $HT(t)\text{-Li}_{1+y}\text{NiB}$  ( $P1$ ) are marked with green stars (\*), those peaks that cannot be accounted by the supercell denoted with black stars.

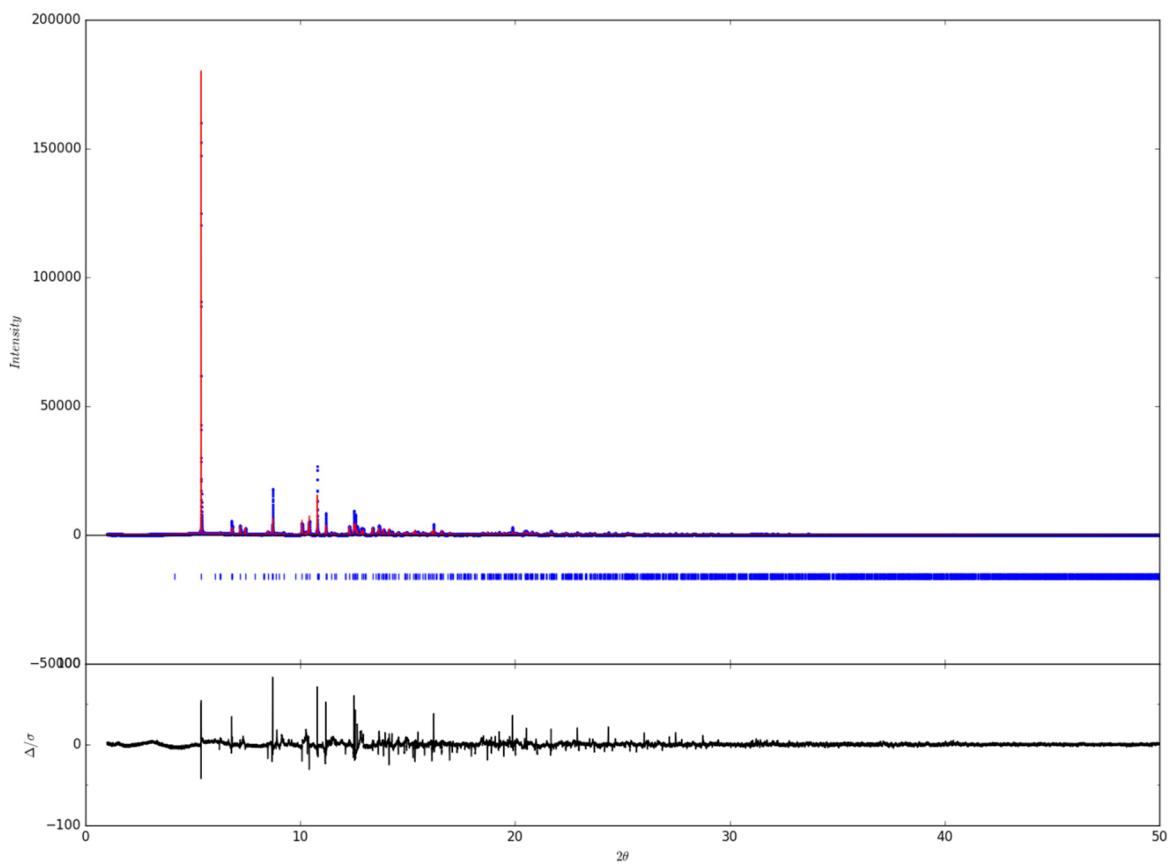



**Figure S4.** Rietveld refinement plot of synchrotron X-ray powder diffractogram of  $RT(m)$ - $Li_{1+x}NiB$  ( $P2_1/c$ ) collected at 295 K (experimental powder pattern is in blue, calculated – in red, difference – in black,  $R_B = 0.15$ ,  $R_p = 0.13$ ,  $G.O.F. = 4.08$ ).

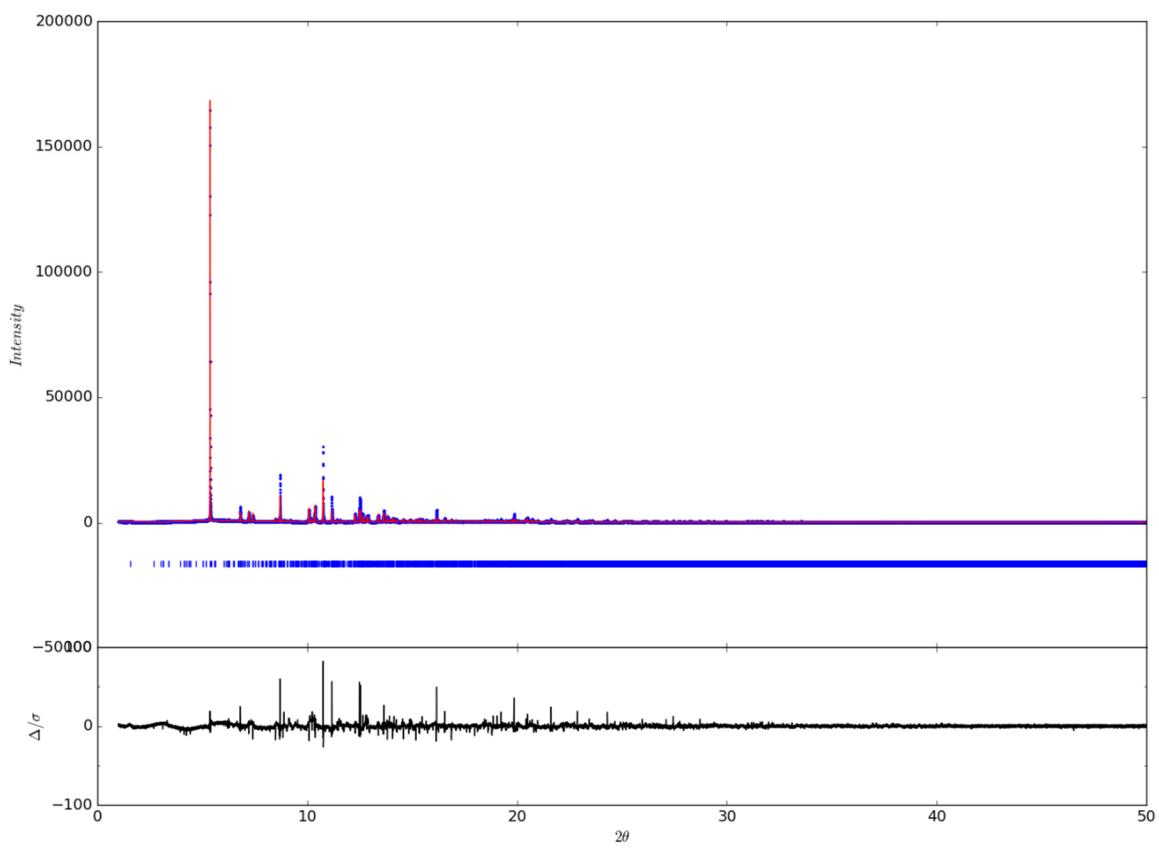



**Figure S5.** Rietveld refinement plot of synchrotron X-ray powder diffractogram of  $RT(m)$ - $Li_{1+x}NiB$  ( $P2_1/c$ ) collected at 100 K (experimental powder pattern is in blue, calculated – in red, difference – in black,  $R_B = 0.15$ ,  $R_p = 0.12$ ,  $G.O.F. = 3.82$ ).

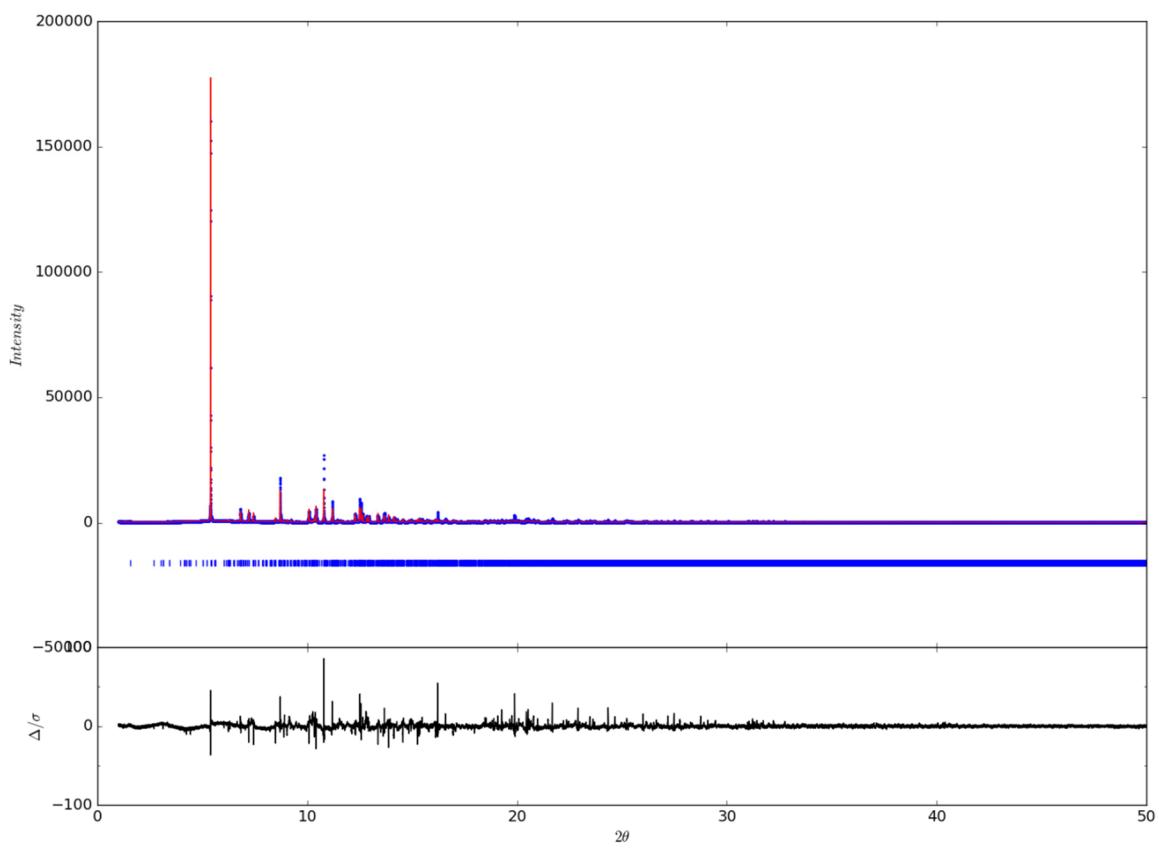



**Figure S6.** Rietveld refinement plot of synchrotron X-ray powder diffractogram of  $RT(t)$ - $\text{Li}_{1+x}\text{NiB}$  ( $P1$ ) collected at 295 K (experimental powder pattern is in blue, calculated – in red, difference – in black,  $R_B = 0.15$ ,  $R_p = 0.13$ ,  $G.O.F. = 3.88$ ).




**Figure S7.** Rietveld refinement plot of synchrotron X-ray powder diffractogram of  $RT(t)$ - $\text{Li}_{1+x}\text{NiB}$  ( $P1$ ) collected at 100 K (experimental powder pattern is in blue, calculated – in red, difference – in black,  $R_B = 0.14$ ,  $R_p = 0.12$ ,  $G.O.F. = 3.64$ ).

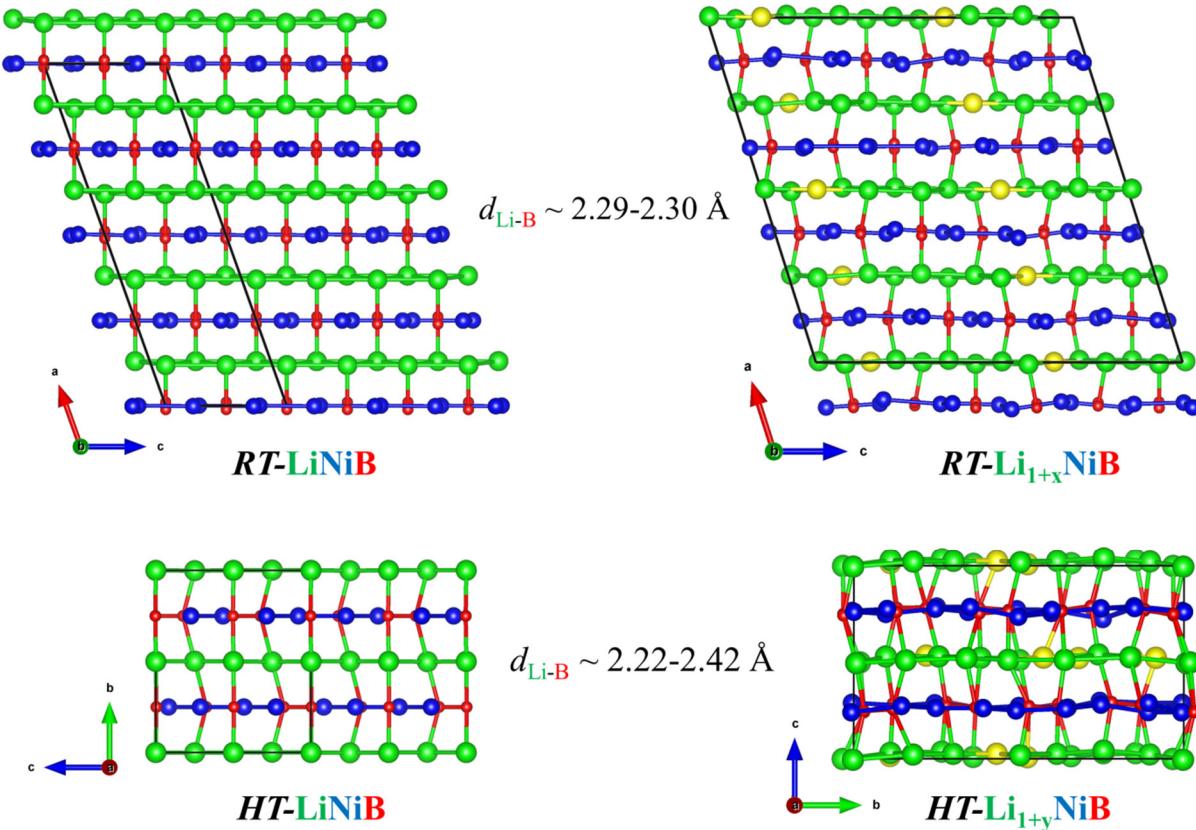



**Figure S8.** Rietveld refinement plot of synchrotron X-ray powder diffractogram of  $HT(m)$ - $\text{Li}_{1+y}\text{NiB}$  ( $P2_1/c$ ) collected at 295 K (experimental powder pattern is in blue, calculated – in red, difference – in black,  $R_B = 0.16$ ,  $R_p = 0.11$ ,  $G.O.F. = 3.46$ ).

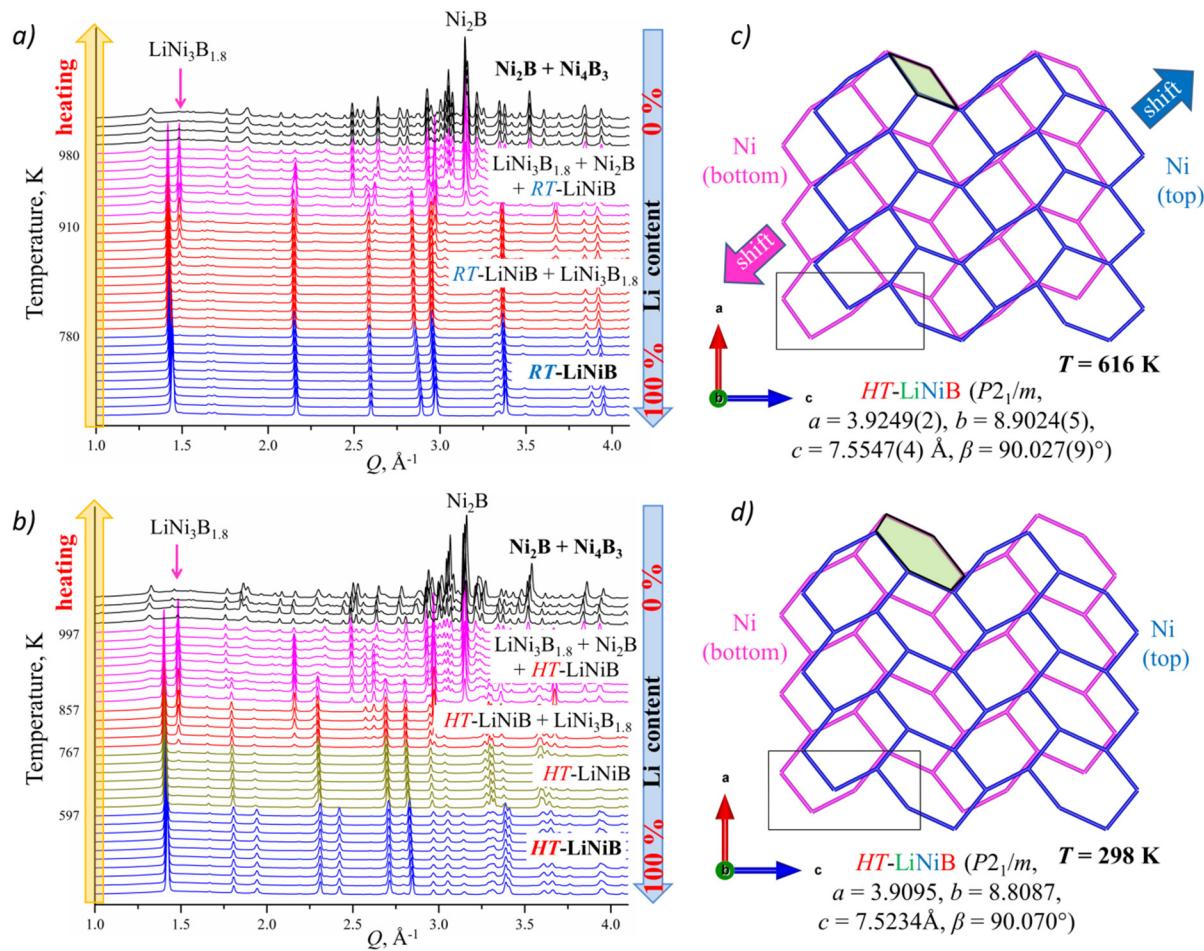


**Figure S9.** Rietveld refinement plot of synchrotron X-ray powder diffractogram of  $HT(m)$ - $Li_{1+y}NiB$  ( $P2_1/c$ ) collected at 100 K (experimental powder pattern is in blue, calculated – in red, difference – in black,  $R_B = 0.16$ ,  $R_p = 0.12$ ,  $G.O.F. = 3.44$ ).

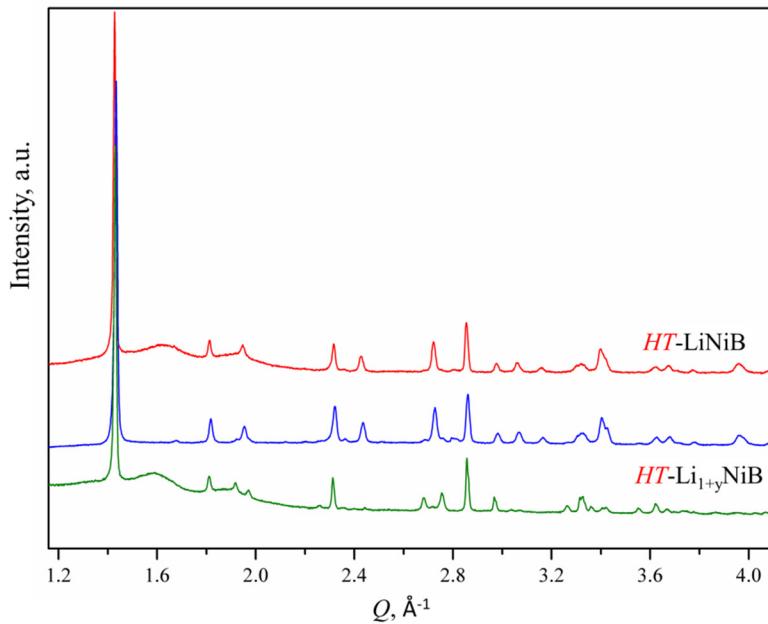



**Figure S10.** Rietveld refinement plot of synchrotron X-ray powder diffractogram of  $HT(t)$ - $Li_{1+y}NiB$  ( $P1$ ) collected at 295 K (experimental powder pattern is in blue, calculated – in red, difference – in black,  $R_B = 0.12$ ,  $R_p = 0.10$ ,  $G.O.F. = 2.98$ ).

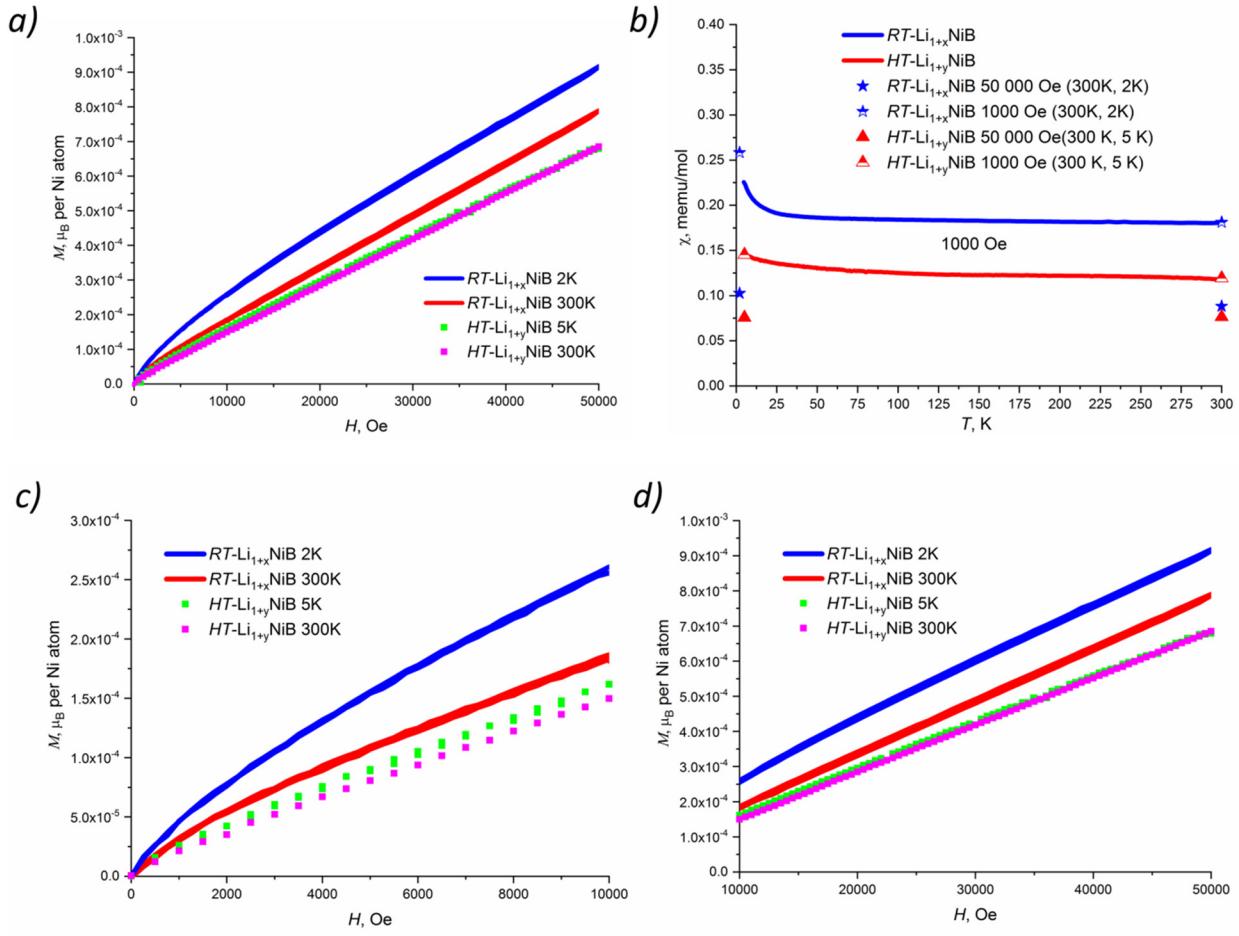



**Figure S11.** Rietveld refinement plot of synchrotron X-ray powder diffractogram of  $HT(t)$ - $\text{Li}_{1+y}\text{NiB}$  ( $P1$ ) collected at 100 K (experimental powder pattern is in blue, calculated – in red, difference – in black,  $R_B = 0.14$ ,  $R_p = 0.13$ ,  $G.O.F. = 3.32$ ).

**Table S7.** Atomic coordinates and isotropic equivalent displacement parameters of the distorted *HT*-LiNiB phase at 616 K. Refined parameters based on synchrotron powder X-ray diffraction data at 616 K are listed (17-BM APS).


| $HT\text{-LiNiB}$ ( $mP24$ , $P2_1/m$ , $a = 3.9248(2)$ , $b = 8.9024(5)$ , $c = 7.5549(4)$ Å, $\beta = 90.023(9)^\circ$ , $Z = 8$ ,<br>$R_p = 0.07$ , $R_B = 0.10$ , $G.O.F. = 11.7$ ) |              |          |         |          |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---------|----------|---------------------------------------|
| Site                                                                                                                                                                                    | Wyckoff site | $x$      | $y$     | $z$      | $U_{\text{iso}}$ , Å $^2 \times 10^2$ |
| Ni1                                                                                                                                                                                     | $2e$         | 0.469(2) | 1/4     | 0.509(1) | 0.2(1)                                |
| Ni2                                                                                                                                                                                     | $2e$         | 0.662(2) | 1/4     | 0.045(1) | 0.2(1)                                |
| Ni3                                                                                                                                                                                     | $2e$         | 0.890(2) | 1/4     | 0.741(1) | 0.2(1)                                |
| Ni4                                                                                                                                                                                     | $2e$         | 0.155(2) | 1.4     | 0.232(1) | 0.2(1)                                |
| B1                                                                                                                                                                                      | $2e$         | 0.18740  | 1/4     | 0.00301  | 3.8(6)                                |
| B2                                                                                                                                                                                      | $2e$         | 0.44764  | 1/4     | 0.82447  | 3.8(6)                                |
| B3                                                                                                                                                                                      | $2e$         | 0.94503  | 1/4     | 0.50314  | 3.8(6)                                |
| B4                                                                                                                                                                                      | $2e$         | 0.68411  | 1/4     | 0.32477  | 3.8(6)                                |
| Li1                                                                                                                                                                                     | $2a$         | 0        | 0       | 0        | 3.8(6)                                |
| Li2                                                                                                                                                                                     | $2c$         | 0        | 0       | 1/2      | 3.8(6)                                |
| Li3                                                                                                                                                                                     | $4f$         | 0.49420  | 0.50150 | 0.25054  | 3.8(6)                                |




**Figure S12.** Comparison of the Li-B distances in the structures of parent *RT*-LiNiB, *HT*-LiNiB and Li-enriched *RT*-Li<sub>1+x</sub>NiB and *HT*-Li<sub>1+y</sub>NiB polymorphs. Only the bonds within the given cutoff are shown. In the structure of *RT*-LiNiB each Li atom is connected to one B atom ( $d_{\text{Li-B}} \sim 2.29\text{-}2.30 \text{ \AA}$ ), while in the structures of *HT*-LiNiB each Li is connected to two B atoms ( $d_{\text{Li-B}} \sim 2.22\text{-}2.42 \text{ \AA}$ ). The coordination of most of the Li by B atoms in the Li-enriched *RT*-Li<sub>1+x</sub>NiB and *HT*-Li<sub>1+y</sub>NiB polymorphs is similar to that in parent compounds. However, in the structure of *RT*-Li<sub>1+x</sub>NiB a few Li atoms (shown in yellow) have longer distances ( $\sim 2.31\text{-}2.35 \text{ \AA}$ ) to the adjacent B atoms. Similarly, in the structure of *HT*-Li<sub>1+y</sub>NiB polymorph a small fraction of Li atoms (shown on yellow) has longer distances to adjacent B atoms ( $2.43\text{-}2.59 \text{ \AA}$ ).



**Figure S13.** High-temperature *in-situ* X-ray diffraction patterns showing the temperature-driven structural transformation of *RT*-LiNiB (*a*) and *HT*-LiNiB (*b*) compounds. With the increase of temperature Li is being partially leached from the *RT*-LiNiB compound because of reaction with capillary material (SiO<sub>2</sub>) resulting in *RT*-LiNiB  $\rightarrow$  LiNi<sub>3</sub>B<sub>1.8</sub>  $\rightarrow$  Ni<sub>2</sub>B and Ni<sub>4</sub>B<sub>3</sub> transformations. *b)* *HT*-LiNiB transforms to its distorted variant above 597 K, and further transformations *HT*-LiNiB  $\rightarrow$  LiNi<sub>3</sub>B<sub>1.8</sub>  $\rightarrow$  Ni<sub>2</sub>B and Ni<sub>4</sub>B<sub>3</sub> occur at higher temperatures. *c)* and *d)* –difference in the structures of [NiB] layers in *HT*-LiNiB and its distorted variant at 616 K.



**Figure S14.** *HT*- $\text{Li}_{1+y}\text{NiB}$  rapidly transforms in air into *HT*- $\text{LiNiB}$ , as evident from the comparison of X-ray powder diffraction patterns of *HT*- $\text{Li}_{1+y}\text{NiB}$  (green – in air sensitive holder, blue – in open holder) and *HT*- $\text{LiNiB}$  (red) compounds. Air sensitive holders provide to the “amorphous” background at  $\sim 1.6 Q$  and  $1.9 Q$ .



**Figure S15.** Temperature dependence of magnetization per Ni atom  $\text{vs}$  magnetic field (a) and magnetic susceptibility  $\chi$   $\text{vs}$ .  $T$  (b) of  $RT\text{-Li}_{1+x}\text{NiB}$  and  $HT\text{-Li}_{1+y}\text{NiB}$  polycrystalline samples. A small deviation from the linearity of the  $M(H)$  data at low magnetic fields (c), the most pronounced in the  $RT\text{-Li}_{1+x}\text{NiB}$  sample at  $2\text{ K}$ , could be attributed to some magnetic moment bearing impurity, concentration of which is under the detection limit of X-ray analysis (below 1 %). As a result of this impurity, the  $1000 \text{ Oe}$   $\chi(T)$  data that is shown for the  $RT\text{-Li}_{1+x}\text{NiB}$  phase (b) is contaminated by this impurity signal. As such, we have added four additional sets of data points (b) inferred from the  $M(H)$  plots to the  $\chi(T)$  data for the  $RT\text{-Li}_{1+x}\text{NiB}$  phase (star symbols) and  $HT\text{-Li}_{1+y}\text{NiB}$  phase (triangle symbols). One set is from the  $1000 \text{ Oe}$  value of the  $M(H)$  plot, and the other is from the higher field ( $50000 \text{ Oe}$ ) slope of the  $M(H)$  plot. These data points provide an estimate of the intrinsic magnetic susceptibility  $\chi(T)$  for  $RT\text{-Li}_{1+x}\text{NiB}$  and  $HT\text{-Li}_{1+y}\text{NiB}$  phases to be in the range of  $0.7\text{--}1.2 \times 10^{-4} \text{ emu}\cdot\text{mol}^{-1}$ . Temperature dependence of magnetization per Ni atom  $\text{vs}$  magnetic field at  $10000\text{--}50000 \text{ Oe}$  is linear as shown in (d).