# **Supporting Information**

# Molecular Oxofluorides OMF<sub>n</sub> of Nickel, Palladium and Platinum:

# **Oxyl Radicals with Moderate Ligand Field Inversion**

Lin Li,<sup>a</sup> Helmut Beckers,<sup>a\*</sup> Tony Stüker,<sup>a</sup> Tilen Lindič,<sup>b</sup> Tobias Schlöder,<sup>c</sup> Dirk Andrae,<sup>b</sup> and Sebastian Riedel<sup>a\*</sup>

# Contents

| Part 1.                                                                                                                                                                                                          |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Experimental and Computational Details                                                                                                                                                                           | 4  |
| Comments on the Reaction of Group 10 Metals with OF <sub>2</sub>                                                                                                                                                 | 5  |
| Additional Details to the Computational Results                                                                                                                                                                  | 7  |
| Comments to the Estimation of the Degree of Covalence and Inversion (DCI)                                                                                                                                        | 11 |
| References to Part 1                                                                                                                                                                                             | 11 |
| Part 2. Figures                                                                                                                                                                                                  |    |
| Matrix-IR spectra (Figures S2.1-S2.9)                                                                                                                                                                            | 14 |
| Molecular orbitals of selected oxodifluorides OMF <sub>2</sub> :                                                                                                                                                 |    |
| $OCoF_2$ ( <sup>4</sup> A <sub>1</sub> ), $ONiF_2$ ( <sup>3</sup> A <sub>2</sub> , <sup>5</sup> A <sub>1</sub> ), $OCuF_2$ ( <sup>2</sup> B <sub>2</sub> , <sup>4</sup> A <sub>2</sub> -1) (Figures S2.10-S2.14) | 23 |
| MO scheme of $OCuF_2$ ( <sup>2</sup> B <sub>2</sub> , <sup>4</sup> A <sub>2</sub> -1) (Figure S2.15)                                                                                                             | 25 |
| Spin density plots of isoelectronic $(d^7)$ linear group [9, 10 and 11] transition metal                                                                                                                         |    |
| difluorides, dioxides, and oxo fluorides. (Figure S2.16)                                                                                                                                                         | 26 |
| Spin density plots of $OMF_2$ (M = group 10, 11) (Figure S2.17)                                                                                                                                                  | 27 |
| Part 3. Tables to the main text                                                                                                                                                                                  |    |
| Overview about the quantum-chemical calculations (Table S3.1)                                                                                                                                                    | 28 |
| Experimental and computed frequencies of group 10 metal                                                                                                                                                          |    |
| (Ni, Pd, Pt) fluorides and oxofluorides (Tables S3.2-S3.5)                                                                                                                                                       | 29 |
| Thermochemistry of the group 10 metal oxofluorides (Table S3.6)                                                                                                                                                  | 32 |
| Charge and spin population analysis of $OMF_n$                                                                                                                                                                   |    |
| (M = Ni, Cu, n = 1, 2; M = Pd, n = 2; Pt, n = 2, 3) (Table S3.7)                                                                                                                                                 | 33 |
|                                                                                                                                                                                                                  |    |

# Supporting Tables of Structures and Harmonic Vibrational Frequencies

| 34 |
|----|
| 37 |
| 43 |
| 49 |
| 57 |
|    |
| 61 |
| 67 |
|    |
| 73 |
| 74 |
| 76 |
| 84 |
|    |

| Part 7. CASSCF, CASPT2 calculations on different spin states of ONiF <sub>2</sub>                                                                                         |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Structural parameters and electronic energy differences of selected triplet                                                                                               |     |
| and quintet states of ONiF <sub>2</sub> (Table S7.1)                                                                                                                      | 87  |
| $ONiF_2 ({}^{3}A_1)$ (Table S7.2)                                                                                                                                         | 87  |
| $ONiF_2 ({}^{3}B_1)$ (Table S7.3)                                                                                                                                         | 89  |
| $ONiF_2$ ( <sup>3</sup> B <sub>2</sub> ) (Table S7.4)                                                                                                                     | 91  |
| ONiF <sub>2</sub> ( <sup>3</sup> A <sub>2</sub> ) (Tables S7.5, S7.6)                                                                                                     | 92  |
| $ONiF_2$ ( <sup>5</sup> A <sub>1</sub> ) (Table S7.7)                                                                                                                     | 99  |
| ONiF <sub>2</sub> ( <sup>5</sup> A <sub>2</sub> ) (Tables S7.8, S7.9)                                                                                                     | 104 |
| Part 8. CASSCF calculations of OPdF <sub>2</sub> , OPtF <sub>2</sub> and OPtF <sub>3</sub>                                                                                |     |
| $OPdF_2$ ( <sup>3</sup> A <sub>2</sub> ) (Table S8.1)                                                                                                                     | 110 |
| $OPtF_2$ ( <sup>3</sup> A <sub>2</sub> ) (Table S8.2)                                                                                                                     | 115 |
| $OPtF_3$ ( <sup>4</sup> A <sub>1</sub> ) (Table S8.3)                                                                                                                     | 118 |
| Part 9. CASSCF calculations on different spin states of OCuF and OCuF <sub>2</sub>                                                                                        |     |
| OCuF $(^{3}\Sigma^{-})$ (Table S9.1)                                                                                                                                      | 123 |
| OCuF <sub>2</sub> ( <sup>2</sup> B <sub>2</sub> , <sup>4</sup> A <sub>2</sub> -1, <sup>4</sup> A <sub>2</sub> -2): Structures, relative energies, vibrational frequencies |     |
| (Tables S9.2, S9.3)                                                                                                                                                       | 127 |
| OCuF <sub>2</sub> ( <sup>2</sup> B <sub>2</sub> ) (Tables S9.4, S9.5)                                                                                                     | 128 |
| OCuF <sub>2</sub> ( <sup>4</sup> A <sub>2</sub> -1) (Tables S9.6, S9.7)                                                                                                   | 134 |
| OCuF <sub>2</sub> ( <sup>4</sup> A <sub>2</sub> -2) (Tables S9.8, S9.9)                                                                                                   | 140 |

# Part 1. Experimental and Computational Details, Comments on the Reaction of Group 10 Metals with OF<sub>2</sub>, and Details to the Computational Results

## **Experimental Details: Matrix Isolation**

The experimental set-up used for the IR-laser ablation of group 10 metals (Ni, Pd, Pt) and their reaction with OF<sub>2</sub> diluted in excess of the rare gases neon and argon, as well as their deposition at 5 K (Ne) and 10-15 K (Ar), respectively, using a closed-cycle helium cryostat (Sumitomo Heavy Industries, RDK-205D) inside a self-made vacuum chamber ( $10^{-7}$  mbar) has been described in more detail in our previous works.<sup>1,2</sup> A pulsed Nd:YAG laser (Continuum, Minilite II,  $\lambda = 1064$  nm, 10 Hz repetition rate, 7 ns pulse width and a pulse energy of up to 60 mJ/cm<sup>2</sup>) was focused onto the rotating metal target ( $\emptyset$  10 mm) using a plano-convex lens ( $\emptyset$  25.4 mm, focal length of 125.0 mm), which gave an energetic plasma beam reacting with OF<sub>2</sub> and spreading towards the cold gold-plated matrix-support.

<sup>16/18</sup>OF<sub>2</sub> was synthesized by a known procedure using elemental fluorine and <sup>16/18</sup>OH<sub>2</sub> dispersed in solid NaF.<sup>3</sup> FTIR spectra were recorded on a Bruker Vertex 80v spectrometer using an MCTB detector (range 4000-450 cm<sup>-1</sup>) with a resolution of 0.5 cm<sup>-1</sup>. The deposits were annealed up to temperatures of 10 K (Ne) and 25 K (Ar), respectively, prior to and after irradiation using different light sources such as a medium pressure mercury arc street lamp with the globe removed ( $\lambda > 220$  nm), selective irradiations with high-power LED's ( $\lambda = 455-405$ , 365 nm), and a solid-state Nd:YAG laser with quadrupled frequency (266 nm), respectively.

## **Computational Methods and Software Packages**

*Basis sets.* Dunning's correlation consistent polarized valence basis sets of double-, triple- and quadruple-zeta quality (cc-pVnZ, abbreviated as VnZ (n = D, T, Q)) were used in both DFT and *ab initio* calculations for F, O and the 3*d* elements. In many cases, diffuse augmentation functions (aug-cc-pVnZ) were included for either all elements of a given molecule (denoted as AVnZ) or only the fluoroand oxo ligands (denoted as (A)VnZ). Scalar- relativistic effects were considered by using relativistic energy-adjusted small core pseudopotentials for the 4*d* and 5*d* transition metals<sup>4,5</sup> as well as the corresponding AVnZ-PP basis sets (this basis set combination is denoted as AVnZ(-PP)). For molecules including only O, F and 3*d* elements, additional scalar-relativistic calculations were performed at different *ab-initio* levels of theory using the second order Douglas-Kroll-Hess (DKH) Hamiltonian<sup>6-9</sup> and the corresponding (A)VnZ-DK basis sets; in our notation, the -DK suffix for the basis sets also implies the use of the DKH Hamiltonian.

*DFT calculations*. All DFT calculations were performed using the Gaussian16 program package.<sup>10</sup> The exchange correlation energy was evaluated at DFT level using the pure GGA functional BP86<sup>11,12</sup> as well as the hybrid functional B3LYP as implemented in Gaussian16.<sup>13–15</sup>

*Ab-initio calculations*. Calculations at different *ab-initio* levels of theory were carried out using the Molpro19 suite of programs<sup>16</sup> in order to obtain more accurate results for energies and vibrational frequencies. Both single-reference (CISD, CCSD(T)) and where necessary also multi-reference (CASSCF,<sup>17,18</sup> MRCI,<sup>19,20</sup> CASPT2<sup>21,22</sup>) methods were used. A restricted open-shell HF (ROHF) wavefunction served as the reference function in the single-reference calculations, and the frozen core approximation was applied when calculating the correlation energies for the evaluation of which only the valence electrons of the respective elements (2*s*2*p* (O,F), (*n* + 1)*snd* for the *nd* elements) were considered.

Multireference calculations at the CASPT2 and MRCI levels of theory were performed for the ground states of ONiF ( ${}^{4}\Sigma^{-}$ ) and OCuF ( ${}^{3}\Sigma^{-}$ ) as well as for different electronic states of ONiF<sub>2</sub> and OCuF<sub>2</sub> which cannot be sufficiently well described by a single determinant wave function (see CI coefficients in the Supporting Information). The choice of the active space (AS) is the most critical decision in any

CASSCF calculation. General rules for the selection of a suitable AS for a transition metal complex were published elsewhere<sup>23,24</sup> and these were followed here: all five 3*d* nickel orbitals were included in the AS together with the 2*p* orbitals of oxygen, the fluorine ligands are considered as redox-inactive. This resulted in CAS(*n*,8)SCF reference function with n = 12 (ONiF<sub>2</sub>), n = 13 (ONiF, OCuF<sub>2</sub>), and n = 14 (OCuF) electrons distributed in 8 orbitals. For the high-spin states of  $C_{2v}$ -symmetric ONiF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>, <sup>5</sup>A<sub>2</sub>) and OCuF<sub>2</sub> (<sup>4</sup>A<sub>2</sub>), as well as for OCuF (<sup>3</sup>Σ<sup>-</sup>), the inclusion of one additional totally symmetric orbital (corresponding to the 4s(M = Ni, Cu) atomic orbital) in the AS was necessary, leading to CAS(*n*,9) wavefunctions.

Symmetry. In preliminary calculations, all molecules were fully optimized (by relaxing all parameters) without symmetry restrictions in order to determine the most stable structure for each spin state. Subsequent optimizations, especially at the *ab-initio* levels of theory were done within the restrictions of the respective point groups, and the results were checked against those obtained without the use of symmetry ( $C_1$  point group).

*Frequency calculations.* Relevant stationary points on the potential energy surfaces were characterized by harmonic frequency calculations for all possible isotopologues using analytical second derivatives where possible and numerical differentiation in all other cases as implemented in the respective software packages. All frequency analyses were performed using full molecular symmetry except for multi-reference levels of theory or when explicitly noted otherwise.

*Wavefunction analysis*. Natural orbitals and spin populations from Mulliken population analysis were calculated using Molpro program<sup>16</sup> based on a CASSCF wavefunction at the optimised structures at the highest available level of theory for a given molecule with an active space consisting of the 4s3d(M) and 2p(O) orbitals. The same wavefunction was used for subsequent calculation of AIM (atoms in molecules) charges using the program Multiwfn,<sup>25</sup> as well as of natural atomic charges which were obtained from natural population analysis (NPA) using the NBO program.<sup>26</sup> Kohn-Sham molecular orbitals were analyzed and plotted using the program Chemcraft.<sup>27</sup>

#### Comments on the Reaction of Group 10 Metals with OF<sub>2</sub>

Excited metal atoms generated by IR-laser ablation are assumed to insert initially into the O-F bond of  $OF_2$  to yield the hypofluorites FMOF (M = Ni, Pd, Pt), Equation (1). However, the hypofluorite intermediate was detected only in the experiments using palladium. The main products formed in these experiments are the oxodifluorides, OMF<sub>2</sub>, most likely formed by an exothermic rearrangement of the initially formed hypofluorites (Equation 2). In addition to this rearrangement cleavage of the weak F-O bond in the hypofluorites yields the linear three-atomic OMF molecules (Equation 3). In case of nickel also the bent NiOF molecule was observed. Several routes may lead to NiOF. This could be formed by cleavage of the Ni-F bond in the hypofluorite intermediate (Equation 4). Other possible routes are the reaction of nickel atoms and OF radicals or by rearrangement of FNiO. The OF radical and fluorine atoms are major by-products of the laser ablation process in the presence of OF<sub>2</sub>. IR-Laser ablation of metals not only produces excited metal atoms but also a broad-band radiation from the plasma plume. Thus, OF and atomic fluorine radicals were formed by photo-decomposition of the OF<sub>2</sub> precursor and the initially formed hypofluorites and oxofluorides. The free fluorine radicals thus produced exhibit a limited mobility within the solid matrices and can initiate secondary reactions with metal species trapped nearby. In the experiments carried out with platinum, an additional oxofluoride of platinum was detected, which does not fit into the reaction scheme shown in equations 1 to 4 and which was ultimately assigned to OPtF<sub>3</sub>. The platinum(V) oxofluoride was likely formed within the solid rare-gas matrices from OPtF<sub>2</sub> by the reaction with fluorine atoms (Equation 5). The broad-band radiation from the plasma plume can also lead to the photo-decomposition of light-sensitive products, which may escape detection. For example, the photo-sensitive hypofluorites FMOF of M = Ni and Pt were not detected in these experiments, but as mentioned above, in the experiments using palladium metal ablation. In these latter

experiments two different planar FOPdF isomers were obtained (see also Figure 3 in the main text and in Table S4.1). In the initially obtained solid argon deposit the lowest-energy FOPdF (<sup>3</sup>A") isomer was detected (Figure S2.7), which likely was formed by Equation 1. In contrast, the higher-energy *anti*-FOPdF (<sup>3</sup>A') isomer was observed through UV-light photolysis of OPdF<sub>2</sub> (Equation 6, Figures S2.5 - S2.7). Both FOPdF isomers rearrange to OPdF<sub>2</sub> under red light radiation ( $\lambda = 730\pm10$  nm, Figures S2.5, S2.7).

| $M^* + OF_2 \rightarrow FMOF (^{3}A'') (M = Ni, Pd, Pt)$ | (1) |
|----------------------------------------------------------|-----|
| $FMOF \rightarrow OMF_2 (M = Ni, Pd, Pt)$                | (2) |
| $FMOF \rightarrow FMO + F (M = Ni, Pd, Pt)$              | (3) |
| $FMOF \rightarrow MOF + F (M = Ni)$                      | (4) |
| $OMF_2 + F \rightarrow OMF_3 (M = Pt)$                   | (5) |
| $OMF_2 + h\nu (UV-light) \rightarrow anti-FOPdF (^3A')$  | (6) |

As shown in Table S3.6 the computed reaction energies for the formation of the group 10 oxofluorides  $OMF_2$ , from  $OF_2$  and IR laser-ablated metals of group 10, M = Ni, Pd and Pt, as well as for the formation of  $OPtF_3$  according to Equation (5), are strongly exothermic.

IR spectra were recorded from the novel species isolated in solid noble gas matrices (Ne, Ar). In addition to the group 10 oxofluorides the symmetric and antisymmetric stretching frequencies of the  $^{16/18}OF_2$ precursor give rise to strong bands in the mid-IR range at 926.2 (892.0) cm<sup>-1</sup> (a<sub>1</sub>) and 825.5 (798.5) cm<sup>-1</sup> (b<sub>1</sub>) for the  $v_s(OF_2)$  and  $v_{as}(OF_2)$  of <sup>16</sup>OF<sub>2</sub> and <sup>18</sup>OF<sub>2</sub> (in parentheses) in solid Ne and at 919.7 (892.7) cm<sup>-1</sup> (a<sub>1</sub>) and 825.5 (798.5) cm<sup>-1</sup> (b<sub>1</sub>) in solid Ar matrices, respectively.<sup>28</sup> Other by-products of the IRlaser ablation of the group 10 metals in the presence of OF<sub>2</sub> are the OF radical and the molecular binary metal fluorides MF<sub>n</sub> (n = 1, 2). The vibrational band of the OF radical, located at 1031.3 (1028.6) cm<sup>-1</sup> <sup>16</sup>OF in solid Ne (Ar in parenthesis))<sup>1</sup> and at 1000.2 (997.7) cm<sup>-1</sup> (<sup>18</sup>OF in Ne (Ar))<sup>1</sup>, is always present in the IR spectra of the deposits. The bands of the mono and difluorides  $MF_n$  (n = 1, 2; M = Ni, <sup>29–34</sup> Pd, <sup>35</sup> and  $Pt^{36-39}$ ) were safely assigned in oxygen-free experiments, in which OF<sub>2</sub> was replaced by elemental fluorine. In these experiments none of the bands assigned to an oxygen-containing species appeared. Our band positions for these binary fluorides are listed in Table S3.2. Their vibrational frequencies agree well with previously reported experimental ones and with computed values that are also listed in Table S3.2 for comparison. In the experiments with laser-ablated nickel atoms, a weak band appeared at 646.2 cm<sup>-1</sup> in solid neon that reveals a well-resolved <sup>58</sup>Ni/<sup>60</sup>Ni/<sup>62</sup>Ni isotope splitting (marked by an asterisk in Figures S2.1, S2.2). We were tempted to assign this weak feature to a hitherto unpublished rare gas Ne-NiF compound, but its frequency is significantly higher than a recent estimate for the gas-phase IR band of <sup>58</sup>NiF ( $X^2\Pi_{3/2}$ ) at 634.7 cm<sup>-1</sup>,<sup>29</sup> which nicely agrees with our computed value of 639.1 cm<sup>-1</sup> at our highest CCSD(T)/AVTQZ-DK level (Table S3.2), we have to leave this band unassigned for now. On the contrary, in the corresponding experiment using a solid argon matrix a broadened band appeared at 625.4 cm<sup>-1</sup> (Figures S2.2, S2.3), which we assign to NiF in solid argon (Table S3.2). We note that a similar behaviour was recently reported for CuF ( $X^{1}\Sigma^{+}$ ), which also gives rise to a fairly strong and broadened band in solid argon, but only a very tiny feature in solid neon.<sup>1</sup>

#### Supporting Details to the Computational Results

#### Nickel(I) Hypofluorite NiOF

Electronic structure calculations of the hypofluorite NiOF were performed for the lowest-energy doublet  ${}^{2}A'$  and the quartet  ${}^{4}A''$  spin states at the RHF, CISD and CCSD(T) levels of theory using different basis sets (Table S3.1). We note that DFT B3LYP and particularly BP86 calculations failed to predict reliable O–F stretching frequencies for this hypofluorite (Table S4.2). The reference RHF wave-function, used subsequently in CISD and CCSD(T), was obtained without the use of symmetry as to allow the molecular structure to relax into the ground state. Structure optimization and normal mode analysis were

carried out in the reduced point group symmetry  $C_1$  and subsequently checked against the corresponding calculations in point group  $C_s$ . RHF, CISD and CCSD(T) energies (in  $E_h$ ), structural parameters (bond lengths in Å and angles in degree),  $T_1$  parameters (CCSD(T) calculations) and harmonic vibrational frequencies ( $\omega$  in cm<sup>-1</sup>) together with their intensities (I in km/mol) and their relative intensities ( $I_r$ ) are listed for both spin states of NiOF in Tables S5.1-S5.14.

Molecular orbitals for the <sup>2</sup>A' and the <sup>4</sup>A" spin states of NiOF obtained at their respective CCSD(T)/AVTZ-DK equilibrium structures are listed in Tables S5.1 (<sup>2</sup>A') and S5.8 (<sup>4</sup>A"). The unpaired electron in the ground-state configuration resides in a nonbonding metal-based orbital of a' symmetry (MO 17.1, Table S5.1). The quartet <sup>4</sup>A" state arises by promotion of an electron from a non-bonding metal-based a"-MO into a metal-dominated a'-MO of mainly Ni(4*s*)-character (see Table S5.8, MOs 17.1, 18.1 and 6.2). The presence of a doublet ground-state and a close-lying excited quartet term was also observed for the related NiF molecule.<sup>40,41</sup> These two low-lying molecular terms arise from different electron configurations of the Ni<sup>+</sup> ion: <sup>2</sup>D(3*d*<sup>9</sup>) and <sup>4</sup>F(3*d*<sup>8</sup>4*s*<sup>1</sup>).<sup>42</sup> The electronic configuration of the <sup>2</sup>A' term of NiOF corresponds to the <sup>2</sup>Σ<sup>+</sup> configuration of NiF (3*d*<sup>9</sup>) and the high-spin <sup>4</sup>A" state of NiOF to the configuration of the <sup>4</sup>Σ<sup>-</sup> term of NiF (3*d*<sup>8</sup>4*s*<sup>1</sup>).

The harmonic vibrational frequencies obtained for both states of NiOF (Tables S5.4-S5.7 (<sup>2</sup>A') and S5.11-S5.14 (<sup>4</sup>A") are considerably basis-set dependent. At the CCSD(T)/AVXZ-DK level the Ni–O stretching frequency of the <sup>2</sup>A' term increases strongly from 487 cm<sup>-1</sup> to 573 cm<sup>-1</sup> as the basis set increases from the double zeta (X = D) to the triple-zeta basis and increases further only slightly to 580 cm<sup>-1</sup> using the quadruple-zeta basis. The OF-stretching frequency is about twice as strong and much less basis-set dependent (Table S5.4). For comparison of experimental frequencies with the computed values the results obtained with the triple and quadruple zeta basis are expected to give the most reliable estimates. The Ni–O stretching frequency of the <sup>2</sup>A' term is higher, and the O–F stretch slightly lower than those of the <sup>4</sup>A" state.

#### Ni(III) Oxofluoride ONiF

The  ${}^{4}\Sigma^{-}$  electronic state of ONiF was investigated by the multireference methods CASSCF<sup>17,18</sup>, MRCI<sup>19,20</sup> and CASPT2<sup>21,22</sup>. The CASSCF wave-functions which served as reference for the MRCI and CASPT2 calculations included 13 electrons and 8 orbitals in the active space (13,8). All five Ni 3*d*-orbitals were included in the CAS together with the three oxygen 2*p*-orbitals. The fluorine ligand is considered as redox-inactive and the inclusion of the fluorine 2*p* orbitals into the AS will not affect our results concerning a possible oxyl radical character and the electronic structure of this nickel oxo species. This was shown for ONiF and ONiF<sub>2</sub> in a previous work<sup>43</sup> and is further validated in the present work by the reasonable agreement between the computational and experimental vibrational frequencies (see main text, Table 1, and Table S3.3).

Structure optimization and normal mode analysis for the  ${}^{4}\Sigma^{-}$  electronic state of ONiF were carried out in the reduced point group symmetry  $C_{1}$ . To confirm the electronic state the results were checked against the calculation carried out in the  $C_{2v}$  point group symmetry. Natural orbitals (CASSCF-level) were obtained at the structure optimised at the CASTP2/VTZ-DK level for the electronic ground state and listed in Tables S6.8.

The analysis of the multiconfigurational wave function of the  ${}^{4}\Sigma^{-}$  electronic ground state of ONiF in terms of the weights of the contributing configuration state functions (CSFs, Table S6.8) reveal that the wave function is dominated by only 72% by the configuration  $\delta^{4} \sigma^{2} \pi^{4} \pi^{*2} \sigma^{*1}$ . The  $\delta$  orbitals [3*d*(x<sup>2</sup>-y<sup>2</sup>), 3*d*(xy)] are nonbonding, whereas the  $\pi$  and  $\sigma$  orbitals reveal considerably mixing of the 3*d*(xz), 3*d*(yz) and the 3*d*(z<sup>2</sup>) with the oxygen-based 2*p*(x), 2*p*(y) and the 2*p*(z) orbitals, respectively. The next dominant CSFs comprise simultaneous single excitations, one exclusively within the  $\pi$ -space (11%) and two further within the  $\sigma$  and  $\sigma^{*}$ -MOs and one set of the  $\pi$ - $\pi^{*}$  MO's (3%, Table S6.8).

#### Nickel Oxodifluoride, ONiF<sub>2</sub>

In Table S4.1 we have listed results from preliminary DFT (B3LYP and BP86) and CCSD(T)/AV*n*Z-DK (n = D, T) calculation for the two lowest-energy spin-states of ONiF<sub>2</sub>. Increasing the basis in the CCSD(T) calculations from double to triple zeta results in a minor decrease of the Ni–O and Ni–F bond lengths. While the  $T_1$  diagnostics for the <sup>3</sup>A<sub>2</sub> states is well within the recommended range for a reliable single reference calculation on a 3<sup>rd</sup> row *TM* ( $T_1 < 0.05$ )<sup>44,45</sup> a  $T_1$  value of 0.055 for the <sup>5</sup>A<sub>1</sub> term indicates significant multireference character for this spin-state.

Four triplet states of ONiF<sub>2</sub> were optimized at the CASSCF level with an active space of 12 electrons in 8 orbitals (12,8) with subsequent CASPT2 correlation treatment using a CASSCF/VTZ-DK reference wave function and a state-averaging formalism, where each irreducible representation was included with equal weights of 0.25 for the four states  ${}^{3}A_{1}$ ,  ${}^{3}B_{2}$ ,  ${}^{3}A_{2}$ . In the AS for these triplet states, the five 3*d* orbitals of nickel and the three 2*p* orbitals of oxygen were included. Again, the fluorine valence orbitals were considered to be essentially doubly occupied. Subsequently, the  ${}^{3}A_{2}$  ground state was re-optimized in *C*<sub>1</sub> point group symmetry using a state-specific (SS)CASSCF(12,8) wave function for the CASPT2 treatment (Table S7.6). The calculation of the quintet states required the inclusion of one more a<sub>1</sub> MO into the active space (corresponding to the 4*s*(Ni) atomic orbital), resulting in an active space of (12,9). For the quintet states, a state-averaged wavefunction with equal weights of 0.5 for  ${}^{5}A_{1}$  and  ${}^{5}A_{2}$  was used. CI vectors and the natural orbitals obtained at the CASSCF(12,8)/CASPT2/VTZ-DK (triplet states) and the CASSCF(12,9)/CASPT2/VTZ-DK (quintet states) levels, respectively, are listed for all six spin states of ONiF<sub>2</sub> in Tables S7.2-S7.9.

Table S7.1 lists optimized structural parameters for each considered state and relative CASPT2 state energies ( $\Delta E_{CASPT2}$ ) relative to the lowest state within the triplet and quintet state manifolds. In addition, the relative energies for the two quintet states related to the triplet <sup>3</sup>A<sub>2</sub> ground state are given as  $\Delta E_{MRCI}$ . These were obtained from MRCI single point calculations using state-averaged reference wave functions by mixing the three spin states <sup>3</sup>A<sub>2</sub>, <sup>5</sup>A<sub>1</sub> and <sup>5</sup>A<sub>2</sub> with equal weights and an AS of (12,9) at the minimum structures from the respective CASPT2 structure optimizations. The MRCI single point energies suggest a very small triplet-quintet gap of only 5 kJ mol<sup>-1</sup> in favour of the triplet <sup>3</sup>A<sub>2</sub> state.

While the  ${}^{3}A_{2}$  term has the shortest Ni–O bond lengths of 1.613 Å of all considered spin states, the quintet states show significantly longer Ni–O bond lengths, but also longer r(Ni–F) and larger FNiF angles (Table S7.1). Like the CASPT2 results presented in Table S7.1 also the CCSD(T)/AVTZ-DK calculations predict a lengthening of the Ni–O and Ni–F bonds by about 7 and 14%, respectively, for the quintet state (Table S4.1).

Vibrational data of ONiF<sub>2</sub> ( ${}^{3}A_{2}$ ) were obtained in the  $C_{1}$  point group symmetry at the CASSCF(12,8)/CASPT2/VTZ-DK level (Table S7.6). This procedure failed for the lowest quintet  ${}^{5}A_{2}$  term, probably because numerical displacements without symmetry restrictions lead to jumps between potential energy surfaces (PES) of different quintet electronic states.

Additional results for the different spin-states of ONiF<sub>2</sub> such as Ni–O bond orders, spin populations and atomic charges are collected in Tables S7.5-S7.7. Interestingly, the small negative NPA charge of the oxo ligand decreased on the transition from the low spin state ( ${}^{3}A_{2}$ : -0.226) to the high spin state ( ${}^{5}A_{1}$ : -0.127), and the spin density at the oxo group increases considerably ( ${}^{3}A_{2}$ : 1.03,  ${}^{5}A_{1}$ : 1.75) (Tables S7.6 and S7.7). To shed light on these counterintuitive features the wave functions for these two spin states were analysed. The wave function for the  ${}^{3}A_{2}$  spin state (CASSCF(12,8)/CASPT2/VTZ-DK, Table S7.3) is well dominated by a single CSF (78%) with two unpaired electrons in two mainly Ni–O antibonding  $\pi^*$ -orbitals. Other significant contributions to this wave function come from CSFs which involve two simultaneous single excitations within the  $\pi$ - $\pi^*$  MOs (4%), and a double excitation from  $\sigma$  to  $\sigma^*$  MOs (3%). The leading configuration can be described as  $d(x^{2})^2 d(xy)^2 \pi(y)^2 \pi(x)^2 \sigma(z)^2 \pi^*(y)^1 \pi^*(x)^1 \sigma^*(z)^0$ , with two doubly occupied and mainly nonbonding metal 3*d*-orbitals [ $d(x^2)$ , d(xy)], and two singly occupied Ni–O antibonding  $\pi^*$  MOs ( $\pi(x)$  perpendicular to the molecular plane Table S7.3).

The leading configurations for the close-lying  ${}^{5}A_{1}$  and  ${}^{5}A_{2}$  terms differ from the dominant  ${}^{3}A_{2}$  configuration by a single electron excitation from a nonbonding d(xy) ( ${}^{5}A_{1}$ ) and  $d(x^{2})$  ( ${}^{5}A_{2}$ ) MO into the  $\sigma(z)^{*}$  MO, respectively (Tables S7.7, S7.8). These CSF comprise 80% ( ${}^{5}A_{1}$ ) and 86% ( ${}^{5}A_{2}$ ) of the wave function at the CASSCF(12,9)/CASPT2/VTZ-DK level (for other significant CSFs see Tables S7.7, S7.8). A closer look at the natural orbitals for the leading CSF of the  ${}^{5}A_{1}$  state discloses an antibonding mixing in this singly occupied nickel-dominated 3d(xy) MO with the fluorine 2p(x) orbitals (Table S7.7). The higher occupation of the antibonding  $\sigma(z)^{*}$  MO in these quintet terms is consistent with the computed longer Ni–O and Ni–F bond lengths compared to that of the  ${}^{3}A_{2}$  term (see main text. Table S7.1).

## Copper Oxofluorides, $OCuF_n$ (n = 1, 2)

The copper compounds OCuF ( ${}^{3}\Sigma^{-}$ ) and OCuF<sub>2</sub> ( ${}^{2}B_{2}$ ,  ${}^{4}A_{2}$ )<sup>1,43</sup> were re-investigated at CCSD(T) and CASSCF levels of theory (Table S3.1) Structure optimization and normal mode analysis were carried out in the  $C_{2v}$  point group symmetry at the CCSD(T) level (Table S4.5). Using the optimized structures, natural orbitals were obtained at the CASSCF level with an active space of *m* electrons in *n* orbitals (*m*,*n*) (for OCuF (14,9); for OCuF<sub>2</sub> (13,8)), and listed in Tables S9.1-S9.9 respectively. The calculated bond lengths for the linear OCuF molecule in the  ${}^{3}\Sigma^{-}$  ground state, Cu–F (1.712 Å) and Cu–O (1.668 Å), are in good agreement with our previous study where scalar relativistic effects were taken into account by means of a relativistic small core ECP for copper.<sup>1</sup> Because of a high *T*<sub>1</sub>-diagnostics value in the CCSD(T) calculation of 0.081, which indicates significant multi-reference character of the wavefunction (Table S4.5), we have carried out calculation at the CASSCF(14,9)/CASPT2 level of theory (Table S9.1), which lead to shorter bond lengths of  $d_{Cu-O} = 1.634$  Å and  $d_{Cu-O} = 1.687$  Å.

For OCuF<sub>2</sub>, one  ${}^{2}B_{2}$  and two different energetically low-lying  ${}^{4}A_{2}$  states were calculated which all have planar  $C_{2v}$  symmetric structures. At the CCSD(T)/VTZ-DK level of theory, we found the doublet state to lie about 20 and 45 kJ mol<sup>-1</sup> lower in energy (Tables S4.5 and S9.2) than the two <sup>4</sup>A<sub>2</sub> states, thus confirming our previous CCSD(T) result.<sup>1</sup> The two <sup>4</sup>A<sub>2</sub> states show very different Cu–O bond lengths and F-Cu-F angles (Table S4.5) The energetically preferred <sup>4</sup>A<sub>2</sub> state (labelled <sup>4</sup>A<sub>2</sub>-2) corresponds to a loosely bound adduct between linear  $CuF_2$  and an oxygen atom, leading to a T-structure with a large Cu–O distance of 2.045 Å and a F–Cu–F angle of 168.8°. The second <sup>4</sup>A<sub>2</sub> state (<sup>4</sup>A<sub>2</sub>-1) adopt a short Cu–O bond length of 1.700 Å and a significant stronger bent F–Cu–F unit with an angle of 131.6°. However, the  $T_1$ -diagnostics values of 0.050 (<sup>2</sup>B<sub>2</sub>), 0.053 (<sup>4</sup>A<sub>2</sub>-1), and 0.027 (<sup>4</sup>A<sub>2</sub>-2) indicate already a considerably multi-reference character of the wave functions for the <sup>2</sup>B<sub>2</sub> and the <sup>4</sup>A<sub>2</sub>-1 states.<sup>44,45</sup> Therefore, we have also performed CASSCF(13,8)/CASPT2/VTZ-DK and CASSCF(13,9)/VTZ-DK calculations for all three states (Tables S9.4-S9.9), as well as comparable NEVPT2/VTZ-DK calculations for the two <sup>4</sup>A<sub>2</sub> states (Table S9.3). These calculations confirm the multi-reference character for the  ${}^{2}B_{2}$  and the  ${}^{4}A_{2}$ -1 states, since the contribution of the most dominant configuration to its wave function at the CASPT2 level comprises only 74.9% and 85.2%, respectively. Interestingly, the energetic order of these states is changed drastically at this level, and in contrast to our CCSD(T) calculations, but in agreement with the previous work,<sup>43</sup> the two bound states are now predicted very close in energy with the  ${}^{2}B_{2}$  state lying slightly higher in energy (6.6 kJ mol<sup>-1</sup>) than the  ${}^{4}A_{2}$ -1 state, whereas the unbound  ${}^{4}A_{2}$ -2 state was found to lie about 32 kJ mol<sup>-1</sup> above the <sup>4</sup>A<sub>2</sub>-1 state (Table S9.2).

An analysis of the electronic structures of the two spin states showed that the single unpaired electron of the <sup>2</sup>B<sub>2</sub> state occupies the antibonding Cu–O  $\pi^*[py(O)-d(yz)]$  orbital which is mainly localized at the oxygen atom (Figure S2.17). The <sup>2</sup>B<sub>2</sub> and <sup>4</sup>A<sub>2</sub> states only differ for the occupation of the in-plane  $\pi^*$  MO [px(O)-d(xz)] (doubly occupied in <sup>2</sup>B<sub>2</sub> and singly occupied in both <sup>4</sup>A<sub>2</sub> states) and the antibonding  $\sigma$ -MO  $[pz(O)-d(z^2-y^2)]$  (unoccupied in <sup>2</sup>B<sub>2</sub>, see Figure S2.15). The two singly occupied  $\pi^*$ -MOs in <sup>4</sup>A<sub>2</sub>-1 are involved in three-electron  $\pi$ -bonding interactions to the copper atom, while they represent two nonbonding oxygen 2*p*-orbitals in <sup>4</sup>A<sub>2</sub>-2.

The <sup>4</sup>A<sub>2</sub>-1 structure was reported to be very sensitive to the computational level in terms of the Cu–O bond length and the F–Cu–F bond angle.<sup>43</sup> At the CCSD(T) level the Cu–O fundamental is predicted for the two bound states <sup>2</sup>B<sub>2</sub> and <sup>4</sup>A<sub>2</sub>-1 at lower wavenumbers than the Cu–F<sub>2</sub> stretches between 580 cm<sup>-1</sup> and 600 cm<sup>-1</sup> (Table S4.5). This prediction is also lower than the computed Ni–O frequency for the high-spin ONiF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>) state (630 cm<sup>-1</sup> - 660 cm<sup>-1</sup>, Table S4.2), for which the leading configuration differs from that for OCuF<sub>2</sub> (<sup>4</sup>A<sub>2</sub>-1) only in the occupation of a nonbonding 3*d*(xy)-MO (Table S7.6). This result agrees well with the result of a previous study, in which only the bound <sup>4</sup>A<sub>2</sub>-1 state of OCuF<sub>2</sub> (s68.9 cm<sup>-1</sup>) and CASPT2 (588.8 cm<sup>-1</sup>) levels of theory.<sup>43</sup> Our CASPT2 calculation strongly overestimates the  $\pi$ -bond interaction and therefore the Cu–O frequency for the <sup>4</sup>A<sub>2</sub>-1 state (around 1070 cm<sup>-1</sup>). This prompted us to carrying out analogous NEVPT2 calculations which indeed yield a lower Cu–O frequency of 890 cm<sup>-1</sup> (Table S9.3), but which is still significantly higher than the one previously reported, which is currently the best estimate for the Cu–O frequency of the <sup>4</sup>A<sub>2</sub>-1 state.

Only the strongest band of OCuF<sub>2</sub>, the antisymmetric  $v_{as}(^{63}Cu-F_2)$  stretching band was previously reported at 772.0 cm<sup>-1.1</sup> Since this band did not show any  $\Delta v(^{16/18}O)$  isotope shift, these experiments did not allow a clear determination of the electronic ground state of OCuF<sub>2</sub>. More future experiments are therefore needed for an unambiguous experimental assignment of the lowest electronic state of OCuF<sub>2</sub>.

## Palladium and Platinum Oxofluorides, $OMF_n$ (M = Pd, Pt, n = 1-3)

The linear molecules OPdF and OPtF, like ONiF, have  ${}^{4}\Sigma^{-}$  ground states, where the three unpaired electrons are accommodated in two degenerate  $\pi^{*}[p_{x,y}(O)-d(xz, yz)]$  and a  $\sigma^{*}[d(z^{2})-p_{z}(O)]$  MOs (see main text, Figure 9). A spin density analysis (Figure S2.16) revealed that the unpaired electrons that reside in the  $\pi^{*}$ -MOs are well shared between the metal and the oxo ligand (see below for further discussion), which results in a considerable oxyl type radical character of the oxo ligand.

CCSD(T)/AVTZ(-PP) calculations were performed on OPtF<sub>2</sub> and OPdF<sub>2</sub> using DFT BP86/AVTZ(-PP) optimized  $C_{2v}$  structure as starting structures. The lowest-energy triplet <sup>3</sup>A<sub>2</sub> and quintet <sup>5</sup>A<sub>1</sub> states were both investigated. The triplet states are found to be lower in energy than the quintet states by 142 and 113 kJ mol<sup>-1</sup> (PB86/AVTZ(-PP)) for OPtF<sub>2</sub> and OPdF<sub>2</sub>, respectively (Table S4.1). These two states show different M–O bond lengths. The M–O bond lengths of the high-spin states (1.868 Å (OPdF<sub>2</sub>) and 1.908 Å (OPtF<sub>2</sub>), BP86/AVTZ(-PP)) are longer than those in the corresponding ground states (1.741 Å (OPdF<sub>2</sub>), 1.743 Å (OPtF<sub>2</sub>)). A reasonable explanation for this observation is that the excited state configuration arises formally by an electron excitation out of a doubly occupied nonbonding metal centered MO (nd(xy)) in the ground state into an M–O antibonding MO ( $\sigma^*$ :  $p_z(O)$ - $d(x^2$ - $y^2$ )). Although OPdF<sub>2</sub> and OPtF<sub>2</sub> is predicted at a higher frequency (<sup>3</sup>A<sub>2</sub>: 871 cm<sup>-1</sup>) than that of OPdF<sub>2</sub> (<sup>3</sup>A<sub>2</sub>: 828 cm<sup>-1</sup>) at the CCSD(T) level, which indicates a higher covalence of the Pt–O bond. Ground-state spin densities of both compounds are displayed in Figure S2.17 and further structural parameters and computed vibrational frequencies at different levels of theory for the two considered states are listed in the Tables S4.1, S4.3-S4.4.

The planar triplet FOPdF chain molecules have a Pd( $d^8$ ) configuration with two unpaired electrons accommodated in predominantly Pd(4d)-MOs. For the lowest-energy FOPdF (<sup>3</sup>A") the SOMOs consist of the in-plane 4d(xz) and the 4 $d(z^2)$ -MOs with some admixtures of the corresponding oxygen 2p(x) and 2p(z) atomic orbitals, respectively, while the unpaired electrons of the *anti*-FOPdF (<sup>3</sup>A') isomer reside in the 4 $d(x^2-y^2)$ -MO, which would be a non-bonding  $\delta$ -type-MO in a linear O–Pd–F chain. The leading configuration for OPtF<sub>3</sub>, (<sup>4</sup>A<sub>1</sub>) (92 %) is well described by  $\sigma$ (PtO)<sup>2</sup>  $\pi(x)^2 \pi(y)^2 5d(x^2)^2 \pi^*(x)^1 \pi^*((y)^1 5d(xy)^1 \sigma^{*0}$  (Table S8.3), where three unpaired electrons are accommodated in one weakly Pt–F antibonding (d(xy)) and two antibonding  $\pi^*(p_{x,y}(O)-d(xz,yz))$ -MOs.

#### Comments to the Estimation of the Degree of Covalence and Inversion (DCI)

The metal-ligand  $\sigma$ -interaction in the T-shaped oxodifluorides and the planar OPtF<sub>3</sub> are arranged along the metal  $d(z^2-y^2)$ -orbital density, moving this orbital to a high energy. For the high-spin states of ONiF<sub>2</sub> and OCuF<sub>2</sub> this MO is singly occupied and adopt a high 3*d*-orbital contribution (ONiF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>): 77 % Ni; OCuF<sub>2</sub>: 72 % Cu (<sup>4</sup>A<sub>2</sub>-1), 94 % Cu (<sup>4</sup>A<sub>2</sub>-2) with some 4*s*, 4*p* admixtures. In contrast, this MO is not occupied in the low-spin states of the oxo difluorides and for OPtF<sub>3</sub> and here it adopts a larger metaloxygen  $\sigma$ -antibonding character. The high metal contribution of this singly occupied  $\sigma$ -MO is shown by the considerably lower oxygen DCI values for the  $\sigma$ -spaces of the high-spin states ONiF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>) and OCuF<sub>2</sub> (<sup>4</sup>A<sub>2</sub>-1) compared to those for the corresponding low-spin states (Table 3 in the main text), since for reasons of consistency this highest-energy metal n*d*-MO was chosen for the estimation of these DCI values and not the likely more antibonding metal (n+1)*s*-MO.

The MO analysis and the DCI values for the  $\pi$ -bonded <sup>4</sup>A<sub>2</sub>-1 state of OCuF<sub>2</sub> reveal a surprising similarity to those of the related high-spin ONiF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>) state (Table 3 in the main text). However, as already noted in the computational section, our CASSCF(13,9)/VTZ-DK calculations overestimates the  $\pi$ -interaction in the <sup>4</sup>A<sub>2</sub>-1 state of OCuF<sub>2</sub> and yield an unreasonable short Cu–O bond length of 1.596 Å (Table S9.7), which is significantly shorter than that of the <sup>2</sup>B<sub>2</sub> state of OCuF<sub>2</sub> (1.748 Å, Table S9.5) and also of the Ni–O bond in the <sup>5</sup>A<sub>1</sub> state of ONiF<sub>2</sub> (1.725 Å, Table S7.7). With this in mind it can therefore safely conclude that the inversion of the  $\pi$ -space will significantly increase going from ONiF<sub>2</sub> to OCuF<sub>2</sub>, and the  $\pi$ -bond order will decrease accordingly. Consistent with the long Cu–O bond in the loosely bound <sup>4</sup>A<sub>2</sub>-2 state of OCuF<sub>2</sub> (d(CuO) = 1.945 Å, Table S9.9) its  $\pi$ \*-MOs are heavily inverted (about 98 % oxygen contribution, Table 3 in the main text). The analysis of the natural orbitals (Table S9.9) revealed two singly occupied oxygen  $2p(\pi)$ -orbitals that do not interact with the appropriate copper 3*d*-orbitals, and both contribute about one unpaired electron to the total spin population of 2.0 at the oxo group (Table 3, main text).

## References to Part 1

- 1 L. Li, T. Stüker, S. Kieninger, D. Andrae, T. Schlöder, Y. Gong, L. Andrews, H. Beckers and S. Riedel, Oxygen radical character in group 11 oxygen fluorides, *Nat. Commun.*, 2018, **9**, 1267.
- 2 F. A. Redeker, M. A. Ellwanger, H. Beckers and S. Riedel, Investigation of Molecular Alkali Tetrafluorido Aurates by Matrix-Isolation Spectroscopy, *Chemistry (Weinheim an der Bergstrasse, Germany)*, 2019, **25**, 15059–15061.
- 3 A. H. Borning and K. E. Pullen, Simple preparation of oxygen difluoride in high yield, *Inorg. Chem.*, 1969, **8**, 1791.
- 4 K. A. Peterson, D. Figgen, M. Dolg and H. Stoll, Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd, *J. Chem. Phys.*, 2007, **126**, 124101.
- 5 D. Figgen, K. A. Peterson, M. Dolg and H. Stoll, Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt, *J. Chem. Phys.*, 2009, **130**, 164108.
- 6 M. Douglas and N. M. Kroll, Quantum electrodynamical corrections to the fine structure of helium, *Ann. Phys.*, 1974, **82**, 89–155.
- 7 T. Nakajima and K. Hirao, The Douglas-Kroll-Hess approach, *Chem. Rev.*, 2012, **112**, 385–402.
- 8 B. A. Hess, Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations, *Phys. Chem. A*, 1985, **32**, 756–763.
- 9 B. A. Hess, Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators, *Phys. Chem. A*, 1986, **33**, 3742–3748.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D.

Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.
Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers,
K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.
Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16*,
Gaussian, Inc., Wallingford CT, 2016.

- 11 A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, *Phys. Rev. A*, 1988, **38**, 3098–3100.
- 12 J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, *Phys. Rev. B*, 1986, **33**, 8822–8824.
- 13 A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, *J. Chem. Phys.*, 1993, **98**, 5648–5652.
- 14 C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density, *Phys. Rev. B*, 1988, **37**, 785–789.
- 15 B. Miehlich, A. Savin, H. Stoll and H. Preuss, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr, *Chem. Phys. Lett.*, 1989, **157**, 200–206.
- H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, M. Welborn, *MOLPRO, version 2019.2, a package of ab initio programs*.
- 17 B. O. Roos, P. R. Taylor and P. E.M. Sigbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, *Chem. Phys.*, 1980, **48**, 157–173.
- 18 P. E. M. Siegbahn, J. Almlöf, A. Heiberg and B. O. Roos, The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule, *J. Chem. Phys.*, 1981, **74**, 2384–2396.
- 19 H.-J. Werner and P. J. Knowles, A Second Order MCSCF Method with Optimum Convergence, *J. Chem. Phys.*, 1985, **82**, 5053–5063.
- 20 P. J. Knowles and H.-J. Werner, An Efficient Second Order MCSCF Method for Long Configuration Expansions, *Chem. Phys. Lett.*, 1985, **115**, 259–267.
- 21 K. Andersson, P.-A. Malmqvist, B. O. Roos, A. J. Sadlej and K. Wolinski, Second-order perturbation theory with a CASSCF reference function, *J. Phys. Chem.*, 1990, **14**, 5483–5488.
- K. Andersson, P.-A. Malmqvist and B. O. Roos, Second-order perturbation theory with a complete active space self-consistent field reference function, *J. Chem. Phys.*, 1992, **96**, 1218–1226.
- 23 V. Veryazov, P. Å. Malmqvist and B. O. Roos, How to select active space for multiconfigurational quantum chemistry?, *Int J Quantum Chem*, 2011, **111**, 3329–3338.
- 24 K. Pierloot, The CASPT2 method in inorganic electronic spectroscopy: from ionic transition metal to covalent actinide complexes\*, *Mol. Phys.*, 2003, **101**, 2083–2094.
- 25 T. Lu and F. Chen, Multiwfn: a multifunctional wavefunction analyzer, *J. Comput. Chem.*, 2012, **33**, 580–592.
- 26 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis and F. Weinhold, *NBO 7.0*, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2018.

- 27 Chemcraft graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com.
- 28 E. A. Jones, J. S. Kirby-Smith, Woltz, P. J. H. and A. H. Nielsen, New Measurements on the Infrared Spectrum of OF2, *J. Phys. Chem.*, 1951, **19**, 337–339.
- 29 D. L. Arsenault, D. W. Tokaryk, A. G. Adam and C. Linton, Laser spectroscopy of jet-cooled NiF: Application of Hougen's approximate model for the low-lying electronic states, *J. Mol. Spectrosc.*, 2016, **324**, 20–27.
- 30 P. Carette, C. Dufour and B. Pinchemel, Theroretical interpretation of the NiF spectrum, *J. Mol. Spectrosc.*, 1993, **161**, 323–335.
- 31 C. Focsa, C. Dufour and B. Pinchemel, Dispersed Excitation Spectroscopy of Some Weak Transitions of NiF, *J. Mol. Spectrosc.*, 1997, **182**, 65–71.
- R. A. Harris, L. C. O'Brien and J. J. O'Brien, Spectroscopy of NiF by intracavity laser spectroscopy: Identification and analysis of the (1,0) band of the [11.1] 2Π3/2–X2Π3/2 electronic transition, *J. Mol. Spectrosc.*, 2010, **259**, 116–119.
- 33 D. E. Milligan, M. E. Jacox and J. D. McKinley, Spectra of Matrix-Isolated NiF2 and NiCl2, *J. Chem. Phys.*, 1965, **42**, 902–905.
- 34 J. W. Hastie, R. H. Hauge and J. L. Margave, Infrared Spectra and Geometry of the Difluorides of Co, Ni, Cu, and Zn Isolated in Ne and Ar, *High Temp. Sci.*, 1969, **1**, 76–85.
- 35 A. V. Wilson, T. Nguyen, F. Brosi, X. Wang, L. Andrews, S. Riedel, A. J. Bridgeman and N. A. Young, A Matrix Isolation and Computational Study of Molecular Palladium Fluorides: Does PdF6 Exist?, *Inorg. Chem.*, 2016, 55, 1108–1123.
- 36 W. Liu and R. Franke, Comprehensive relativistic ab initio and density functional theory studies on PtH, PtF, PtCl, and Pt(NH(3))(2)Cl(2), *J. Comput. Chem.*, 2002, **23**, 564–575.
- 37 T. Okabayashi, T. Kurahara, E. Y. Okabayashi and M. Tanimoto, Microwave spectroscopy of platinum monofluoride and platinum monochloride in the X2Π(3/2) states, *J. Chem. Phys.*, 2012, 136, 174311–174319.
- 38 W. Zou, Y. Liu and J. E. Boggs, Relativistic ab initio study on PtF and HePtF, *Dalton Trans.*, 2010, **39**, 2023–2026.
- 39 R. Wesendrup and P. Schwerdtfeger, Structure and Electron Affinity of Platinum Fluorides, *Inorg. Chem.*, 2001, **40**, 3351–3354.
- 40 C. Koukounas and A. Mavridis, Ab initio study of the diatomic fluorides FeF, CoF, NiF, and CuF, *J. Phys. Chem. A*, 2008, **112**, 11235–11250.
- 41 W. Zou and W. Liu, Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and Nil, *J. Chem. Phys.*, 2006, **124**, 154312.
- 42 A. G. Shenstone, The Second Spectrum of Nickel (Ni II), J. Res. Natl. Bur. Stand. A Phys. Chem., 1970, **74A**, 801–855.
- 43 R. Wei, Z. Fang, M. Vasiliu, D. A. Dixon, L. Andrews and Y. Gong, Infrared Spectroscopic and Theoretical Studies of the 3d Transition Metal Oxyfluoride Molecules, *Inorg. Chem.*, 2019, **58**, 9796–9810.
- 44 W. Jiang, N. J. DeYonker and A. K. Wilson, Multireference Character for 3d Transition-Metal-Containing Molecules, *J. Chem. Theory Comput.*, 2012, **8**, 460–468.
- 45 T. Schlöder and S. Riedel, in *Schlöder, Riedel (Ed.) 2013– Comprehensive inorganic chemistry II Eds.*, pp. 227–243.

# Part 2. Figures

Matrix-IR Spectra



**Figure S2.1.** IR Spectra of the reaction products of laser-ablated Ni atoms with  ${}^{16/18}\text{OF}_2$  (0.1%) seeded in excess Ne: (a) co-deposited for 120 min at 5 K, (b) difference spectra obtained after  $\lambda = 470$  nm (LED) irradiation for 40 min, followed by (c)  $\lambda = 193$  nm (excimer laser) irradiation for 10 min, and (d) subsequent annealing to 11 K. An unassigned feature is marked by an asterisk.



**Figure S2.2.** IR spectra of the reaction products of laser-ablated Ni with (a)  ${}^{16}\text{OF}_2$  (0.05%) and (b)  ${}^{16/18}\text{OF}_2$  (0.1%) seeded in excess Ne and co-deposited for 120 min at 5 K. Unassigned features are indicated by an asterisk.



**Figure S2.3.** IR Spectra of the reaction products of laser-ablated Ni with <sup>16</sup>OF<sub>2</sub> (0.5%) seeded in excess Ar: (a) co-deposited for 105 min at 12 K, (b) difference spectra obtained after  $\lambda = 470$  nm (LED) irradiation for 40 min, followed by (c)  $\lambda = 193$  nm (excimer laser) irradiation for 8 min, and (d) subsequent annealing to 20 K.



**Figure S2.4.** IR Spectra of the reaction products of laser-ablated Ni with 0.5% (a)  ${}^{16}\text{OF}_2$  and (b)  ${}^{18}\text{OF}_2$  seeded in excess Ar and co-deposited at 12 K.



**Figure S2.5.** IR spectra of the reaction products of laser-ablated Pd atoms with  ${}^{16/18}\text{OF}_2$  (0.1%) seeded in excess Ne: (a) co-deposition for 180 min at 5 K, (b) difference spectra obtained after  $\lambda = 730$  nm (LED) irradiation for 15 min, and (c) subsequent  $\lambda = 266$  nm (LED) irradiation for 50 min. An unassigned O=Pd band is indicated by \* ( ${}^{16}\text{O}$  isotopologue) and \*\* ( ${}^{18}\text{O}$ ), respectively (see Table S3.4).



**Figure S2.6.** IR spectra of the reaction products of laser-ablated Pd with (a)  ${}^{16}\text{OF}_2$  and (c)  ${}^{16/18}\text{OF}_2$  seeded in excess Ne and co-deposited for 180 min at 5 K, and difference spectra obtained after  $\lambda = 273$  (LED) irradiations for (b) 10 and (d) 20 min, respectively. An unassigned O=Pd band is indicated by \* ( ${}^{16}\text{O}$  isotopologue) and \*\* ( ${}^{18}\text{O}$ ), respectively (see Table S3.4).



**Figure S2.7.** IR spectra of the reaction products of laser-ablated Pd with <sup>16/18</sup>OF<sub>2</sub> (0.5%) seeded in excess Ar: (a) after co-deposition for 90 min at 15 K, (b) difference spectrum obtained after  $\lambda = 730$  nm (LED) irradiation for 25 min, followed by (c)  $\lambda = 590$  nm (LED) and (d)  $\lambda = 455$  nm (LED) irradiation for 10 min.



**Figure S2.8.** IR spectra of the reaction products of laser-ablated Pt with (a)  ${}^{16}OF_2$  (0.05%) and (b)  ${}^{18}OF_2$  (0.05%) co-deposited in excess Ne.



**Figure S2.9.** IR spectra of the reaction products of laser-ablated Pt with (a)  ${}^{16}\text{OF}_2$  (0.5%) and (b)  ${}^{18}\text{OF}_2$  (0.5%) co-deposited in solid Ar, (c) difference spectra obtained after  $\lambda = 730$  nm (LED) irradiation for 30 min, followed by (d)  $\lambda = 455$  nm (LED) irradiation for 60 min. An unassigned feature is indicated by an asterisk.

Molecular Orbitals of Selected Oxodifluorides  $OMF_2$  and Spin Densities of OMF (M = group 9, 10, 11) and  $OMF_2$  (M = group 10, 11) Compounds



**Figure S2.10.** Selected molecular orbitals of OCoF<sub>2</sub> (<sup>4</sup>A<sub>1</sub>,  $C_{2v}$ ). (B3LYP/AVTZ, Kohn-Sham orbitals with  $\alpha$  spin; iso-surface = 0.08 electron a.u.<sup>-3</sup>)



**Figure S2.11.** Selected molecular orbitals of ONiF<sub>2</sub> ( ${}^{3}A_{2}$ ,  $C_{2v}$ ). (B3LYP/AVTZ, Kohn-Sham orbitals with  $\alpha$  spin; iso-surface = 0.08 electron a.u.<sup>-3</sup>)



**Figure S2.12.** Selected molecular orbitals of ONiF<sub>2</sub> ( ${}^{5}A_{1}$ ,  $C_{2v}$ ). (B3LYP/AVTZ, Kohn-Sham orbitals with  $\alpha$  spin; iso-surface = 0.08 electron a.u.<sup>-3</sup>)



**Figure S2.13.** Selected molecular orbitals of OCuF<sub>2</sub> ( ${}^{2}B_{2}$ ,  $C_{2v}$ ). (BP86/AVTZ(-PP), Kohn-Sham orbitals with  $\alpha$  spin; iso-surface = 0.08 electron a.u.<sup>-3</sup>)



**Figure S2.14.** Selected molecular orbitals of OCuF<sub>2</sub> ( ${}^{4}A_{2}$ -1,  $C_{2v}$ ). (BP86/AVTZ(-PP), Kohn-Sham orbitals with  $\alpha$  spin; iso-surface = 0.08 electron a.u.<sup>-3</sup>)



**Figure S2.15.** Qualitative molecular orbital scheme showing the interaction between  $CuF_2$  and an oxygen atom that leads to  $OCuF_2$  in the two different spin states  ${}^{2}B_2$  (Right) and  ${}^{4}A_2$ -1 (Left). The frontier MOs for the two  $OCuF_2$  spin states were derived from CASSCF(13,9)/VTZ-DK calculations (Tables S9.5 and S9.7). Contributions by fluorine 2*p* orbitals are not shown.



**Figure S2.16.** Spin densities of isoelectronic ( $d^{7}$ ) group [9, 10 and 11] transition metal compounds (BP86/AVTZ(-PP), iso-surface = 0.08 electron a.u.<sup>-3</sup>).



**Figure S2.17.** The spin density of OMF<sub>2</sub> group [10 and 11] transition metal compounds obtained at the BP86/AVTZ(-PP) level for M = Pd and Pt (iso-surface = 0.03 electron a.u.<sup>-3</sup>), CASPT2/VTZ-DK level for M = Ni and at the B3LYP/AVTZ(-PP) level for M = Cu, Ag and Au (iso-surface = 0.03 electron Å<sup>-3</sup>).<sup>1</sup>

# **Part 3. Tables to the main text:**

|                                | Structure optimisation and frequency calculation |                                  |  |  |  |  |  |
|--------------------------------|--------------------------------------------------|----------------------------------|--|--|--|--|--|
| Molecule(s)                    | Method(s)                                        | Basis set(s)                     |  |  |  |  |  |
| NIOE                           | B3LYP, BP86                                      | AVTZ                             |  |  |  |  |  |
| NIOF                           | RHF, CISD, CCSD(T)                               | AVnZ, AVnZ-DK ( $n = D, T, Q$ )  |  |  |  |  |  |
|                                | B3LYP, BP86                                      | AVTZ                             |  |  |  |  |  |
| ONE                            | CCSD(T)                                          | AVnZ, AVnZ-DK $(n = T, Q)$       |  |  |  |  |  |
| UNIF                           | CASSCF, MRCI, CASPT2                             | AVnZ, AVnZ-DK ( $n = D, T, Q$ )  |  |  |  |  |  |
|                                | MRCI <sup>a)</sup>                               | VTZ-DK <sup>a)</sup>             |  |  |  |  |  |
|                                | B3LYP, BP86                                      | AVTZ                             |  |  |  |  |  |
| ONiF <sub>2</sub>              | CCSD(T)                                          | AVnZ, AVnZ-DK ( $n = D, T$ )     |  |  |  |  |  |
|                                | CASSCF, CASPT2 <sup>a)</sup>                     | VTZ-DK <sup>a)</sup>             |  |  |  |  |  |
|                                | B3LYP                                            | AVTZ(-PP)                        |  |  |  |  |  |
|                                | CCSD(T)                                          | AVTZ(-PP)                        |  |  |  |  |  |
| $\operatorname{OCuF}_n(n=1,2)$ | CCSD(T)                                          | VTZ-DK <sup>a)</sup> , (A)VTZ-DK |  |  |  |  |  |
|                                | CASSCF, CASPT2 <sup>a)</sup>                     | VTZ-DK <sup>a)</sup>             |  |  |  |  |  |
| $OME_{M} - Pd$                 | B3LYP, BP86                                      | AVTZ(-PP)                        |  |  |  |  |  |
| Pt; $n = 1, 2$ )               | CCSD(T) <sup>a)</sup>                            | AVTZ(-PP) <sup>a)</sup>          |  |  |  |  |  |
|                                |                                                  |                                  |  |  |  |  |  |
| FOMF $(M = Ni,$                | B3LYP, (BP86)                                    | AVTZ(-PP)                        |  |  |  |  |  |
| Pa, Pt)                        | CCSD(T)                                          | AVIZ(-PP)                        |  |  |  |  |  |
| $OMF_3 (M = Pd,$               | B3LYP, BP86                                      | AV1Z(-PP)                        |  |  |  |  |  |
| Pt)                            | CCSD(T)                                          | AVTZ(-PP)                        |  |  |  |  |  |
| OPtF <sub>3</sub>              | CASSCF, CASPT2 <sup>a)</sup>                     | AVTZ(-PP) <sup>a)</sup>          |  |  |  |  |  |
| $OMF_4 (M = Pd, Pt)$           | B3LYP, BP86                                      | AVTZ(-PP)                        |  |  |  |  |  |

 Table S3.1. Overview about the quantum-chemical calculations performed in this work.

<sup>a)</sup>: Optimized structure was used for single point calculations at the CASSCF level using the same basis set(s) to obtain spin densities, natural orbitals, NPA and AIM charges.

|                  |                         | a .                  |       | Exp.  |                          |                             | Calc.                | (Int.)                                 |                                        |                                                     |
|------------------|-------------------------|----------------------|-------|-------|--------------------------|-----------------------------|----------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------|
|                  | Sym.                    | State                | Ne    | Ar    | Ar [Ref]                 | CCSD(T)-<br>DK <sup>a</sup> | CCSD(T) <sup>b</sup> | B3LYP <sup>c</sup>                     | BP86 <sup>d</sup>                      | Modes                                               |
|                  |                         |                      |       |       |                          | 639.13                      | 612.98               | 614.44(78)                             | 618.04(69)                             | $\nu$ ( <sup>58</sup> Ni-F), $\Sigma^+$             |
| NiF              | $C_{\infty \mathrm{v}}$ | $^{2}\Pi$            | 646.2 | 625.4 | 634.7 <sup>e 29,31</sup> | 636.50                      | 610.46               | 611.91(78)                             | 615.50(69)                             | $\nu$ ( <sup>60</sup> Ni-F), $\Sigma$ <sup>+</sup>  |
|                  |                         |                      |       |       |                          | -                           | -                    | 611.91(78)                             | 613.10(68)                             | $\nu(^{62}\text{Ni-F}), \Sigma^+$                   |
|                  |                         |                      | 800.1 | 779.5 | 779.4 <sup>33</sup>      | 819.17                      | 806.42               | 804.01(180)                            | 794.56(123)                            | $\nu({}^{58}Ni-F_2), \Sigma_u^+$                    |
| $NiF_2$          | $D_{\infty \mathrm{h}}$ | $^{3}\Sigma_{g}^{-}$ | 794.9 | 774.4 | 774.3 <sup>33</sup>      | 813.75                      | 801.09               | 798.69(177)                            | 789.30(121)                            | $\nu(^{60}Ni-F_2), \Sigma_u^+$                      |
|                  |                         |                      | 790.0 | 769.4 | 769.3 <sup>33</sup>      | -                           | -                    | 793.68(175)                            | 784.35(120)                            | $\nu(^{62}Ni-F_2), \Sigma_u^+$                      |
|                  |                         |                      | -     | -     | -                        |                             | 542.5 <sup>f</sup>   |                                        |                                        | $\nu$ ( <sup>102</sup> Pd-F), $\Sigma$ <sup>+</sup> |
|                  |                         |                      | -     | -     | -                        |                             | 541.7 <sup>f</sup>   |                                        |                                        |                                                     |
| D4E              | C                       | $^{2}\Pi$            | -     | -     | -                        | 541.3 <sup>f</sup>          |                      |                                        |                                        | $\nu(^{105}\text{Pd-F}), \Sigma^+$                  |
| 1 ul             | C∞v                     |                      | 547.5 | 540.3 | 540.9 <sup>35</sup>      | 540.9 <sup>f</sup>          |                      |                                        |                                        | $\nu$ ( <sup>106</sup> Pd-F), $\Sigma$ <sup>+</sup> |
|                  |                         |                      | 544.5 |       | 540.1 <sup>35</sup>      | 540.1 <sup>f</sup>          |                      |                                        | $\nu(^{108}\text{Pd-F}), \Sigma^+$     |                                                     |
|                  |                         |                      |       |       | 539.4 <sup>35</sup>      | 539.4 <sup>f</sup>          |                      |                                        |                                        | $\nu$ ( <sup>110</sup> Pd-F), $\Sigma$ <sup>+</sup> |
|                  |                         |                      | -     | -     | -                        | 621.2 <sup>f</sup>          |                      |                                        | $\nu(^{102}\text{Pd-F}_2), \Sigma_u^+$ |                                                     |
|                  |                         |                      | -     | -     | 619.5 <sup>35</sup>      |                             | 61                   | 9.6 <sup>f</sup>                       |                                        | $\nu(^{104}\text{Pd-F}_2), \Sigma_u^+$              |
| DdE              | р.                      | $^{3}\Sigma_{g}^{-}$ | -     | -     | 618.8 <sup>35</sup>      | 618.8 <sup>f</sup>          |                      | $\nu(^{105}\text{Pd-F}_2), \Sigma_u^+$ |                                        |                                                     |
| rur <sub>2</sub> | $D_{\infty h}$          |                      | 650.8 | 618.1 | 618.1 <sup>35</sup>      | $618.0^{\mathrm{f}}$        |                      | $\nu(^{106}\text{Pd-F}_2), \Sigma_u^+$ |                                        |                                                     |
|                  |                         |                      | 649.2 | 616.6 | 616.5 <sup>35</sup>      | 616.5 <sup>f</sup>          |                      | 616.5 <sup>f</sup>                     |                                        | $\nu(^{108}\text{Pd-F}_2), \Sigma_u^+$              |
|                  |                         |                      | 647.8 | 615.1 | 615.1 <sup>35</sup>      | $615.0^{\mathrm{f}}$        |                      | $\nu(^{110}\text{Pd-F}_2), \Sigma_u^+$ |                                        |                                                     |
| PtF              | $C_{\infty v}$          | <sup>2</sup> ∏       | 605.6 | 590.0 | -                        | -                           | -                    | -                                      | 575.15(47)                             | $\nu$ ( <sup>195</sup> Pt-F), $\Sigma^+$            |
| PtF <sub>2</sub> | $D_{\infty \mathrm{h}}$ | $^{3}\Sigma_{g}^{-}$ | 710.1 | 695.6 | -                        | -                           | 731.36               | -                                      | 708.17(118)                            | $\nu(^{195}\text{Pt-F}_2), \Sigma_u^+$              |

**Table S3.2.** Comparison of observed and computed vibrational frequencies (in cm<sup>-1</sup>) for binary metalfluorides,  $MF_n$  (M = Ni, Pd, Pt; n = 1, 2)

Values are calculated at the CCSD(T)/AVT(Q)Z level with DK <sup>a</sup> and without DK <sup>b</sup> and the DFT <sup>c</sup> B3LYP/AVTZ(-PP) and <sup>d</sup> BP86/AVTZ(-PP) levels. <sup>e</sup>  $\omega_{eX1.5}$ = 634.7 cm<sup>-1</sup> in gas phase. <sup>f</sup> SVFF: simple valence force field.

|                                 | Course   | Ground     | Exp.  |            | Calc.             | (Int.)                            | Madaa                                               |
|---------------------------------|----------|------------|-------|------------|-------------------|-----------------------------------|-----------------------------------------------------|
|                                 | Sym.     | State      | Ne    | Ar         | BP86 <sup>a</sup> | B3LYP <sup>b</sup>                | Modes                                               |
|                                 |          |            | 846.5 | 797.1      | 863.59(15)        | 868.52(62)                        | $\nu(^{58}\text{Ni-}^{16}\text{O}), \Sigma^+$       |
| 160N:E                          |          |            | 841.9 | 792.0      | 860.36(14)        | 863.93(60)                        | $\nu(^{60}\text{Ni-}^{16}\text{O}), \Sigma^+$       |
| UNIF                            |          |            | 837.6 | -          | 857.35(14)        | 859.64(58)                        | $\nu(^{62}\text{Ni-}^{16}\text{O}), \Sigma^+$       |
| C                               | C        | 4 <b>\</b> | 651.1 | -          | 647.68(49)        | 654.67(71)                        | $\nu(^{58}\text{Ni-F}), \Sigma^+$                   |
|                                 | C∞v      | Δ.         | 821.2 | -          | 825.69(15)        | 839.48(72)                        | $\nu(^{58}\text{Ni-}^{18}\text{O}), \Sigma^+$       |
| 180N;E                          |          |            | 816.1 | -          | 822.26(14)        | 834.51(70)                        | $\nu(^{60}\text{Ni-}^{18}\text{O}), \Sigma^+$       |
| ONIF                            |          |            | -     | -          | 819.06(14)        | 829.85(68)                        | $\nu(^{62}\text{Ni-}^{18}\text{O}), \Sigma^+$       |
|                                 |          | 647.1      | -     | 639.93(42) | 645.34(61)        | $\nu(^{58}\text{Ni-F}), \Sigma^+$ |                                                     |
|                                 |          |            | 755.8 | 744.9      | 716.49(122)       | 746.90(159)                       | $v_{as}({}^{58}NiF_2), B_2$                         |
| <sup>16</sup> ONiE              |          |            | 751.1 | 740.3      | 712.02(121)       | 742.16(157)                       | $v_{as}(^{60}NiF_2), B_2$                           |
| <sup>1</sup> ONIF <sub>2</sub>  |          |            | 746.8 | 736.0      | 707.82(119)       | 737.70(155)                       | $v_{as}(^{62}NiF_2), B_2$                           |
|                                 | Car      |            | 640.3 | 629.7      | 611.85(12)        | 628.11(18)                        | $v(^{58}NiF_2), A_1$                                |
|                                 | $C_{2v}$ | $A_2$      | 755.8 | 744.9      | 712.02(121)       | 746.90(159)                       | $v_{as}({}^{58}NiF_2), B_2$                         |
| 1801/17                         |          |            | 751.0 | 740.3      | 712.02(121)       | 742.16(157)                       | $v_{as}(^{60}NiF_2), B_2$                           |
| <sup>18</sup> ONiF <sub>2</sub> |          |            | 746.7 | 736.0      | 707.81(119)       | 737.69(155)                       | $v_{as}(^{62}NiF_2), B_2$                           |
|                                 |          |            | 637.6 | 627.2      | 610.61(11)        | 627.23(18)                        | v( <sup>58</sup> NiF <sub>2</sub> ), A <sub>1</sub> |
| N:16OE                          |          |            | 557.4 | -          | 665.94(74)        | 559.19(23)                        | v( <sup>58</sup> Ni- <sup>16</sup> O), A'           |
| Ni <sup>10</sup> OF             | C        | 2 . /      | 554.7 | -          | 664.10(74)        | 557.16(23)                        | v( <sup>60</sup> Ni- <sup>16</sup> O), A'           |
| N:18OF                          | $C_{s}$  | -A         | 536.1 | -          | 642.52(78)        | 534.51(21)                        | $v(^{58}Ni^{-18}O), A'$                             |
| N1"OF                           |          |            | 533.6 | -          | 640.70(79)        | 532.38(21)                        | v( <sup>60</sup> Ni- <sup>18</sup> O), A'           |

**Table S3.3.** Comparison of observed and computed vibrational frequencies (cm<sup>-1</sup>) for  $ONiF_n$  (n = 1, 2)

Values are calculated at the DFT BP86 <sup>a</sup> & B3LYP/AVTZ levels <sup>b</sup> using the Gaussian 16 package.

| <u>C</u> aracian     | <b>C</b> | C              | Exp.  |       | Calc.             | Malaa              |                                                     |
|----------------------|----------|----------------|-------|-------|-------------------|--------------------|-----------------------------------------------------|
| Species Sym. Star    |          | State          | Ne    | Ar    | BP86 <sup>a</sup> | B3LYP <sup>b</sup> | Modes                                               |
|                      |          |                | 653.6 | 634.3 | 621.69(132)       | 643.38(166)        | $v_{as}(^{104}PdF_2), B_2$                          |
|                      |          |                | 652.9 | 633.6 | 620.94(132)       | 642.60(165)        | $v_{as}(^{105}PdF_2), B_2$                          |
| 16OD4E               |          |                | 652.1 | 632.7 | 620.21(131)       | 641.83(165)        | $v_{as}(^{106}PdF_2), B_2$                          |
| OFur <sub>2</sub>    |          |                | 650.7 | 631.3 | 618.79(131)       | 640.32(164)        | $v_{as}(^{108}PdF_2), B_2$                          |
|                      |          |                | 649.3 | 629.9 | 617.35(130)       | 638.80(163)        | $v_{as}(^{110}PdF_2), B_2$                          |
|                      | C.       | 3 🗛 -          | 586.1 | -     | 560.60(14)        | 575.26(21)         | $v_{s}(^{106}PdF_{2}), A_{1}$                       |
|                      | $C_{2v}$ | $\mathbf{A}_2$ | 653.5 | 634.0 | 621.68(132)       | 643.38(166)        | $v_{as}(^{104}PdF_2), B_2$                          |
|                      |          |                | 652.7 | 633.3 | 620.94(132)       | 642.60(165)        | $v_{as}(^{105}PdF_2), B_2$                          |
| <sup>18</sup> OPdFa  |          |                | 652.1 | 632.5 | 620.21(131)       | 641.83(165)        | $v_{as}(^{106}PdF_2), B_2$                          |
| Of dr 2              |          |                | 650.6 | 631.1 | 618.78(131)       | 640.32(163)        | $v_{as}(^{108}PdF_2), B_2$                          |
|                      |          |                | 649.2 | 629.7 | 617.34(130)       | 638.80(163)        | $v_{as}(^{110}PdF_2), B_2$                          |
|                      |          |                | 585.9 | -     | 560.60(14)        | 575.08(21)         | $v_{s}(^{106}PdF_{2}), A_{1}$                       |
|                      |          |                | -     | 598.4 | -                 | 637.48(149)        | $v(^{105}Pd-F)$                                     |
| F <sup>16</sup> OPdF |          |                | -     | 597.3 | -                 | 636.73(148)        | $v(^{106}Pd-F)$                                     |
|                      | C        | 3 ∧ ″          | -     | 596.2 | -                 | 635.27(148)        | $v(^{108}Pd-F)$                                     |
|                      | $C_{s}$  | Л              | -     | 586.0 | -                 | 630.16(153)        | $\nu(^{105}\text{Pd-F})$                            |
| F <sup>18</sup> OPdF |          |                | -     | 584.6 | -                 | 629.44(153)        | $v(^{106}Pd-F)$                                     |
|                      |          |                | -     | 583.4 | -                 | 628.02(152)        | $v(^{108}Pd-F)$                                     |
| F <sup>16</sup> OPdF | C        | 3 . 1          | 638.7 | 623.4 | -                 | -                  | $\nu$ (Pd-F)                                        |
| F <sup>18</sup> OPdF | $C_{s}$  | A              | 635.4 | 619.8 | -                 | -                  | v(Pd-F)                                             |
|                      |          |                | 784.9 | 757.4 | 791.40(43)        | 778.82(33)         | $\nu(O^{-104}Pd)$                                   |
|                      |          |                | 784.2 | 756.8 | 790.75(43)        | 777.54(32)         | $v(O^{-105}Pd)$                                     |
| 160D4E               |          |                | 783.7 | 755.5 | 790.12(42)        | 778.17(32)         | $v(O^{-106}Pd)$                                     |
| OPur                 |          |                | 782.5 | 754.3 | 788.88(41)        | 776.30(31)         | $v(O^{-108}Pd)$                                     |
|                      |          |                | 781.8 | 753.3 | 787.64(41)        | 775.06(31)         | $v(O^{-110}Pd)$                                     |
|                      | Crow     | $4\Sigma^{-}$  | 580.2 | 573.7 | 594.55(65)        | 602.04(96)         | $\nu(^{106}\text{Pd-F}), \Sigma^+$                  |
|                      | 000      | _              | 749.3 | 723.3 | 755.56(47)        | 743.92(40)         | $\nu(O^{-104}Pd)$                                   |
|                      |          |                | 748.6 | 722.7 | 754.84(46)        | 739.72(37)         | $v(O^{-105}Pd)$                                     |
| 180D4E               |          |                | 747.9 | 722.0 | 754.13(46)        | 742.48(39)         | $v(O^{-106}Pd)$                                     |
| OFur                 |          |                | 746.7 | 720.7 | 752.76(45)        | 741.11(38)         | $v(O^{-108}Pd)$                                     |
|                      |          |                | 745.5 | 719.4 | 751.39(44)        | 739.72(37)         | $v(O^{-110}Pd)$                                     |
|                      |          |                | 580.2 | 573.7 | 591.38(59)        | 598.32(88)         | $\nu$ ( <sup>106</sup> Pd-F), $\Sigma$ <sup>+</sup> |
| unknown              |          |                | 768.1 | -     |                   |                    | $\nu(O-^{104}Pd)$                                   |
| band *               |          |                | 766.9 | -     |                   |                    | $\nu(O^{-105}Pd)$                                   |
| ( <sup>16</sup> O)   |          |                | 765.6 | -     |                   |                    | $\nu(O^{-106}Pd)$                                   |
| unknown              |          |                | 735.7 | -     |                   |                    | $\nu(O^{-104}Pd)$                                   |
| band **              |          |                | 734.3 | -     |                   |                    | $\nu(O^{-105}Pd)$                                   |
| ( <sup>16</sup> O)   |          |                | 732.9 | -     |                   |                    | $v(O^{-106}Pd)$                                     |

**Table S3.4.** Comparison of observed and computed vibrational frequencies (cm<sup>-1</sup>) for OPdF<sub>n</sub> (n = 1, 2)

Values calculated at the DFT BP86 <sup>a</sup> and B3LYP/AVTZ(-PP) <sup>b</sup> levels using the Gaussian 16 package.

| <b>C</b>             |                            |                | Exp.  |            | Calc.             | (Int.)                | Madaa                              |  |
|----------------------|----------------------------|----------------|-------|------------|-------------------|-----------------------|------------------------------------|--|
| Species              | Sym.                       | State          | Ne    | Ar         | BP86 <sup>a</sup> | B3LYP <sup>b</sup>    | Modes                              |  |
| 16OD+E               |                            |                | 712.6 | 709.1      | 663.18(87)        | 691.05(118)           | $v_{as}(^{195}Pt-F_2), B_2$        |  |
| Or u <sup>1</sup> 3  | C                          | 4 🗛 .          | -     | 666.6      | 632.04(44)        | 661.60(60)            | $v(^{195}Pt-F'), A_1$              |  |
|                      | $C_{2v}$                   | $\mathbf{A}_1$ | 712.6 | 709.1      | 663.17(87)        | 691.04(118)           | $v_{as}(^{195}\text{Pt-}F_2), B_2$ |  |
| OPIF3                |                            | -              | 665.9 | 631.81(43) | 661.25(58)        | $v(^{195}Pt-F'), A_1$ |                                    |  |
| <sup>16</sup> OPtF   | C                          | 4 <b>∑</b> -   | 611.8 | -          | 619.87(90)        | 629.64(115)           | $v(^{195}\text{Pt-F}), \Sigma^+$   |  |
| <sup>18</sup> OPtF   | C∞v                        | 4              | 611.8 | -          | 619.61(89)        | 629.43(114)           | $\nu(^{195}\text{Pt-F}), \Sigma^+$ |  |
| $^{16}\text{OPt}F_2$ | C                          | 3 🔥            | 650.2 | 635.2      | 611.85(138)       | 628.94(160)           | $v_{as}(^{195}\text{Pt-}F_2), B_2$ |  |
| $^{18}\text{OPtF}_2$ | OPtF <sub>2</sub> $C_{2v}$ | $A_2$          | 650.2 | 635.2      | 611.79(139)       | 628.92(160)           | $v_{as}(^{195}Pt-F_2), B_2$        |  |

**Table S3.5.** Comparison of observed and computed vibrational frequencies (cm<sup>-1</sup>) for OPtF<sub>n</sub> (n = 1-3)

Values calculated at the BP86 <sup>a</sup> & B3LYP/AVTZ(-PP) <sup>b</sup> level using the Gaussian 16 package.

Table S3.6. Thermochemistry of metal oxo fluorides in kJ mol<sup>-1 [a]</sup>

|                                                 | B3LYP/AVTZ(-PP) |         | CCSD(T)/AVTZ(-PP) |         |
|-------------------------------------------------|-----------------|---------|-------------------|---------|
| $Ni + OF \rightarrow ONiF$                      | -561.12         | -559.22 | -593.27           | -591.37 |
| $\mathrm{Ni} + \mathrm{OF}  \mathrm{NiOF}$      | -261.73         | -261.86 | -286.30           | -286.43 |
| $Ni + OF_2 \rightarrow ONiF_2$                  | -596.20         | -595.41 | -609.57           | -608.79 |
|                                                 |                 |         |                   |         |
| $Pd + OF \rightarrow OPdF$                      | -401.29         | -401.49 | -365.36           | -365.56 |
| $Pd + OF \rightarrow PdOF$                      | -200.84         | -213.12 | -185.80           | -191.88 |
| $Pd + OF_2 \rightarrow OPdF_2$                  | -446.12         | -446.70 | -393.05           | -393.63 |
| Pd + OF <sub>2</sub> → FOPdF ( <sup>3</sup> A") | -372.15         | -372.19 | -317.15           | -317.19 |
|                                                 |                 |         |                   |         |
| $Pt + OF \rightarrow OPtF$                      | -540.00         | -539.07 | -540.79           | -518.74 |
| $Pt + OF \rightarrow PtOF$                      | -198.75         | -210.34 | -245.60           | -257.19 |
| $Pt + OF_2 \rightarrow OPtF_2$                  | -637.44         | -630.36 | -630.42           | -630.36 |
| $OPtF_2 + F \rightarrow OPtF_3$                 | -257.56         | -213.96 | -230.19           | -226.35 |

[a] Values in *italic* style are corrected for ZPE (B3LYP/AVTZ(-PP)) obtained from a harmonic frequency analysis.

|                                |                  | EC(2p) | EC(2p) | EC(2p) | EC(2p) | SD(2p) | SD(2p) | SD(2p) |
|--------------------------------|------------------|--------|--------|--------|--------|--------|--------|--------|
|                                | Spin             | on     |
|                                | State            | oxygen |
|                                |                  | p(x)   | p(y)   | s(z)   | nb     | p(x)   | p(y)   | s(z)   |
| ONiF <sup>c</sup>              | $^{4}\Sigma^{-}$ | 1.42   | 1.42   | 1.39   | 0.38   | 0.43   | 0.43   | 0.15   |
| OCuF <sup>c</sup>              | $^{3}\Sigma^{-}$ | 1.30   | 1.30   | 1.21   | 0.72   | 0.53   | 0.53   | 0.02   |
| ONiF2 <sup>c</sup>             | ${}^{3}A_{2}$    | 1.47   | 1.30   | 0.93   | 0.42   | 0.45   | 0.57   | 0.01   |
| ONiF <sub>2</sub> <sup>c</sup> | ${}^{5}A_{1}$    | 1.11   | 1.23   | 1.19   | 0.56   | 0.79   | 0.65   | 0.30   |
| $OPdF_2^{\ d}$                 | ${}^{3}A_{2}$    | 1.28   | 1.33   | 1.09   | 0.28   | 0.63   | 0.57   | 0.04   |
| OPtF2 <sup>d</sup>             | ${}^{3}A_{2}$    | 1.33   | 1.43   | 1.07   | 0.27   | 0.58   | 0.48   | 0.01   |
| OCuF2 <sup>e</sup>             | ${}^{2}B_{2}$    | 1.93   | 0.99   | 0.74   | 0.38   | 0.00   | 0.91   | 0.24   |
| OCuF <sub>2</sub> <sup>e</sup> | ${}^{4}A_{2}-1$  | 1.11   | 1.25   | 1.15   | 0.59   | 0.77   | 0.60   | 0.34   |
| OCuF <sub>2</sub> <sup>e</sup> | ${}^{4}A_{2}-2$  | 1.00   | 1.00   | 1.55   | 0.38   | 0.98   | 0.98   | 0.03   |
| OPtF3 <sup>d</sup>             | ${}^{4}A_{1}$    | 1.20   | 1.17   | 1.19   | 0.49   | 0.67   | 0.69   | 0.02   |

**Table S3.7.** Charge analysis (Effective electron count: EC(2p))<sup>a</sup> and spin population (spin density: SD(2p))<sup>b</sup> of the oxygen 2*p*-orbitals in OMF<sub>*n*</sub> (M = Ni, Cu, *n* = 1, 2; M = Pd, *n* = 2; M = Pt, *n* = 2, 3).

<sup>a</sup>: EC(2*p*) values according to the Equation: EC(2*p*(*i*)) =  $\sum_{n}$  (ON(*n*) x C(2*p*(*i*), *n*). Here, ON(*n*) represent the occupation number and C(2p(i), n) the percent oxygen 2p(i) composition of the *n*th natural orbital obtained at the CASSCF level (see parts 6-9 in the SI). For the  $\pi$ - and the  $\sigma$ -subspaces the sum was formed over the corresponding bonding (n") and antibonding (n') orbitals only, whereas nb denotes the sum of oxygen 2*p* electrons contributing to non-bonding MOs. <sup>b</sup>: Mulliken spin population analysis. <sup>c</sup>: CASSCF(*m*,*n*)/CASTP2/VTZ-DK level: ONiF (*m* = 13, *n* = 8), OCuF (14,9), ONiF<sub>2</sub> (<sup>3</sup>A<sub>2</sub>: (12,8), <sup>5</sup>A<sub>1</sub>: (12,9)). <sup>d</sup>: CASSCF(12,8)/AVTZ(-PP) level: OPdF<sub>2</sub>, OPtF<sub>2</sub> (*n* = 12); OPtF<sub>3</sub> (*n* = 11). <sup>e</sup>: CASSCF(13,9)/VTZ-DK level.

The effective electron count of the oxygen 2p-orbitals (EC(2p)) in the  $\pi$ - and  $\sigma$ -orbital subspaces are affected by three factors: i) electron correlation effects where more than one configuration contributes to the ground-state. These effects were taken into account by considering multireference CASSCF wavefunctions. ii) polarization of bonding electrons, which is accounted for by the CID ratios (Table 3 main text) and, iii) delocalization of oxygen 2p electrons into more than the two selected MOs (n" and n'). The latter contributions can be analyzed explicitly by examining the respective oxygen contributions to these additional MOs, which in most cases are non-bonding (nb) MOs, or by comparison of the EC(2p) values from the  $\pi$ - and  $\sigma$ -subspaces to the total Mulliken population for the respective oxygen 2p orbitals (see Table S3.7, 6<sup>th</sup> column). We note that the Mulliken spin population in open-shell electronic structures can be affected by a minority spin density from orthogonal orbital subspaces due to spin polarization.<sup>1</sup>

#### **References to Part 3**

1 S. K. Singh, J. Eng, M. Atanasov and F. Neese, Covalency and chemical bonding in transition metal complexes: An *ab initio* based ligand field perspective, *Coord. Chem. Rev.*, **2017**, 344, 2–25.

# Part 4. DFT and CCSD(T) calculations

**Table S4.1.** Structural parameters (bond lengths r in Å, angles in deg) for  $OMF_n$  (M = Ni, n = 1, 2; M = Pd and Pt, n = 1-4) compounds.

## **ONiF**<sub>*n*</sub>, n = 1, 2

| NiOF | , <b>C</b> s |
|------|--------------|
|------|--------------|

| Electronic State     Method     Total energy     r(MO), r(MF),<br>ang(OMF)       2A"     B3I YP/AVTZ     -1683 40851     1.772 1.462 108 7 | 101, Us          |            |              |                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|--------------|---------------------------|--|
| <sup>2</sup> A" B3LYP/AVTZ -1683 40851 1 772 1 462 108 7                                                                                   | Electronic State | Method     | Total energy | r(MO), r(MF),<br>ang(OMF) |  |
|                                                                                                                                            | <sup>2</sup> A"  | B3LYP/AVTZ | -1683.40851  | 1.772, 1.462, 108.7       |  |
| <sup>2</sup> A" BP86/AVTZ -1683.628938 1.685, 1.542, 111.7                                                                                 | <sup>2</sup> A"  | BP86/AVTZ  | -1683.628938 | 1.685, 1.542, 111.7       |  |
| <sup>2</sup> A' B3LYP/AVTZ -1683.407623 1.801, 1.475, 101.4                                                                                | <sup>2</sup> A'  | B3LYP/AVTZ | -1683.407623 | 1.801, 1.475, 101.4       |  |
| <sup>2</sup> A' BP86/AVTZ -1683.621418 1.710, 1.547, 103.9                                                                                 | <sup>2</sup> A'  | BP86/AVTZ  | -1683.621418 | 1.710, 1.547, 103.9       |  |

|--|

| Electronic<br>State         | Method       | Total energy | r(MO), r(MF),<br>ang(OMF) | T₁ parameter |
|-----------------------------|--------------|--------------|---------------------------|--------------|
| 4 <b>∑</b> −                | B3LYP/AVTZ   | -1683.520949 | 1.618, 1.733, 180.0       |              |
| 4 <b>∑</b> −                | BP86/AVTZ    | -1683.742678 | 1.621, 1.734, 180.0       |              |
| <sup>4</sup> Σ <sup>-</sup> | CCSD(T)/AVTZ | -1682.120430 | 1.660, 1.736, 180.0       | 0.05439496   |
| <sup>4</sup> Σ <sup>-</sup> | CCSD(T)/AVQZ | -1682.205289 | 1.649, 1.736, 180.0       | 0.09263727   |

#### ONiF<sub>2</sub>, $C_{2v}$

| Electronic State            | Method          | Total operav | r(MO), r(MF),       | <i>T</i> <sub>1</sub> |
|-----------------------------|-----------------|--------------|---------------------|-----------------------|
|                             | Method          | rotal energy | ang(OMF)            | parameters            |
| <sup>3</sup> A <sub>2</sub> | B3LYP/AVTZ      | -1783.359261 | 1.595, 1.720, 107.0 |                       |
| <sup>3</sup> A <sub>2</sub> | BP86/AVTZ       | -1783.603238 | 1.609, 1.730, 108.7 |                       |
| <sup>3</sup> A <sub>2</sub> | CCSD(T)/AVDZ    | -1781.546784 | 1.590, 1.719, 108.7 | 0.049                 |
| <sup>3</sup> A <sub>2</sub> | CCSD(T)/AVTZ    | -1781.826432 | 1.583, 1.711, 108.2 | 0.047                 |
| <sup>3</sup> A <sub>2</sub> | CCSD(T)/AVDZ-DK | -1793.975167 | 1.583, 1.712, 109.0 | 0.049                 |
| <sup>3</sup> A <sub>2</sub> | CCSD(T)/AVTZ-DK | -1794.256127 | 1.576, 1.703, 108.6 | 0.047                 |
| <sup>5</sup> A1             | B3LYP/AVTZ      | -1783.366192 | 1.720, 1.738, 114.2 |                       |
| <sup>5</sup> A1             | BP86/AVTZ       | -1783.592835 | 1.696, 1.755, 115.3 |                       |
| <sup>5</sup> A1             | CCSD(T)/AVDZ    | -1781.550693 | 1.708, 1.744, 112.2 | 0.052                 |
| <sup>5</sup> A1             | CCSD(T)/AVDZ-DK | -1793.978162 | 1.692, 1.736, 113.0 | 0.051                 |
| <sup>5</sup> A1             | CCSD(T)/AVTZ-DK | -1794.253686 | 1.683, 1.727, 113.1 | 0.055                 |

## FONiF, Cs

| Electronic State | Method       | Total energy | r(MO), r(MF), r(OF'), ang(MOF'),<br>ang(OMF) |
|------------------|--------------|--------------|----------------------------------------------|
| <sup>3</sup> A'' | B3LYP/AVTZ   | -1783.347492 | 1.759, 1.736, 1.450, 99.7, 182.3             |
| <sup>3</sup> A'' | CCSD(T)/AVTZ | -1781.812767 | 1.786, 1.733, 1.504, 81.8, 178.7             |
| <sup>3</sup> A'  | B3LYP/AVTZ   | -1783.317855 | 1.847, 1.743, 1.496, 76.9, 160.0             |
| <sup>3</sup> A'  | CCSD(T)/AVTZ | -1781.434315 | 1.787, 1.742, 1.502, 90.9, 179.6             |

# $PdOF_n$ , n = 1-4

| PdOF, Cs         |                   |                              |                        |
|------------------|-------------------|------------------------------|------------------------|
| Electronic State | Method            | Total energy                 | r(MO), r(OF), ang(MOF) |
| <sup>2</sup> A'  | B3LYP/AVTZ(-PP)   | -302.5147411                 | 1.947, 1.451, 104.6    |
| <sup>2</sup> A'  | BP86/AVTZ(-PP)    | -302.5921325                 | 1.901, 1.486, 107.0    |
| <sup>2</sup> A'  | CCSD(T)/AVTZ(-PP) | -301.7272352                 | 1.945, 1.473, 100.2    |
| <sup>2</sup> A"  | B3LYP/AVTZ(-PP)   | -302.5025193                 | 1.948, 1.437, 115.0    |
| <sup>2</sup> A"  | BP86/AVTZ(-PP)    | Converged to <sup>2</sup> A' |                        |
| <sup>2</sup> A"  | CCSD(T)/AVTZ(-PP) | No convergence               |                        |

# OPdF, C∞v

| 01 a1 , 0≈v                 |                   |              |                        |
|-----------------------------|-------------------|--------------|------------------------|
| Electronic State            | Method            | Total energy | r(MO), r(MF), ang(OMF) |
| 4Σ-                         | B3LYP/AVTZ(-PP)   | -302.5911357 | 1.759, 1.892, 180.0    |
| <sup>4</sup> Σ <sup>-</sup> | BP86/AVTZ(-PP)    | -302.6755204 | 1.762, 1.892, 180.0    |
| <sup>4</sup> Σ <sup>-</sup> | CCSD(T)/AVTZ(-PP) | -301.7951842 | 1.755, 1.889, 180.0    |

# $OPdF_2, C_{2v}$

| Electronic State            | Method            | Total energy        | r(MO), r(MF), ang(OMF) |
|-----------------------------|-------------------|---------------------|------------------------|
| <sup>3</sup> A <sub>2</sub> | B3LYP/AVTZ(-PP)   | -402.433177         | 1.733, 1.883, 103.4    |
| <sup>3</sup> A <sub>2</sub> | BP86/AVTZ(-PP)    | -402.531798         | 1.741, 1.893, 104.6    |
| <sup>3</sup> A <sub>2</sub> | CCSD(T)/AVTZ(-PP) | -401.4941764        | 1.722, 1.877, 101.6    |
| <sup>5</sup> A1             | B3LYP/AVTZ(-PP)   | -402.3965208        | 1.888, 1.909, 107.4    |
| <sup>5</sup> A1             | BP86/AVTZ(-PP)    | -402.4889068        | 1.868, 1.929, 110.1    |
| <sup>5</sup> A1             | CCSD(T)/AVTZ(-PP) | imaginary frequency |                        |

| $OPdF_3, C_{2\nu}$          |                   |              |                                    |
|-----------------------------|-------------------|--------------|------------------------------------|
| Electronic State            | Method            | Total energy | r(MO), r(MF*2), r(MF'), ang(OMF*2) |
| <sup>4</sup> A <sub>1</sub> | B3LYP/AVTZ(-PP)   | -502.2646592 | 1.809, 1.856*2, 1.864, 91.2        |
| <sup>4</sup> A <sub>1</sub> | BP86/AVTZ(-PP)    | -502.3754365 | 1.794, 1.877*2, 1.880, 91.6        |
| <sup>4</sup> A <sub>1</sub> | CCSD(T)/AVTZ(-PP) | -501.1688789 | 1.810, 1.836*2, 1.854, 90.9        |

# $OPdF_4, C_{4v}$

| 01 01 4, 040                |                 |              |                          |
|-----------------------------|-----------------|--------------|--------------------------|
| Electronic State            | Method          | Total energy | r(MO), r(MF*4), ang(OMF) |
| <sup>3</sup> A <sub>2</sub> | B3LYP/AVTZ(-PP) | -602.0751199 | 1.725, 1.870, 99.0       |
| <sup>3</sup> A <sub>2</sub> | BP86/AVTZ(-PP)  | -602.2030694 | 1.748, 1.882, 99.8       |
|                             |                 |              |                          |

## FOPdF, Cs

| Electronic State | Method            | Total energy | r(MO), r(MF), r(OF'), ang(MOF'),<br>ang(OMF) |
|------------------|-------------------|--------------|----------------------------------------------|
| <sup>3</sup> A'' | B3LYP/AVTZ-PP     | -402.4048332 | 1.868, 1.888, 1.430, 111.7, 183.3            |
| <sup>3</sup> A'' | CCSD(T)/AVTZ(-PP) | -401.4650966 | 1.860, 1.887, 1.444, 108.8, 178.1            |
| <sup>3</sup> A'  | CCSD(T)/AVTZ(-PP) | -401.4460713 | 1.992,1.877, 1.488, 79.6, 154.7              |

# **PtOF**<sub>*n*</sub>, n = 1-4

## PtOF, $C_s$

| Electronic State | Method          | Total energy | r(MO), r(OF), ang(MOF) |
|------------------|-----------------|--------------|------------------------|
| <sup>2</sup> A'  | B3LYP/AVTZ(-PP) | -294.4429487 | 1.938, 1.45, 107.6     |
| <sup>2</sup> A'  | BP86/AVTZ(-PP)  | -294.4565851 | 1.883, 1.466, 107.3    |
| <sup>2</sup> A"  | B3LYP/AVTZ(-PP) | -294.4605045 | 1.813, 1.478, 114.2    |
| <sup>2</sup> A"  | BP86/AVTZ(-PP)  | -294.5839812 | 1.762, 1.585, 115.3    |
|                  |                 |              |                        |

## OPtF, **C**∞v

| Electronic State            | Method            | Total energy | r(MO), r(MF), ang(OMF) |
|-----------------------------|-------------------|--------------|------------------------|
| <sup>4</sup> Σ <sup>-</sup> | B3LYP/AVTZ(-PP)   | -294.5725826 | 1.754, 1.902, 180.0    |
| <sup>4</sup> Σ <sup>-</sup> | BP86/AVTZ(-PP)    | -294.6838978 | 1.761, 1.906, 180.0    |
| 4Σ-                         | CCSD(T)/AVTZ(-PP) | -293.7204063 | 1.740, 1.897, 180.0    |

## $OPtF_2, C_{2\nu}$

| Electronic State            | Method            | Total energy | r(MO), r(MF), ang(OMF) |
|-----------------------------|-------------------|--------------|------------------------|
| <sup>3</sup> A <sub>2</sub> | B3LYP/AVTZ(-PP)   | -394.4351107 | 1.731, 1.901, 102.8    |
| <sup>3</sup> A <sub>2</sub> | BP86/AVTZ(-PP)    | -394.5575036 | 1.743, 1.908, 103.3    |
| <sup>3</sup> A <sub>2</sub> | CCSD(T)/AVTZ(-PP) | -393.4432615 | 1.723, 1.892, 101.9    |
| <sup>5</sup> A1             | B3LYP/AVTZ(-PP)   | -394.3839116 | 1.911, 1.892, 100.3    |
| <sup>5</sup> A1             | BP86/AVTZ(-PP)    | -394.5032830 | 1.908, 1.900, 100.2    |
| <sup>5</sup> A1             | CCSD(T)/AVTZ(-PP) | -393.385495  | 1.910, 1.879, 100.1    |

# FOPtF, Cs

| Electronic State | Method            | Total energy                 | r(MO), r(MF), r(OF'), ang(MOF'),<br>ang(OMF) |
|------------------|-------------------|------------------------------|----------------------------------------------|
| <sup>3</sup> A'' | B3LYP/AVTZ(-PP)   | -394.3749381                 | 1.835, 1.891, 1.464, 112.5, 176.5            |
| <sup>3</sup> A'' | BP86/AVTZ(-PP)    | -394.4989477                 | 1.783, 1.889, 1.597, 109.9, 187.3            |
| <sup>3</sup> A'' | CCSD(T)/AVTZ(-PP) | -393.3798976                 | 1.830, 1.884, 1.475, 108.9, 176.8            |
| <sup>3</sup> A'  | B3LYP/AVTZ(-PP)   | -394.3473293                 | 1.882, 1.898, 1.441, 113.9, 186.0            |
| <sup>3</sup> A'  | BP86/AVTZ(-PP)    | -394.4667617                 | 1.851, 1.898, 1.517, 115.8, 191.8            |
| <sup>3</sup> A'  | CCSD(T)/AVTZ(-PP) | Converged to <sup>3</sup> A" |                                              |

## OPtF<sub>3</sub>, *C*<sub>2</sub>*v*

| Electronic State            | Method            | Total energy | r(MO), r(MF*2), r(MF'),<br>ang(OMF*2) |
|-----------------------------|-------------------|--------------|---------------------------------------|
| <sup>4</sup> A <sub>1</sub> | B3LYP/AVTZ(-PP)   | -494.296374  | 1.791, 1.859*2, 1.888, 92.0           |
| <sup>4</sup> A <sub>1</sub> | BP86/AVTZ(-PP)    | -494.4282967 | 1.796, 1.871*2, 1.902, 92.1           |
| <sup>4</sup> A <sub>1</sub> | CCSD(T)/AVTZ(-PP) | -493.1555755 | 1.784, 1.845*2, 1.878, 92.0           |

# OPtF<sub>4</sub>, *C*<sub>4v</sub>

| Electronic State            | Method          | Total energy | r(MO), r(MF*4), ang(OMF) |
|-----------------------------|-----------------|--------------|--------------------------|
| <sup>3</sup> A <sub>2</sub> | B3LYP/AVTZ(-PP) | -594.1203162 | 1.736, 1.889, 99.1       |
| <sup>3</sup> A <sub>2</sub> | BP86/AVTZ(-PP)  | -594.2632682 | 1.759, 1.901, 99.4       |
**Table S4.2.** Computed harmonic frequencies (cm<sup>-1</sup>) for  $ONiF_n$  (n = 1, 2).

## NiOF (X<sup>2</sup>A', C<sub>s</sub>), B3LYP/AVTZ

| 160/58Ni      | 160/60Ni   | 160/62Ni   | 180/58Ni   | 180/60Ni   | 180/62Ni   | Sym. |
|---------------|------------|------------|------------|------------|------------|------|
| 829.22(64)    | 829.21(64) | 829.20(64) | 804.91(63) | 804.90(63) | 804.89(63) | Α'   |
| 559.19(23)    | 557.16(23) | 555.26(23) | 534.51(21) | 532.38(21) | 530.38(21) | Α'   |
| <br>151.67(8) | 151.11(8)  | 150.59(8)  | 149.94(7)  | 149.40(7)  | 148.89(7)  | Α'   |

#### NiOF (X<sup>2</sup>A', C<sub>s</sub>), BP86/AVTZ

| 160/58Ni   | 160/60Ni   | 160/62Ni   | 180/58Ni   | 180/60Ni   | 180/62Ni   | Sym. |
|------------|------------|------------|------------|------------|------------|------|
| 665.94(74) | 664.10(74) | 662.39(75) | 642.52(78) | 640.70(79) | 639.02(80) | Α'   |
| 555.38(82) | 554.91(81) | 554.45(80) | 534.63(71) | 534.03(70) | 533.44(69) | Α'   |
| 150.71(7)  | 150.14(7)  | 149.59(7)  | 148.66(7)  | 148.10(7)  | 147.57(7)  | Α'   |

## ONiF (X<sup>4</sup>Σ<sup>-</sup>, C<sub>∞v</sub>), B3LYP/AVTZ

| 160/58Ni     | 160/60Ni     | 160/62Ni     | 180/58Ni     | 180/60Ni     | 180/62Ni     | Sym. |
|--------------|--------------|--------------|--------------|--------------|--------------|------|
| 868.52(62)   | 863.93(60)   | 859.64(58)   | 839.48(72)   | 834.51(70)   | 829.85(68)   | Σ    |
| 654.67(71)   | 654.01(72)   | 653.35(72)   | 645.34(61)   | 644.96(62)   | 644.58(62)   | Σ    |
| 162.82(36)*2 | 161.80(35)*2 | 160.85(35)*2 | 159.47(35)*2 | 158.44(34)*2 | 157.46(34)*2 | Π    |

#### **ONiF (X<sup>4</sup>Σ<sup>-</sup>, C**<sub>∞ν</sub>), BP86/AVTZ

| <br>160/58Ni   | 160/60Ni   | 160/62Ni   | 180/58Ni   | 180/60Ni   | 180/62Ni   | Sym. |
|----------------|------------|------------|------------|------------|------------|------|
| 891.25(74)     | 886.75(72) | 882.53(70) | 859.46(80) | 854.59(77) | 850.01(76) | Σ    |
| 647.68(49)     | 646.88(49) | 646.09(50) | 639.93(42) | 639.40(42) | 638.87(43) | Σ    |
| <br>151.57(36) | 150.63(27) | 149.74(26) | 148.45(26) | 147.49(26) | 146.59(25) | Π    |

ONIF (X<sup>4</sup>Σ<sup>-</sup>, C<sub>∞v</sub>), CCSD(T)/AVTZ

|  | 160/58Ni | 160/60Ni | 180/58Ni | 180/60Ni | Sym. |  |  |  |
|--|----------|----------|----------|----------|------|--|--|--|
|  | 741.46   | 736.85   | 733.81   | 729.23   | Σ    |  |  |  |
|  | 570.90   | 570.85   | 549.62   | 549.47   | Σ    |  |  |  |
|  | 127.75   | 127.22   | 124.89   | 124.35   | Π    |  |  |  |

# ONIF ( $X^{4}\Sigma^{-}$ , $C_{\infty v}$ ), CCSD(T)/AVQZ

| <br>160/58Ni | 160/60Ni | 180/58Ni | 180/60Ni | Sym. |
|--------------|----------|----------|----------|------|
| 748.00       | 743.48   | 742.71   | 738.30   | Σ    |
| 606.58       | 606.43   | 582.06   | 581.74   | Σ    |
| 174.36       | 173.03   | 171.41   | 170.08   | Π    |

# ONiF<sub>2</sub> (X<sup>3</sup>A<sub>2</sub>, C<sub>2v</sub>), B3LYP/AVTZ

| 160/58Ni    | 160/60Ni    | 160/62Ni    | 180/58Ni    | 180/60Ni    | 180/62Ni    | Sym.           |
|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
| 860.95(4)   | 857.84(3)   | 854.94(3)   | 822.78(4)   | 819.47(4)   | 816.38(4)   | A <sub>1</sub> |
| 746.90(159) | 742.16(157) | 737.70(155) | 746.90(159) | 742.16(157) | 737.69(155) | B <sub>2</sub> |
| 628.11(18)  | 627.76(18)  | 627.43(18)  | 627.23(18)  | 626.94(18)  | 626.66(18)  | A <sub>1</sub> |
| 220.85(26)  | 219.08(26)  | 217.42(25)  | 219.63(26)  | 217.85(25)  | 216.17(25)  | B1             |
| 187.55(1)   | 187.23(1)   | 186.92(1)   | 181.74(7)   | 181.06(7)   | 180.43(0)   | B <sub>2</sub> |
| 182.36(7)   | 181.64(7)   | 180.96(7)   | 181.08(0)   | 180.75(0)   | 180.40(7)   | A <sub>1</sub> |

## ONiF<sub>2</sub> (X<sup>3</sup>A<sub>2</sub>, C<sub>2v</sub>), BP86/AVTZ

| 160/58Ni    | 160/60Ni    | 160/62Ni    | 180/58Ni    | 180/60Ni    | 180/62Ni    | Sym.           |
|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
| 863.58(15)  | 860.36(14)  | 857.35(14)  | 822.26(14)  | 822.26(14)  | 819.06(14)  | A <sub>1</sub> |
| 716.49(122) | 712.02(121) | 707.82(119) | 712.02(121) | 712.02(121) | 707.81(119) | B <sub>2</sub> |
| 611.85(12)  | 611.51(12)  | 611.18(12)  | 610.61(11)  | 610.61(11)  | 610.33(11)  | A <sub>1</sub> |
| 209.82(19)  | 208.13(19)  | 206.54(18)  | 206.78(18)  | 206.78(18)  | 205.18(18)  | B <sub>1</sub> |
| 183.45(6)   | 182.76(6)   | 182.09(6)   | 182.11(6)   | 182.11(6)   | 181.48(6)   | A <sub>1</sub> |
| 159.88(2)   | 159.59(2)   | 159.31(2)   | 154.12(2)   | 154.12(2)   | 153.83(2)   | B <sub>2</sub> |

## $ONiF_2$ (X<sup>3</sup>A<sub>2</sub>, $C_{2v}$ ), CCSD(T)/AVDZ

| 160/58Ni | 160/60Ni | 180/58Ni | 180/60Ni | Sym.           |
|----------|----------|----------|----------|----------------|
| 903.53   | 900.22   | 863.72   | 860.19   | A <sub>1</sub> |
| 778.44   | 773.61   | 778.44   | 773.61   | B <sub>2</sub> |
| 652.01   | 651.63   | 650.92   | 650.61   | A <sub>1</sub> |
| 257.31   | 254.63   | 256.58   | 253.92   | B <sub>2</sub> |
| 224.69   | 224.29   | 216.11   | 215.70   | A <sub>1</sub> |
| 214.60   | 213.82   | 213.92   | 213.18   | B <sub>1</sub> |

# $\underline{ONiF_2} (X^3A_2, C_{2v}), CCSD(T)/AVTZ$

| 160/58Ni   | 160/60Ni | 180/58Ni | 180/60Ni | Sym.           |
|------------|----------|----------|----------|----------------|
| 915.23     | 911.84   | 874.95   | 871.34   | A <sub>1</sub> |
| 781.30     | 776.33   | 781.29   | 776.33   | B <sub>2</sub> |
| 654.43     | 653.99   | 653.46   | 653.09   | A <sub>1</sub> |
| 226.57     | 224.67   | 224.98   | 223.07   | B <sub>2</sub> |
| 219.32     | 218.52   | 218.59   | 217.82   | A <sub>1</sub> |
| <br>185.26 | 185.03   | 179.08   | 178.86   | B <sub>1</sub> |

## ONiF<sub>2</sub> (X<sup>3</sup>A<sub>2</sub>, C<sub>2v</sub>), CCSD(T)/AVDZ-DK

|  | 160/58Ni | 160/60Ni | 180/58Ni | 180/60Ni | Sym.           |  |  |  |
|--|----------|----------|----------|----------|----------------|--|--|--|
|  | 914.90   | 911.45   | 875.01   | 871.34   | A <sub>1</sub> |  |  |  |
|  | 781.60   | 776.65   | 781.60   | 776.66   | B <sub>2</sub> |  |  |  |
|  | 662.00   | 661.65   | 660.74   | 660.46   | A <sub>1</sub> |  |  |  |
|  | 229.77   | 227.84   | 228.53   | 226.60   | B <sub>2</sub> |  |  |  |
|  | 215.26   | 214.33   | 214.39   | 213.50   | A <sub>1</sub> |  |  |  |
|  | 180.52   | 180.28   | 174.05   | 173.81   | B <sub>1</sub> |  |  |  |

# ONIF<sub>2</sub> (X<sup>3</sup>A<sub>2</sub>, C<sub>2v</sub>), CCSD(T)/AVTZ-DK

| 160/58Ni | 160/60Ni | 180/58Ni | 180/60Ni | Sym.           |
|----------|----------|----------|----------|----------------|
| 928.12   | 924.67   | 887.28   | 883.62   | A <sub>1</sub> |
| 788.10   | 783.06   | 788.10   | 783.05   | B <sub>2</sub> |
| 674.97   | 674.57   | 674.04   | 673.71   | A <sub>1</sub> |
| 233.16   | 231.22   | 232.76   | 230.84   | B <sub>2</sub> |
| 184.43   | 184.1    | 178.81   | 178.31   | A <sub>1</sub> |
| 179.37   | 178.84   | 177.92   | 177.60   | B <sub>1</sub> |

# ONiF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>, C<sub>2v</sub>), B3LYP/AVTZ

| <br>160/58Ni   | 160/60Ni    | 160/62Ni    | 180/58Ni    | 180/60Ni    | 180/62Ni    | sym.           |
|----------------|-------------|-------------|-------------|-------------|-------------|----------------|
| 724.06(128)    | 719.83(127) | 715.85(127) | 724.06(128) | 719.82(127) | 715.84(125) | B <sub>2</sub> |
| 660.00(20)     | 657.04(20)  | 654.26(19)  | 643.99(37)  | 641.18(37)  | 638.57(38)  | A <sub>1</sub> |
| 612.45(33)     | 612.44(33)  | 612.43(33)  | 598.61(16)  | 598.35(15)  | 598.08(14)  | A <sub>1</sub> |
| 187.91(2)      | 187.49(2)   | 187.09(2)   | 181.89(2)   | 181.46(2)   | 181.04(2)   | B <sub>2</sub> |
| 151.19(5)      | 150.65(5)   | 150.13(5)   | 150.78(5)   | 150.26(5)   | 149.76(5)   | A <sub>1</sub> |
| <br>132.90(35) | 131.83(34)  | 130.82(34)  | 131.77(35)  | 130.69(34)  | 129.67(34)  | B <sub>1</sub> |

## ONiF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>, C<sub>2v</sub>), BP86/AVTZ

| 160/58Ni   | 160/60Ni   | 160/62Ni   | 180/58Ni   | 180/60Ni   | 180/62Ni   | sym.           |
|------------|------------|------------|------------|------------|------------|----------------|
| 726.68(2)  | 724.02(2)  | 721.54(2)  | 695.16(3)  | 692.25(3)  | 689.53(3)  | A <sub>1</sub> |
| 677.38(67) | 673.52(66) | 669.88(65) | 677.37(67) | 673.51(66) | 669.87(65) | B <sub>2</sub> |
| 587.83(20) | 587.35(20) | 586.88(20) | 585.92(19) | 585.58(19) | 585.25(19) | A <sub>1</sub> |
| 179.76(2)  | 179.33(2)  | 178.92(2)  | 173.96(2)  | 173.52(2)  | 173.09(2)  | B <sub>2</sub> |
| 143.45(5)  | 142.93(5)  | 142.43(5)  | 143.08(5)  | 142.58(5)  | 142.10(5)  | A <sub>1</sub> |
| 109.25(26) | 108.37(26) | 107.53(26) | 108.18(26) | 107.29(26) | 106.45(25) | B1             |

## $\underline{ONiF_2} ({}^{5}A_1, C_{2v}), CCSD(T)/AVDZ$

| 160/58Ni | 160/60Ni | 180/58Ni | 180/60Ni | Sym.           |
|----------|----------|----------|----------|----------------|
| 747.83   | 743.46   | 747.83   | 743.46   | B <sub>2</sub> |
| 703.44   | 700.57   | 681.22   | 678.25   | A <sub>1</sub> |
| 597.45   | 597.43   | 588.08   | 588.06   | A <sub>1</sub> |
| 172.23   | 171.78   | 166.80   | 166.30   | B <sub>2</sub> |
| 138.03   | 137.17   | 137.52   | 136.68   | A <sub>1</sub> |
| 130.97   | 129.87   | 131.41   | 130.31   | B <sub>1</sub> |

# ONiF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>, C<sub>2v</sub>), CCSD(T)/AVDZ-DK

| 160/58Ni | 160/60Ni | 180/58Ni | 180/60Ni | Sym.           |
|----------|----------|----------|----------|----------------|
| 752.73   | 748.25   | 752.73   | 748.25   | B <sub>2</sub> |
| 735.02   | 731.95   | 710.33   | 707.08   | A <sub>1</sub> |
| 628.27   | 628.20   | 619.77   | 619.77   | A <sub>1</sub> |
| 194.49   | 194.07   | 188.08   | 187.65   | B <sub>2</sub> |
| 161.98   | 161.40   | 161.62   | 161.05   | A <sub>1</sub> |
| 141.50   | 140.30   | 140.40   | 139.20   | B <sub>1</sub> |

# ONIF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>, C<sub>2v</sub>), CCSD(T)/AVTZ-DK

| - | ., = .,, |          |          |          |                |
|---|----------|----------|----------|----------|----------------|
|   | 160/58Ni | 160/60Ni | 180/58Ni | 180/60Ni | sym.           |
|   | 752.68   | 748.28   | 752.68   | 748.28   | B <sub>2</sub> |
|   | 750.19   | 747.09   | 723.27   | 719.95   | A <sub>1</sub> |
|   | 633.25   | 633.12   | 626.20   | 626.19   | A <sub>1</sub> |
|   | 201.94   | 201.58   | 196.05   | 195.66   | B <sub>2</sub> |
|   | 159.22   | 158.39   | 158.71   | 157.90   | A <sub>1</sub> |
|   | 147.83   | 146.16   | 147.58   | 145.92   | B <sub>1</sub> |

## FONIF (<sup>3</sup>A", *C*<sub>s</sub>), B3LYP/AVTZ

| <br>160/58Ni | 160/60Ni    | 160/62Ni    | 180/58Ni    | 180/60Ni    | 180/62Ni    | Sym. |
|--------------|-------------|-------------|-------------|-------------|-------------|------|
| 902.37(31)   | 902.27(32)  | 902.19(32)  | 875.41(31)  | 875.32(31)  | 875.23(32)  | A'   |
| 742.00(199)  | 737.36(196) | 732.99(193) | 734.58(195) | 729.98(192) | 725.65(189) | A'   |
| 587.65(0)    | 587.60(0)   | 587.56(0)   | 566.50(0)   | 566.33(0)   | 566.16(0)   | A'   |
| 190.07(28)   | 188.69(28)  | 187.38(27)  | 188.41(28)  | 187.02(27)  | 185.70(27)  | A'   |
| 123.65(26)   | 122.84(26)  | 122.09(26)  | 121.54(26)  | 120.72(26)  | 119.95(25)  | Α″   |
| <br>87.68(4) | 87.53(4)    | 87.39(4)    | 87.32(4)    | 87.18(4)    | 87.04(4)    | A'   |

## FONiF (<sup>3</sup>A", C<sub>s</sub>), CCSD(T)/AVTZ

| <br>160/58Ni | 160/60Ni | 160/62Ni | 180/58Ni | 180/60Ni | 180/62Ni | Sym. |
|--------------|----------|----------|----------|----------|----------|------|
| 810.28       | 810.09   | 809.94   | 787.00   | 786.76   | 786.57   | A'   |
| 749.69       | 745.1    | 740.77   | 743.07   | 738.58   | 734.34   | A'   |
| 577.89       | 577.79   | 577.68   | 556.18   | 555.93   | 555.69   | A'   |
| 180.15       | 178.93   | 177.78   | 178.62   | 177.37   | 176.22   | A'   |
| 125.55       | 124.85   | 124.28   | 124.54   | 124.28   | 124.03   | Α″   |
| <br>124.8    | 124.54   | 124.19   | 122.25   | 121.53   | 120.85   | A'   |

**Table S4.3.** Computed harmonic frequencies  $(cm^{-1})$  for OPdF<sub>n</sub> (n = 1-4).

#### PdOF (<sup>2</sup>A', C<sub>s</sub>), B3LYP/AVTZ(-PP)

| 16O/104Pd  | 16O/105Pd  | 16O/106Pd  | 16O/108Pd  | 16O/110Pd  | 18O/104Pd  | 18O/105Pd  | 18O/106Pd  | 18O/108Pd  | 18O/110Pd  | Sym. |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
| 869.68(89) | 869.68(89) | 869.68(89) | 869.68(89) | 869.68(89) | 843.49(86) | 843.49(86) | 843.49(86) | 843.49(86) | 843.49(86) | Α'   |
| 509.42(12) | 509.10(12) | 508.79(12) | 508.19(12) | 507.58(12) | 484.50(11) | 484.17(11) | 483.84(11) | 483.20(11) | 482.56(11) | Α'   |
| 180.78(5)  | 180.65(5)  | 180.52(5)  | 180.27(5)  | 180.02(5)  | 178.94(5)  | 178.81(5)  | 178.69(5)  | 178.44(5)  | 178.19(5)  | Α'   |

#### PdOF (<sup>2</sup>A', *C*<sub>s</sub>), BP86/AVTZ(-PP)

| 16O/104Pd   | 16O/105Pd   | 16O/106Pd   | 16O/108Pd   | 16O/110Pd   | 18O/104Pd   | 18O/105Pd   | 18O/106Pd   | 18O/108Pd   | 18O/110Pd   | Sym. |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 733.74(131) | 733.72(131) | 733.71(131) | 733.68(131) | 733.65(131) | 712.40(125) | 712.39(125) | 712.37(125) | 712.34(125) | 712.31(125) | Α'   |
| 520.74(4)   | 520.43(4)   | 520.12(4)   | 519.52(4)   | 518.91(4)   | 494.80(4)   | 494.47(4)   | 494.14(4)   | 493.51(4)   | 492.87(4)   | Α'   |
| 181.58(6)   | 181.44(6)   | 181.32(6)   | 181.06(6)   | 181.81(6)   | 179.58(6)   | 179.45(6)   | 179.32(6)   | 179.08(6)   | 178.82(6)   | Α'   |

#### OPdF (X<sup>4</sup>Σ<sup>−</sup>, C<sub>∞v</sub>), B3LYP/AVTZ(-PP)

| 16O/104Pd  | 16O/105Pd  | 16O/106Pd  | 16O/108Pd  | 16O/110Pd  | 18O/104Pd  | 18O/105Pd  | 18O/106Pd  | 18O/108Pd  | 18O/110Pd  | Sym. |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
| 778.82(33) | 777.54(32) | 778.17(32) | 776.30(31) | 775.06(31) | 743.92(40) | 739.72(37) | 742.48(39) | 741.11(38) | 739.72(37) | Σ    |
| 602.27(95) | 601.82(96) | 602.04(96) | 601.39(96) | 600.95(96) | 598.65(88) | 597.66(89) | 598.32(88) | 597.99(89) | 597.66(89) | Σ    |
| 160.54(17) | 160.16(17) | 160.35(17) | 159.80(17) | 159.43(17) | 156.62(16) | 155.48(16) | 156.24(16) | 155.86(16) | 155.48(16) | Π    |

#### OPdF ( $X^{4}\Sigma^{-}$ , $C_{\infty v}$ ), BP86/AVTZ(-PP)

| <br>16O/104Pd | 16O/105Pd  | 16O/106Pd  | 16O/108Pd  | 16O/110Pd  | 18O/104Pd  | 18O/105Pd  | 18O/106Pd  | 18O/108Pd  | 18O/110Pd  | Sym. |  |
|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|--|
| 791.40(43)    | 790.75(43) | 790.12(42) | 788.88(41) | 787.64(41) | 755.56(47) | 754.84(46) | 754.13(46) | 752.76(45) | 751.39(44) | Σ    |  |
| 595.00(65)    | 594.77(65) | 594.55(65) | 594.11(65) | 593.65(65) | 591.73(59) | 591.55(59) | 591.38(59) | 591.03(60) | 590.67(60) | Σ    |  |
| 153.34(13)    | 153.16(13) | 152.98(13) | 152.63(13) | 152.28(13) | 149.61(13) | 149.42(13) | 149.24(13) | 148.88(12) | 148.52(12) | Π    |  |

#### OPdF ( $X^{4}\Sigma^{-}$ , $C_{\infty v}$ ), CCSD(T)/AVTZ(-PP)

| 16O/104Pd | 16O/105Pd | 16O/106Pd | 16O/108Pd | 16O/110Pd | 18O/104Pd | 18O/105Pd | 18O/106Pd | 18O/108Pd | 18O/110Pd | Sym.     |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| 774.18    | 773.52    | 772.88    | 771.63    | 770.43    | 739.93    | 739.19    | 738.47    | 737.06    | 735.72    | ∑ (Pd-O) |
| 606.64    | 606.42    | 606.21    | 605.79    | 605.38    | 602.64    | 602.48    | 602.33    | 602.03    | 601.73    | ∑ (Pd-F) |
| 171.73    | 171.53    | 171.33    | 170.94    | 170.56    | 167.54    | 167.33    | 167.13    | 166.73    | 166.34    | Π        |

 $OPdF_2$  (X<sup>3</sup>A<sub>2</sub>, C<sub>2v</sub>), B3LYP/AVTZ(-PP)

| 16O/104Pd   | 16O/105Pd   | 16O/106Pd   | 16O/108Pd   | 16O/110Pd   | 18O/104Pd   | 18O/105Pd   | 18O/106Pd   | 18O/108Pd   | 18O/110Pd   | Sym.           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
| 766.78(3)   | 766.35(3)   | 765.93(3)   | 765.12(3)   | 764.30(3)   | 728.75(3)   | 728.31(3)   | 727.87(3)   | 726.17(3)   | 726.17(3)   | A <sub>1</sub> |
| 643.38(166) | 642.60(165) | 641.83(165) | 640.32(164) | 638.80(163) | 643.38(166) | 642.60(165) | 641.83(165) | 638.80(163) | 638.80(163) | B <sub>2</sub> |
| 575.41(21)  | 575.34(21)  | 575.26(21)  | 575.12(21)  | 574.97(21)  | 575.24(21)  | 575.16(21)  | 575.08(21)  | 574.76(21)  | 574.76(21)  | A <sub>1</sub> |
| 197.72(17)  | 197.40(17)  | 197.09(17)  | 196.50(17)  | 195.88(16)  | 196.75(17)  | 196.43(17)  | 196.12(16)  | 194.91(16)  | 194.91(16)  | B1             |
| 167.04(10)  | 166.88(10)  | 166.73(10)  | 166.42(9)   | 166.11(9)   | 166.78(10)  | 166.62(10)  | 166.47(9)   | 165.88(9)   | 165.88(9)   | A <sub>1</sub> |
| 162.99(2)   | 162.93(2)   | 162.86(2)   | 162.74(2)   | 162.61(2)   | 156.93(2)   | 156.86(2)   | 156.80(2)   | 156.53(2)   | 156.53(2)   | B <sub>2</sub> |

#### OPdF<sub>2</sub> (X<sup>3</sup>A<sub>2</sub>, C<sub>2v</sub>), BP86/AVTZ(-PP)

| 16O/104Pd   | 16O/105Pd   | 16O/106Pd   | 16O/108Pd   | 16O/110Pd   | 18O/104Pd   | 18O/105Pd   | 18O/106Pd   | 18O/108Pd   | 18O/110Pd   | sym.                  |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------------|
| 783.52(8)   | 783.06(8)   | 782.61(8)   | 781.72(8)   | 780.83(8)   | 744.48(8)   | 743.99(8)   | 743.52(8)   | 742.58(7)   | 741.64(7)   | A <sub>1</sub>        |
| 621.69(132) | 620.94(132) | 620.21(131) | 618.79(131) | 617.35(130) | 621.68(132) | 620.94(132) | 620.21(131) | 618.78(131) | 617.34(130) | B <sub>2</sub>        |
| 560.72(14)  | 560.66(14)  | 560.60(14)  | 560.49(14)  | 560.38(14)  | 560.72(14)  | 560.66(14)  | 560.60(14)  | 560.49(14)  | 560.37(14)  | A <sub>1</sub>        |
| 189.80(12)  | 189.50(12)  | 189.20(12)  | 188.62(12)  | 188.03(12)  | 188.73(12)  | 188.42(12)  | 188.12(12)  | 187.54(12)  | 186.95(12)  | B1                    |
| 158.30(8)   | 158.16(8)   | 158.01(8)   | 157.72(8)   | 157.43(8)   | 158.05(8)   | 157.90(8)   | 157.76(8)   | 157.49(8)   | 157.20(8)   | A <sub>1</sub>        |
| 135.68(4)   | 135.62(4)   | 135.56(4)   | 135.45(4)   | 135.34(4)   | 130.63(4)   | 130.57(4)   | 130.52(4)   | 130.40(4)   | 130.28(4)   | <b>B</b> <sub>2</sub> |

#### $OPdF_2$ (X<sup>3</sup>A<sub>2</sub>, $C_{2v}$ ), CCSD(T)/AVTZ(-PP)

| 16O/104Pd  | 16O/105Pd | 16O/106Pd | 16O/108Pd | 160/110Pd | 180/104Pd | 18O/105Pd | 18O/106Pd | 18O/108Pd | 18O/110Pd | Sym.           |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|
| <br>828.47 | 827.99    | 827.51    | 826.58    | 825.69    | 787.23    | 786.71    | 786.21    | 785.23    | 784.29    | A <sub>1</sub> |
| 667.66     | 666.85    | 666.06    | 664.51    | 663.02    | 667.65    | 666.84    | 666.05    | 664.51    | 663.01    | B <sub>2</sub> |
| 601.53     | 601.48    | 601.44    | 601.36    | 601.28    | 601.50    | 601.46    | 601.41    | 601.33    | 601.25    | A <sub>1</sub> |
| 215.27     | 214.93    | 214.59    | 213.92    | 213.28    | 214.85    | 214.5     | 214.16    | 213.50    | 212.87    | B1             |
| 192.94     | 192.72    | 192.49    | 192.05    | 191.63    | 192.58    | 192.35    | 192.14    | 191.71    | 191.30    | A <sub>1</sub> |
| 185.77     | 185.64    | 185.51    | 185.26    | 185.01    | 179.29    | 179.16    | 179.02    | 178.76    | 178.50    | B <sub>2</sub> |

 $\underline{\mathsf{OPdF}_2}({}^{5}\mathsf{A}_1, C_{2v}), \mathsf{B3LYP}/\mathsf{AVTZ}(\mathsf{-PP})$ 

|   | 16O/104Pd   | 16O/105Pd   | 16O/106Pd   | 16O/108Pd   | 16O/110Pd   | 18O/104Pd   | 18O/105Pd   | 18O/106Pd   | 18O/108Pd   | 18O/110Pd   | Sym.           |
|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
|   | 614.83(112) | 614.12(112) | 613.43(112) | 612.07(112) | 610.70(112) | 614.82(112) | 614.11(112) | 613.41(112) | 612.06(112) | 610.69(112) | B <sub>2</sub> |
|   | 578.51(8)   | 578.38(8)   | 578.24(8)   | 577.99(8)   | 577.74(8)   | 558.15(14)  | 558.09(14)  | 558.03(14)  | 557.93(14)  | 557.82(14)  | A <sub>1</sub> |
|   | 524.02(16)  | 523.81(16)  | 523.60(16)  | 523.19(16)  | 522.77(16)  | 515.65(10)  | 515.35(10)  | 515.05(10)  | 514.46(10)  | 513.86(10)  | A <sub>1</sub> |
|   | 138.11(1)   | 138.04(1)   | 137.98(1)   | 137.85(1)   | 137.72(1)   | 133.24(1)   | 133.17(1)   | 133.10(1)   | 132.97(1)   | 132.84(1)   | B <sub>2</sub> |
|   | 103.27(4)   | 103.17(4)   | 103.07(4)   | 102.87(4)   | 102.67(4)   | 103.19(4)   | 103.09(4)   | 102.99(4)   | 102.80(4)   | 102.60(4)   | B₁             |
| _ | 17.59(21)   | 17.57(21)   | 17.54(21)   | 17.49(21)   | 17.44(21)   | 17.57(21)   | 17.54(21)   | 17.51(21)   | 17.45(21)   | 17.41(21)   | A <sub>1</sub> |

## OPdF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>, C<sub>2v</sub>), BP86/AVTZ(-PP)

| 16O/104Pd  | 16O/105Pd  | 16O/106Pd  | 16O/108Pd  | 16O/110Pd  | 18O/104Pd  | 18O/105Pd  | 18O/106Pd  | 18O/108Pd  | 18O/110Pd  | Sym.           |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|
| 615.18(0)  | 614.92(0)  | 614.66(0)  | 614.16(0)  | 613.65(0)  | 584.83(0)  | 584.57(0)  | 584.32(0)  | 583.82(0)  | 583.32(0)  | A <sub>1</sub> |
| 571.31(63) | 570.68(63) | 570.06(62) | 568.85(62) | 567.63(62) | 571.28(62) | 570.65(62) | 570.03(62) | 568.82(62) | 567.60(62) | B <sub>2</sub> |
| 503.02(13) | 502.90(13) | 502.78(13) | 502.55(13) | 502.32(13) | 502.35(13) | 502.21(13) | 502.07(13) | 501.80(13) | 501.53(13) | A <sub>1</sub> |
| 125.06(1)  | 125.00(1)  | 124.93(1)  | 124.81(1)  | 124.68(1)  | 120.70(1)  | 120.64(1)  | 120.57(1)  | 120.44(1)  | 120.31(1)  | B <sub>2</sub> |
| 90.32(4)   | 90.23(4)   | 90.15(4)   | 89.98(4)   | 89.81(4)   | 90.25(4)   | 90.16(4)   | 90.08(4)   | 89.91(4)   | 89.74(4)   | A <sub>1</sub> |
| 20.00(16)  | 19.97(16)  | 19.94(16)  | 19.88(16)  | 19.82(16)  | 20.04(16)  | 20.01(16)  | 19.97(16)  | 19.91(16)  | 19.85(15)  | B1             |

## FOPdF (<sup>3</sup>A', C<sub>s</sub>), CCSD(T)/AVTZ(-PP)

| 16O/104Pd | 16O/105Pd | 16O/106Pd | 16O/108Pd | 16O/110Pd | 18O/104Pd | 18O/105Pd | 18O/106Pd | 18O/108Pd | 18O/110Pd | Sym. |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|
| 822.01    | 822.01    | 822.00    | 821.98    | 821.97    | 797.26    | 797.24    | 797.23    | 797.22    | 797.21    | A'   |
| 634.01    | 633.36    | 632.74    | 631.51    | 630.34    | 632.48    | 631.86    | 631.25    | 630.07    | 628.94    | A'   |
| 523.27    | 523.12    | 522.98    | 522.68    | 522.39    | 499.16    | 498.95    | 498.76    | 498.39    | 498.02    | A'   |
| 225.41    | 225.26    | 225.11    | 224.82    | 224.54    | 223.64    | 223.51    | 223.36    | 223.07    | 222.79    | A'   |
| 108.52    | 108.39    | 108.27    | 108.03    | 107.79    | 108.18    | 108.06    | 107.94    | 107.69    | 107.46    | A'   |
| 56.44     | 56.33     | 56.23     | 56.02     | 55.82     | 56.31     | 56.20     | 56.09     | 55.88     | 55.68     | Α″   |

## FOPdF (<sup>3</sup>A", C<sub>s</sub>), B3LYP/AVTZ(-PP)

| <br>16O/104Pd  | 16O/105Pd   | 16O/106Pd   | 16O/108Pd   | 16O/110Pd   | 18O/104Pd   | 18O/105Pd   | 18O/106Pd   | 18O/108Pd   | 18O/110Pd   | Sym. |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 878.53(120)    | 878.53(120) | 878.52(120) | 878.52(120) | 878.51(121) | 851.43(115) | 851.43(115) | 851.43(115) | 851.42(115) | 851.42(115) | A'   |
| 638.24(149)    | 637.48(149) | 636.73(148) | 635.27(148) | 633.80(147) | 630.90(154) | 630.16(153) | 629.44(153) | 628.02(152) | 628.02(152) | A'   |
| 559.94(10)     | 559.93(9)   | 559.92(9)   | 559.89(9)   | 559.86(9)   | 538.53(3)   | 538.48(3)   | 538.43(3)   | 538.33(2)   | 538.33(2)   | A'   |
| 272.14(6)      | 271.84(6)   | 271.53(6)   | 270.95(6)   | 270.35(6)   | 268.76(6)   | 268.45(6)   | 268.14(6)   | 267.55(6)   | 267.44(6)   | A'   |
| 120.86(6)      | 120.77(6)   | 120.68(6)   | 120.51(6)   | 120.33(6)   | 120.76(6)   | 120.67(6)   | 120.59(6)   | 120.41(6)   | 120.41(6)   | Α″   |
| <br>114.81(13) | 114.66(13)  | 114.52(13)  | 114.24(13)  | 113.95(13)  | 112.52(13)  | 112.37(13)  | 112.22(13)  | 111.93(13)  | 111.93(13)  | A'   |

## FOPdF (<sup>3</sup>A", C<sub>s</sub>), CCSD(T)/AVTZ(-PP)

| <br>16O/104Pd | 16O/105Pd | 16O/106Pd | 16O/108Pd | 16O/110Pd | 18O/104Pd | 18O/105Pd | 18O/106Pd | 18O/108Pd | 18O/110Pd | Sym. |  |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|--|
| 859.89        | 859.87    | 859.85    | 859.82    | 859.78    | 832.25    | 832.23    | 832.22    | 832.18    | 832.15    | A'   |  |
| 643.17        | 642.38    | 641.61    | 640.09    | 638.63    | 634.60    | 633.82    | 633.06    | 631.59    | 630.18    | A'   |  |
| 586.87        | 586.86    | 586.85    | 586.84    | 586.83    | 566.35    | 566.29    | 566.25    | 566.16    | 566.08    | A'   |  |
| 290.68        | 290.40    | 290.13    | 289.61    | 289.11    | 286.97    | 286.68    | 286.41    | 285.88    | 285.37    | A'   |  |
| 158.02        | 157.85    | 157.69    | 157.36    | 157.05    | 157.68    | 157.58    | 157.42    | 157.10    | 156.79    | Α″   |  |
| 141.10        | 140.92    | 140.74    | 140.39    | 140.05    | 137.86    | 137.68    | 137.49    | 137.14    | 136.79    | A'   |  |

#### $OPdF_3$ (X<sup>4</sup>A<sub>1</sub>, $C_{2v}$ ), B3LYP/AVTZ(-PP)

| <br>16O/104Pd | 16O/105Pd  | 16O/106Pd  | 16O/108Pd  | 16O/110Pd  | 18O/104Pd  | 18O/105Pd  | 18O/106Pd  | 18O/108Pd  | 18O/110Pd  | Sym.           |
|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|
| 681.81(25)    | 680.96(25) | 680.12(25) | 678.48(25) | 676.83(24) | 679.42(86) | 678.55(86) | 677.69(86) | 677.02(86) | 674.34(85) | A <sub>1</sub> |
| 679.43(86)    | 678.56(86) | 677.70(86) | 676.03(86) | 674.35(85) | 671.30(41) | 670.45(41) | 669.62(41) | 668.01(41) | 666.38(41) | B <sub>2</sub> |
| 619.40(36)    | 619.40(36) | 619.40(36) | 619.40(36) | 619.39(36) | 604.73(16) | 604.71(16) | 604.69(16) | 604.65(16) | 604.61(16) | A <sub>1</sub> |
| 565.35(15)    | 565.35(15) | 565.35(15) | 565.35(15) | 565.35(15) | 558.49(19) | 558.48(19) | 558.47(19) | 558.44(19) | 558.42(19) | A <sub>1</sub> |
| 265.14(1)     | 264.95(1)  | 264.76(1)  | 264.40(1)  | 264.02(1)  | 264.70(1)  | 264.52(1)  | 264.34(1)  | 263.98(1)  | 263.62(1)  | A <sub>1</sub> |
| 255.03(0)     | 255.03(0)  | 255.03(0)  | 255.03(0)  | 255.02(0)  | 253.54(1)  | 253.52(1)  | 253.50(1)  | 253.46(1)  | 253.43(1)  | B <sub>2</sub> |
| 243.46(3)     | 243.30(3)  | 243.14(3)  | 242.82(3)  | 242.50(3)  | 235.34(3)  | 235.19(3)  | 235.04(3)  | 234.74(3)  | 234.44(3)  | B <sub>2</sub> |
| 203.01(15)    | 202.65(15) | 202.31(15) | 201.63(15) | 200.94(15) | 199.48(15) | 199.12(15) | 198.77(15) | 198.07(15) | 197.38(15) | B1             |
| <br>51.34(3)  | 51.33(3)   | 51.32(3)   | 51.30(3)   | 51.27(3)   | 50.96(3)   | 50.95(3)   | 50.94(3)   | 50.92(3)   | 50.90(3)   | B1             |

| 16O/104Pd  | 16O/105Pd  | 16O/106Pd  | 16O/108Pd  | 16O/110Pd  | 18O/104Pd  | 18O/105Pd  | 18O/106Pd  | 18O/108Pd  | 180/110Pd  | Sym.           |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|
| 728.28(13) | 727.59(13) | 726.91(13) | 725.60(12) | 724.28(12) | 698.96(19) | 698.17(18) | 697.39(18) | 695.89(18) | 694.37(17) | A <sub>1</sub> |
| 639.58(62) | 638.78(62) | 638.00(62) | 636.49(62) | 634.95(61) | 639.55(62) | 638.76(62) | 637.98(62) | 636.46(62) | 634.93(61) | B <sub>2</sub> |
| 603.99(37) | 603.81(37) | 603.63(37) | 603.27(37) | 602.90(38) | 599.09(32) | 598.99(32) | 598.88(32) | 598.67(32) | 598.45(32) | A <sub>1</sub> |
| 531.99(3)  | 531.99(3)  | 531.99(3)  | 531.99(3)  | 531.98(3)  | 530.76(3)  | 530.76(3)  | 530.76(3)  | 530.78(3)  | 530.76(3)  | A <sub>1</sub> |
| 259.17(0)  | 259.16(0)  | 259.15(0)  | 259.12(0)  | 259.10(0)  | 255.83(1)  | 255.65(1)  | 255.48(1)  | 255.14(1)  | 254.79(1)  | A <sub>1</sub> |
| 256.30(1)  | 256.11(1)  | 255.93(1)  | 255.58(1)  | 255.22(1)  | 253.55(0)  | 253.54(0)  | 253.54(0)  | 253.53(0)  | 253.53(1)  | B <sub>2</sub> |
| 229.74(5)  | 229.58(5)  | 229.43(5)  | 229.13(5)  | 228.83(5)  | 225.61(5)  | 225.44(5)  | 225.28(5)  | 224.95(5)  | 224.62(5)  | B <sub>2</sub> |
| 207.70(12) | 207.32(12) | 206.96(12) | 206.23(12) | 205.50(12) | 204.33(12) | 203.95(12) | 203.57(12) | 202.84(12) | 202.09(12) | B1             |
| 60.84(1)   | 60.83(1)   | 60.82(1)   | 60.81(1)   | 60.79(1)   | 60.30(1)   | 60.29(1)   | 60.29(1)   | 60.27(1)   | 60.26(1)   | B1             |

OPdF<sub>3</sub> (X<sup>4</sup>A<sub>1</sub>, *C*<sub>2v</sub>), BP86/AVTZ(-PP)

## $OPdF_3$ (X<sup>4</sup>A<sub>1</sub>, $C_{2v}$ ), CCSD(T)/AVTZ(-PP)

| 16O/104Pd | 16O/105Pd | 16O/106Pd | 16O/108Pd | 160/110Pd | 180/104Pd | 18O/105Pd | 18O/106Pd | 18O/108Pd | 18O/110Pd | Sym.           |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|
| 729.68    | 728.73    | 727.80    | 725.99    | 724.24    | 729.67    | 728.72    | 727.79    | 725.98    | 724.23    | B <sub>2</sub> |
| 685.51    | 684.76    | 684.02    | 682.60    | 681.23    | 682.59    | 681.88    | 681.18    | 679.83    | 678.53    | A <sub>1</sub> |
| 627.17    | 627.13    | 627.09    | 627.02    | 626.95    | 625.64    | 625.60    | 625.56    | 625.47    | 625.39    | A <sub>1</sub> |
| 572.60    | 572.56    | 572.51    | 572.42    | 572.33    | 547.16    | 547.06    | 546.97    | 546.78    | 546.59    | A <sub>1</sub> |
| 275.09    | 274.88    | 274.68    | 274.27    | 273.87    | 274.75    | 274.54    | 274.34    | 273.95    | 273.56    | A <sub>1</sub> |
| 261.31    | 261.30    | 261.28    | 261.26    | 261.24    | 260.58    | 260.56    | 260.54    | 260.50    | 260.46    | B <sub>2</sub> |
| 242.21    | 242.05    | 241.89    | 241.58    | 241.27    | 233.44    | 233.28    | 233.13    | 232.82    | 232.53    | B <sub>2</sub> |
| 203.01    | 202.66    | 202.32    | 201.64    | 201.00    | 199.18    | 198.82    | 198.47    | 197.79    | 197.13    | B1             |
| 48.30     | 48.27     | 48.25     | 48.19     | 48.14     | 47.91     | 47.88     | 47.85     | 47.80     | 47.75     | B1             |

OPdF<sub>4</sub> (<sup>3</sup>A<sub>2</sub>, C<sub>4v</sub>), B3LYP/AVTZ(-PP)

| <br>16O/104Pd | 16O/105Pd   | 16O/106Pd   | 16O/108Pd   | 16O/110Pd   | 18O/104Pd   | 18O/105Pd   | 18O/106Pd   | 18O/108Pd   | 18O/110Pd   | Sym.           |
|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
| 834.46(1)     | 833.91(1)   | 833.36(1)   | 832.29(1)   | 831.21(1)   | 793.73(0)   | 793.14(0)   | 792.55(0)   | 791.41(0)   | 790.27(0)   | A <sub>1</sub> |
| 669.77(125)   | 668.87(125) | 667.99(125) | 666.27(125) | 664.54(125) | 669.76(125) | 668.86(125) | 667.98(125) | 666.27(125) | 664.54(125) | Е              |
| 600.40(9)     | 600.37(9)   | 600.33(9)   | 600.25(9)   | 600.18(9)   | 600.00(9)   | 599.97(9)   | 599.94(9)   | 599.88(9)   | 599.81(9)   | A <sub>1</sub> |
| 554.25(0)     | 554.25(0)   | 554.25(0)   | 554.25(0)   | 554.25(0)   | 554.25(0)   | 554.25(0)   | 554.25(0)   | 554.25(0)   | 554.25(0)   | B <sub>2</sub> |
| 276.36(2)     | 276.13(2)   | 275.90(2)   | 275.45(2)   | 274.98(2)   | 275.16(2)   | 274.93(2)   | 274.70(2)   | 274.25(2)   | 273.79(2)   | Е              |
| 240.66(7)     | 240.30(7)   | 239.94(7)   | 239.24(7)   | 238.53(7)   | 239.89(7)   | 239.54(7)   | 239.19(7)   | 238.51(7)   | 237.82(7)   | A <sub>1</sub> |
| 233.24(0)     | 233.24(0)   | 233.24(0)   | 233.24(0)   | 233.24(0)   | 233.24(0)   | 233.24(0)   | 233.24(0)   | 233.24(0)   | 233.24(0)   | B1             |
| 183.47(0)     | 183.47(0)   | 183.45(0)   | 183.43(0)   | 183.41(0)   | 177.31(0)   | 177.29(0)   | 177.28(0)   | 177.25(0)   | 177.22(0)   | Е              |
| 132.23(0)     | 132.23(0)   | 132.23(0)   | 132.23(0)   | 132.23(0)   | 132.23(0)   | 132.23(0)   | 132.23(0)   | 132.23(0)   | 132.23(0)   | B <sub>2</sub> |

## OPdF<sub>4</sub> (<sup>3</sup>A<sub>2</sub>, *C*<sub>4v</sub>), BP86/AVTZ(-PP)

| 16O/104Pd  | 16O/105Pd  | 16O/106Pd  | 16O/108Pd  | 16O/110Pd  | 18O/104Pd  | 18O/105Pd  | 18O/106Pd  | 18O/108Pd  | 18O/110Pd  | Sym.           |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|
| 798.40(2)  | 797.86(2)  | 797.33(2)  | 796.30(2)  | 796.30(2)  | 759.44(2)  | 758.86(2)  | 758.30(2)  | 757.20(2)  | 756.09(2)  | A <sub>1</sub> |
| 642.61(95) | 641.75(95) | 640.91(94) | 639.28(93) | 639.28(93) | 642.60(95) | 641.75(95) | 640.91(95) | 639.28(95) | 637.63(95) | Е              |
| 577.46(6)  | 577.42(6)  | 577.38(6)  | 577.31(6)  | 577.31(6)  | 577.13(6)  | 577.10(6)  | 577.07(6)  | 577.00(6)  | 576.94(6)  | A <sub>1</sub> |
| 550.64(0)  | 550.64(0)  | 550.64(0)  | 550.64(0)  | 550.64(0)  | 550.64(0)  | 550.64(0)  | 550.64(0)  | 550.64(0)  | 550.64(0)  | B <sub>2</sub> |
| 267.83(2)  | 267.59(2)  | 267.37(2)  | 266.92(2)  | 266.92(2)  | 266.51(2)  | 266.28(2)  | 266.06(2)  | 265.61(2)  | 265.16(2)  | Е              |
| 235.06(7)  | 234.71(7)  | 234.36(7)  | 233.68(7)  | 233.68(7)  | 234.28(7)  | 233.93(7)  | 233.60(7)  | 232.94(7)  | 232.27(7)  | A <sub>1</sub> |
| 224.05(0)  | 224.05(0)  | 224.05(0)  | 224.05(0)  | 224.05(0)  | 224.05(0)  | 224.05(0)  | 224.05(0)  | 224.05(0)  | 224.05(0)  | B1             |
| 179.46(0)  | 179.45(0)  | 179.45(0)  | 179.43(0)  | 179.43(0)  | 173.58(0)  | 173.57(0)  | 173.56(0)  | 173.53(0)  | 173.50(0)  | Е              |
| 146.94(0)  | 146.94(0)  | 146.94(0)  | 146.94(0)  | 146.94(0)  | 146.94(0)  | 146.94(0)  | 146.94(0)  | 146.94(0)  | 146.94(0)  | B <sub>2</sub> |

**Table S4.4.** Computed harmonic frequencies (cm<sup>-1</sup>) for OPtF<sub>n</sub> (n = 1-4).

## PtOF (<sup>2</sup>A', C<sub>s</sub>), B3LYP/AVTZ(-PP)

| PtOF ( <sup>2</sup> A', C <sub>s</sub> ), B3LYP/AVTZ(-PP) |            |            |            |            |            |            |            |            |      |
|-----------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
|                                                           | 160/194Pt  | 160/195Pt  | 160/196Pt  | 160/198Pt  | 180/194Pt  | 180/195Pt  | 180/196Pt  | 180/198Pt  | Sym. |
|                                                           | 856.91(92) | 856.91(92) | 856.91(92) | 856.91(92) | 831.16(89) | 831.16(89) | 831.16(89) | 831.16(89) | Α'   |
|                                                           | 574.48(12) | 574.39(12) | 574.30(12) | 574.12(12) | 544.30(10) | 544.20(10) | 544.11(10) | 543.92(10) | Α'   |
|                                                           | 242.48(6)  | 242.42(6)  | 242.35(6)  | 242.22(6)  | 239.97(6)  | 239.91(6)  | 239.84(6)  | 239.71(6)  | Α'   |

#### PtOF (<sup>2</sup>A', C<sub>s</sub>), BP86/AVTZ(-PP)

| 160/194Pt   | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym. |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 783.18(122) | 783.18(122) | 783.18(122) | 783.17(122) | 760.12(117) | 760.12(117) | 760.12(117) | 760.11(117) | Α'   |
| 595.41(4)   | 595.31(4)   | 595.21(4)   | 595.01(4)   | 563.79(4)   | 563.68(4)   | 563.57(4)   | 563.36(4)   | Α'   |
| 228.25(6)   | 228.20(6)   | 228.14(6)   | 228.02(6)   | 225.84(6)   | 225.78(6)   | 225.72(6)   | 225.60(6)   | Α'   |

#### PtOF (<sup>2</sup>A", C<sub>s</sub>), B3LYP/AVTZ(-PP)

\_\_\_\_

| 160/194Pt   | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym. |  |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|--|
| 702.01(150) | 701.98(150) | 701.96(150) | 701.91(150) | 680.70(146) | 680.68(146) | 680.65(146) | 680.60(146) | Α'   |  |
| 611.01(25)  | 610.93(25)  | 610.84(25)  | 610.67(25)  | 579.06(21)  | 578.97(21)  | 578.87(21)  | 578.69(21)  | Α'   |  |
| 259.76(9)   | 259.70(9)   | 259.63(9)   | 259.50(9)   | 256.65(9)   | 256.58(9)   | 256.52(9)   | 256.39(9)   | Α'   |  |

## PtOF (<sup>2</sup>A", C<sub>s</sub>), BP86/AVTZ(-PP)

| <br>160/194Pt  | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym. |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 737.28(10)     | 737.14(10)  | 737.00(10)  | 736.72(10)  | 699.17(8)   | 699.02(8)   | 698.88(8)   | 698.58(8)   | Α'   |
| 544.73(163)    | 544.73(163) | 544.73(163) | 544.73(163) | 527.16(156) | 527.16(156) | 527.16(156) | 527.16(156) | Α'   |
| <br>238.95(13) | 238.90(13)  | 238.84(13)  | 238.72(13)  | 236.15(11)  | 236.09(11)  | 236.03(11)  | 235.91(11)  | Α'   |

## OPtF ( $X^{4}\Sigma^{-}$ , $C_{\infty v}$ ), B3LYP/AVTZ(-PP)

| <br>160/194Pt | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym. |
|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 852.60(24)    | 852.44(23)  | 852.28(23)  | 851.96(23)  | 807.51(23)  | 807.33(23)  | 807.16(23)  | 806.82(23)  | Σ    |
| 629.76(115)   | 629.64(115) | 629.51(115) | 629.26(115) | 629.56(114) | 629.43(114) | 629.31(114) | 629.07(114) | Σ    |
| 171.10(11)    | 171.03(11)  | 170.97(11)  | 170.84(11)  | 166.32(10)  | 166.25(10)  | 166.18(10)  | 166.05(10)  | Π    |

#### OPtF (X<sup>4</sup>Σ<sup>-</sup>, *C*<sub>∞ν</sub>), BP86/AVTZ(-PP)

| 160/194Pt  | 160/195Pt  | 160/196Pt  | 160/198Pt  | 180/194Pt  | 180/195Pt  | 180/196Pt  | 180/198Pt  | Sym. |
|------------|------------|------------|------------|------------|------------|------------|------------|------|
| 844.04(34) | 843.87(34) | 843.71(34) | 843.39(34) | 799.47(33) | 799.29(33) | 799.11(33) | 798.77(32) | Σ    |
| 619.99(90) | 619.87(90) | 619.74(90) | 619.50(90) | 619.73(88) | 619.61(89) | 619.50(89) | 619.27(89) | Σ    |
| 156.83(9)  | 156.77(9)  | 156.71(9)  | 156.59(9)  | 152.46(9)  | 152.40(8)  | 152.34(8)  | 152.22(8)  | Π    |

## OPtF ( $X^{4}\Sigma^{-}$ , $C_{\infty v}$ ), CCSD(T)/AVTZ(-PP)

| 160/194Pt | 160/195Pt | 160/196Pt | 160/198Pt | 180/194Pt | 180/195Pt | 180/196Pt | 180/198Pt | Sym. |  |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|--|
| 848.51    | 848.34    | 848.18    | 847.86    | 803.69    | 803.51    | 803.33    | 802.99    | Σ    |  |
| 640.46    | 640.33    | 640.21    | 639.96    | 640.20    | 640.08    | 639.96    | 639.72    | Σ    |  |
| 180.50    | 180.43    | 180.36    | 180.22    | 175.38    | 175.31    | 175.24    | 175.10    | Π    |  |

#### $OPtF_2$ (X<sup>3</sup>A<sub>2</sub>, C<sub>2v</sub>), B3LYP/AVTZ(-PP)

| 160/194Pt   | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym.                  |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------------|
| 877.85(4)   | 877.69(4)   | 877.52(4)   | 877.20(4)   | 831.63(3)   | 831.46(3)   | 831.29(3)   | 830.95(3)   | A <sub>1</sub>        |
| 629.19(160) | 628.94(160) | 628.70(160) | 628.23(160) | 629.16(160) | 628.92(160) | 628.68(160) | 628.20(160) | <b>B</b> <sub>2</sub> |
| 612.64(16)  | 612.62(16)  | 612.60(16)  | 612.57(16)  | 612.56(16)  | 612.54(16)  | 612.52(16)  | 612.48(16)  | A <sub>1</sub>        |
| 208.06(9)   | 207.95(9)   | 207.84(9)   | 207.62(9)   | 206.91(9)   | 206.80(9)   | 206.69(9)   | 206.47(9)   | B <sub>1</sub>        |
| 170.30(7)   | 170.24(7)   | 170.18(7)   | 170.07(7)   | 170.17(7)   | 170.11(7)   | 170.05(7)   | 169.94(7)   | A <sub>1</sub>        |
| 100.21(7)   | 100.19(7)   | 100.18(7)   | 100.14(7)   | 96.28(7)    | 96.27(7)    | 96.25(7)    | 96.21(6)    | B <sub>2</sub>        |

# OPtF<sub>2</sub> (X<sup>3</sup>A<sub>2</sub>, C<sub>2v</sub>), BP86/AVTZ(-PP)

| <br>        | ••••••=(••  | /           |             |             |             |             |             |                |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
| 160/194Pt   | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym.           |
| 859.92(6)   | 859.75(6)   | 859.59(6)   | 859.27(6)   | 814.55(5)   | 814.38(5)   | 814.21(5)   | 813.87(5)   | A <sub>1</sub> |
| 612.08(138) | 611.85(138) | 611.62(138) | 611.17(138) | 612.02(139) | 611.79(139) | 611.56(139) | 611.11(139) | B <sub>2</sub> |
| 599.47(12)  | 599.45(12)  | 599.43(12)  | 599.40(12)  | 599.45(12)  | 599.43(12)  | 599.41(12)  | 599.38(12)  | A <sub>1</sub> |
| 202.44(6)   | 202.33(6)   | 202.23(6)   | 202.01(6)   | 201.26(6)   | 201.15(6)   | 201.04(6)   | 200.82(6)   | B1             |
| 163.97(5)   | 163.92(5)   | 163.86(5)   | 163.75(5)   | 163.85(5)   | 163.79(5)   | 163.74(5)   | 163.63(5)   | A <sub>1</sub> |
| 30.43(11)   | 30.41(11)   | 30.42(11)   | 30.40(11)   | 29.19(10)   | 29.18(10)   | 29.18(10)   | 29.17(10)   | B <sub>2</sub> |

## OPtF<sub>2</sub> (X<sup>3</sup>A<sub>2</sub>, C<sub>2v</sub>), CCSD(T)/AVTZ(-PP)

| 160/194Pt | 160/195Pt | 160/196Pt | 160/198Pt | 180/194Pt | 180/195Pt | 180/196Pt | 180/198Pt | Sym.                  |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------------|
| 870.92    | 870.76    | 870.6     | 870.28    | 825.21    | 825.03    | 824.86    | 824.53    | A <sub>1</sub>        |
| 652.45    | 652.19    | 651.93    | 651.43    | 652.44    | 652.18    | 651.93    | 651.42    | <b>B</b> <sub>2</sub> |
| 626.98    | 626.96    | 626.94    | 626.90    | 626.82    | 626.80    | 626.77    | 626.73    | A <sub>1</sub>        |
| 233.28    | 233.15    | 233.03    | 232.79    | 232.17    | 232.05    | 231.92    | 231.68    | B <sub>1</sub>        |
| 173.85    | 173.8     | 173.74    | 173.63    | 173.71    | 173.66    | 173.6     | 173.49    | A <sub>1</sub>        |
| 140.81    | 140.79    | 140.76    | 140.72    | 135.11    | 135.09    | 135.06    | 135.02    | B <sub>2</sub>        |

## **OPtF**<sub>2</sub> (<sup>5</sup>A<sub>1</sub>, *C*<sub>2v</sub>), **B3LYP/AVTZ(-PP)**

| 160/194Pt     | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym.           |
|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
| 647.67(137)   | 647.41(137) | 647.16(137) | 646.66(137) | 647.65(137) | 647.39(137) | 647.14(137) | 646.64(137) | B <sub>2</sub> |
| 613.39(6)     | 613.36(6)   | 613.33(6)   | 613.26(6)   | 599.58(6)   | 599.56(6)   | 599.54(6)   | 599.51(6)   | A <sub>1</sub> |
| 534.86(3)     | 534.80(3)   | 534.74(3)   | 534.61(3)   | 517.99(3)   | 517.90(3)   | 517.82(3)   | 517.66(3)   | A <sub>1</sub> |
| 163.28(1)     | 163.25(1)   | 163.23(1)   | 163.18(1)   | 157.25(1)   | 157.23(1)   | 157.20(1)   | 157.15(1)   | B <sub>2</sub> |
| 146.62(1)     | 146.57(1)   | 146.51(1)   | 146.40(1)   | 146.60(1)   | 146.54(1)   | 146.49(1)   | 146.38(1)   | A <sub>1</sub> |
| <br>126.97(9) | 126.90(9)   | 126.84(9)   | 126.71(9)   | 126.59(9)   | 126.52(9)   | 126.46(9)   | 126.33(9)   | B <sub>1</sub> |

## OPtF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>, C<sub>2v</sub>), BP86/AVTZ(-PP)

| $(A_1, C_{2\nu}), Dr$ | -00/AV12(-F | гј         |            |            |            |            |            |                       |
|-----------------------|-------------|------------|------------|------------|------------|------------|------------|-----------------------|
| 160/194Pt             | 160/195Pt   | 160/196Pt  | 160/198Pt  | 180/194Pt  | 180/195Pt  | 180/196Pt  | 180/198Pt  | Sym.                  |
| 628.27(98)            | 628.02(98)  | 627.78(98) | 627.30(98) | 628.24(98) | 628.00(98) | 627.75(98) | 627.27(98) | B <sub>2</sub>        |
| 615.01(0)             | 614.95(0)   | 614.89(0)  | 614.77(0)  | 593.89(19) | 593.85(19) | 593.80(19) | 593.72(19) | A1                    |
| 532.10(3)             | 532.06(3)   | 532.02(3)  | 531.95(3)  | 521.62(2)  | 521.56(2)  | 521.50(2)  | 521.38(2)  | A <sub>1</sub>        |
| 160.51(2)             | 160.49(2)   | 160.46(2)  | 160.41(2)  | 154.58(2)  | 154.56(2)  | 154.53(2)  | 154.48(2)  | B <sub>2</sub>        |
| 143.10(1)             | 143.05(1)   | 142.99(1)  | 142.88(1)  | 143.08(1)  | 143.02(1)  | 142.97(1)  | 142.86(1)  | A <sub>1</sub>        |
| 129.80(6)             | 129.73(6)   | 129.67(6)  | 129.54(6)  | 129.41(6)  | 129.35(6)  | 129.28(6)  | 129.15(6)  | <b>B</b> <sub>1</sub> |

## OPtF<sub>2</sub> (<sup>5</sup>A<sub>1</sub>, C<sub>2v</sub>), CCSD(T)/AVTZ(-PP)

| 160/194Pt | 160/195Pt | 160/196Pt | 160/198Pt | 180/194Pt | 180/195Pt | 180/196Pt | 180/198Pt | Sym.           |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|
| 673.37    | 673.10    | 672.84    | 672.32    | 673.35    | 673.08    | 672.82    | 672.30    | B <sub>2</sub> |
| 625.69    | 625.68    | 625.66    | 625.64    | 620.45    | 620.45    | 620.45    | 620.44    | A1             |
| 566.46    | 566.38    | 566.29    | 566.13    | 540.74    | 540.64    | 540.55    | 540.35    | A <sub>1</sub> |
| 180.72    | 180.68    | 180.65    | 180.59    | 174.16    | 174.13    | 174.09    | 174.03    | B <sub>2</sub> |
| 158.86    | 158.79    | 158.73    | 158.61    | 158.83    | 158.77    | 158.71    | 158.59    | A <sub>1</sub> |
| 130.76    | 130.69    | 130.62    | 130.48    | 130.53    | 130.46    | 130.39    | 130.25    | $B_1$          |

## FOPtF (<sup>3</sup>A', *C*<sub>s</sub>), B3LYP/AVTZ(-PP)

| <br>160/194Pt | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym. |
|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 824.21(143)   | 824.21(143) | 824.21(143) | 824.21(143) | 798.77(134) | 798.77(134) | 798.77(134) | 798.77(134) | A'   |
| 664.66(61)    | 664.42(61)  | 664.18(60)  | 663.71(60)  | 650.93(93)  | 650.69(93)  | 650.44(93)  | 649.96(93)  | A'   |
| 617.21(52)    | 617.19(52)  | 617.18(52)  | 617.15(53)  | 597.06(20)  | 597.04(20)  | 597.03(20)  | 597.00(20)  | A'   |
| 307.64(2)     | 307.54(2)   | 307.44(2)   | 307.23(2)   | 303.53(1)   | 303.43(1)   | 303.32(1)   | 303.12(1)   | A'   |
| 128.48(4)     | 128.44(4)   | 128.40(4)   | 128.32(4)   | 128.46(4)   | 128.42(4)   | 128.38(4)   | 128.29(4)   | A'   |
| 120.57(6)     | 120.52(6)   | 120.46(6)   | 120.36(6)   | 118.17(6)   | 118.12(6)   | 118.06(6)   | 117.95(6)   | Α″   |

## FOPtF (<sup>3</sup>A', C<sub>s</sub>), BP86/AVTZ(-PP)

| <br>( = = ) = = = = = |             |             |             |             |             |             |             |      |
|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 160/194Pt             | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym. |
| 678.89(22)            | 678.72(22)  | 678.57(22)  | 678.24(22)  | 650.95(36)  | 650.73(36)  | 650.52(36)  | 650.10(36)  | A'   |
| 630.51(4)             | 630.43(4)   | 630.34(4)   | 630.17(4)   | 623.72(2)   | 623.68(2)   | 623.63(2)   | 623.54(2)   | A'   |
| 570.05(251)           | 570.05(251) | 570.04(251) | 570.03(251) | 551.21(227) | 551.21(227) | 551.21(227) | 551.20(227) | A'   |
| 308.62(2)             | 308.52(2)   | 308.42(2)   | 308.21(2)   | 304.66(2)   | 304.55(2)   | 304.45(2)   | 304.24(2)   | A'   |
| 116.28(3)             | 116.24(3)   | 116.20(3)   | 116.13(3)   | 116.24(3)   | 116.21(3)   | 116.17(3)   | 116.10(3)   | A'   |
| 56.25(5)              | 56.23(5)    | 56.20(5)    | 56.15(5)    | 55.45(5)    | 55.42(5)    | 55.40(5)    | 55.34(5)    | Α″   |

## FOPtF (<sup>3</sup>A", C<sub>s</sub>), B3LYP/AVTZ(-PP)

| 160/194Pt     | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym. |
|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 722.42(141)   | 722.42(141) | 722.42(141) | 722.42(141) | 702.88(128) | 702.88(128) | 702.88(128) | 702.88(128) | A'   |
| 648.39(129)   | 648.13(129) | 647.87(128) | 647.36(128) | 641.92(160) | 641.69(160) | 641.47(160) | 641.04(160) | A'   |
| 618.24(36)    | 618.23(36)  | 618.23(36)  | 618.23(36)  | 591.60(9)   | 591.56(9)   | 591.51(9)   | 591.42(9)   | A'   |
| 215.73(4)     | 215.65(4)   | 215.58(4)   | 215.42(4)   | 212.00(4)   | 211.92(4)   | 211.84(4)   | 211.69(4)   | A'   |
| 149.64(6)     | 149.57(6)   | 149.51(6)   | 149.39(6)   | 146.22(6)   | 146.15(6)   | 146.09(6)   | 145.97(6)   | Α″   |
| <br>132.49(4) | 132.45(4)   | 132.41(4)   | 132.34(4)   | 132.46(4)   | 132.42(4)   | 132.39(4)   | 132.31(4)   | A'   |

## FOPtF (<sup>3</sup>A", *C*<sub>s</sub>), BP86/AVTZ(-PP)

| <br>160/194Pt | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym. |
|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| 725.71(16)    | 725.53(16)  | 725.36(16)  | 725.03(16)  | 690.57(22)  | 690.37(22)  | 690.17(22)  | 689.78(22)  | A'   |
| 635.43(60)    | 635.32(60)  | 635.21(60)  | 634.99(60)  | 634.11(58)  | 634.01(58)  | 633.93(58)  | 633.75(58)  | A'   |
| 480.47(220)   | 480.47(220) | 480.47(220) | 480.47(220) | 466.36(206) | 466.36(206) | 466.36(206) | 466.36(206) | A'   |
| 160.40(7)     | 160.33(7)   | 160.26(7)   | 160.13(7)   | 157.80(7)   | 157.73(7)   | 157.66(7)   | 157.52(7)   | A'   |
| 152.89(5)     | 152.82(5)   | 152.76(5)   | 152.62(5)   | 149.71(4)   | 149.65(4)   | 149.58(4)   | 149.44(4)   | Α″   |
| <br>103.29(2) | 103.26(2)   | 103.24(2)   | 103.20(2)   | 103.09(2)   | 103.06(2)   | 103.04(2)   | 103.00(2)   | A'   |

| 160/194Pt | 160/195Pt | 160/196Pt | 160/198Pt | 180/194Pt | 180/195Pt | 180/196Pt | 180/198Pt | Sym. |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|
| 762.23    | 762.22    | 762.22    | 762.22    | 737.79    | 737.78    | 737.79    | 737.79    | A'   |
| 689.28    | 689.09    | 688.93    | 688.57    | 660.74    | 660.48    | 660.22    | 659.72    | A'   |
| 645.87    | 645.79    | 645.7     | 645.54    | 637.95    | 637.95    | 637.95    | 637.94    | A'   |
| 306.15    | 306.04    | 305.92    | 305.69    | 302.01    | 301.9     | 301.78    | 301.54    | A'   |
| 194.33    | 194.29    | 194.24    | 194.14    | 186.69    | 186.65    | 186.6     | 186.48    | Α″   |
| 141.53    | 141.49    | 141.44    | 141.37    | 141.5     | 141.47    | 141.45    | 141.39    | A'   |

## FOPtF (<sup>3</sup>A", C<sub>s</sub>), CCSD(T)/AVTZ(-PP)

## OPtF<sub>3</sub> (X<sup>4</sup>A<sub>1</sub>, C<sub>2v</sub>), B3LYP/AVTZ(-PP)

| 160/194Pt   | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym.           |  |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|--|
| 781.15(1)   | 780.98(1)   | 780.81(1)   | 780.48(1)   | 740.70(2)   | 740.51(2)   | 740.31(2)   | 739.93(2)   | A <sub>1</sub> |  |
| 691.34(119) | 691.05(118) | 690.77(118) | 690.21(118) | 691.33(119) | 691.04(118) | 690.76(118) | 690.20(118) | B <sub>2</sub> |  |
| 661.68(60)  | 661.60(60)  | 661.51(60)  | 661.34(59)  | 661.33(58)  | 661.25(58)  | 661.17(58)  | 661.03(57)  | A <sub>1</sub> |  |
| 629.98(27)  | 629.95(27)  | 629.91(27)  | 629.84(27)  | 629.49(27)  | 629.46(27)  | 629.43(28)  | 629.37(28)  | A <sub>1</sub> |  |
| 278.92(1)   | 278.90(1)   | 278.88(1)   | 278.84(1)   | 278.35(2)   | 278.27(2)   | 278.20(2)   | 278.04(2)   | A <sub>1</sub> |  |
| 278.58(2)   | 278.49(2)   | 278.41(2)   | 278.25(2)   | 269.98(1)   | 269.97(1)   | 269.96(1)   | 269.93(1)   | B <sub>2</sub> |  |
| 244.68(5)   | 244.63(5)   | 244.57(5)   | 244.47(5)   | 242.36(5)   | 242.29(5)   | 242.23(5)   | 242.11(5)   | B <sub>2</sub> |  |
| 218.37(10)  | 218.23(10)  | 218.10(10)  | 217.83(10)  | 213.90(10)  | 213.76(10)  | 213.62(10)  | 213.35(10)  | B <sub>1</sub> |  |
| 119.91(1)   | 119.90(1)   | 119.89(1)   | 119.88(1)   | 119.03(1)   | 119.03(1)   | 119.02(1)   | 119.01(1)   | B1             |  |

## $OPtF_{3} (X^{4}A_{1}, C_{2v}), BP86/AVTZ(-PP)$

| 160/194Pt     | 160/195Pt  | 160/196Pt  | 160/198Pt  | 180/194Pt  | 180/195Pt  | 180/196Pt  | 180/198Pt  | Sym.           |
|---------------|------------|------------|------------|------------|------------|------------|------------|----------------|
| 785.84(9)     | 785.66(9)  | 785.49(9)  | 785.16(9)  | 745.16(10) | 744.97(10) | 744.78(10) | 744.41(10) | A <sub>1</sub> |
| 663.46(87)    | 663.18(87) | 662.91(87) | 662.38(87) | 663.44(87) | 663.17(87) | 662.90(87) | 662.37(87) | B <sub>2</sub> |
| 632.12(44)    | 632.04(44) | 631.95(44) | 631.78(44) | 631.89(43) | 631.81(43) | 631.73(43) | 631.57(43) | A <sub>1</sub> |
| 601.94(19)    | 601.91(19) | 601.88(19) | 601.82(19) | 601.35(19) | 601.32(19) | 601.30(19) | 601.25(19) | A <sub>1</sub> |
| 272.97(2)     | 272.95(2)  | 272.93(2)  | 272.90(2)  | 268.42(2)  | 268.33(2)  | 268.26(2)  | 268.11(2)  | A <sub>1</sub> |
| 268.63(2)     | 268.55(2)  | 268.47(2)  | 268.31(2)  | 264.20(1)  | 264.19(1)  | 264.17(1)  | 264.15(1)  | B <sub>2</sub> |
| 232.26(5)     | 232.20(5)  | 232.15(5)  | 232.05(5)  | 230.06(6)  | 230.00(6)  | 229.94(6)  | 229.83(6)  | B <sub>2</sub> |
| 213.11(7)     | 212.97(7)  | 212.83(7)  | 212.56(7)  | 209.10(7)  | 208.95(7)  | 208.81(7)  | 208.53(7)  | B1             |
| <br>119.46(0) | 119.45(0)  | 119.45(0)  | 119.44(0)  | 118.37(0)  | 118.37(0)  | 118.37(0)  | 118.36(0)  | B1             |

# $\underline{OPtF_3 (X^4A_1, C_{2v}), CCSD(T)/AVTZ(-PP)}$

| 160/194Pt  | 16O/195Pt | 160/196Pt | 160/198Pt | 180/194Pt | 180/195Pt | 180/196Pt | 180/198Pt | Sym.                  |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------------|
| 805.99     | 805.81    | 805.63    | 805.28    | 764.38    | 764.17    | 763.97    | 763.56    | A <sub>1</sub> (Pt-O) |
| 722.11     | 721.80    | 721.50    | 720.90    | 722.09    | 721.79    | 721.49    | 720.89    | B <sub>2</sub> (Pt-F) |
| 683.97     | 683.91    | 683.85    | 683.73    | 683.63    | 683.58    | 683.53    | 683.43    | A <sub>1</sub>        |
| 656.07     | 656.01    | 655.94    | 655.82    | 655.44    | 655.39    | 655.33    | 655.22    | A <sub>1</sub>        |
| 284.46     | 284.38    | 284.30    | 284.13    | 284.23    | 284.14    | 284.06    | 283.90    | A <sub>1</sub>        |
| 282.89     | 282.87    | 282.85    | 282.80    | 273.59    | 273.58    | 273.57    | 273.54    | B <sub>2</sub>        |
| 249.90     | 249.85    | 249.80    | 249.70    | 247.76    | 247.70    | 247.64    | 247.52    | B <sub>2</sub>        |
| 220.75     | 220.61    | 220.48    | 220.22    | 216.05    | 215.91    | 215.77    | 215.50    | B1                    |
| <br>117.34 | 117.33    | 117.32    | 117.30    | 116.57    | 116.56    | 116.55    | 116.53    | B <sub>1</sub>        |

| <sup>3</sup> ∆₀ | <b>C</b> )             | B3I |                | VT7/   | - <b>PP</b> ) |
|-----------------|------------------------|-----|----------------|--------|---------------|
| <b>A</b> 2,     | <b>U</b> 4ν <b>)</b> , | DJL | . I <b>Г/А</b> | V I Z( | )             |

| 160/194Pt   | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym.           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
| 897.22(0)   | 897.04(0)   | 897.04(0)   | 896.50(0)   | 850.05(0)   | 849.85(0)   | 849.66(0)   | 849.28(0)   | A <sub>1</sub> |
| 659.46(135) | 659.18(135) | 659.18(135) | 658.34(134) | 659.44(135) | 659.15(135) | 658.87(135) | 658.31(135) | E              |
| 635.77(12)  | 635.76(12)  | 635.76(12)  | 635.71(12)  | 635.73(12)  | 635.72(12)  | 635.70(12)  | 635.67(12)  | A <sub>1</sub> |
| 604.33(0)   | 604.33(0)   | 604.33(0)   | 604.33(0)   | 604.33(0)   | 604.33(0)   | 604.33(0)   | 604.33(0)   | B <sub>2</sub> |
| 270.48(3)   | 270.38(3)   | 270.38(3)   | 270.11(3)   | 269.58(3)   | 269.49(3)   | 269.39(3)   | 269.21(3)   | E              |
| 228.56(8)   | 228.42(8)   | 228.42(8)   | 228.02(8)   | 228.23(8)   | 228.09(8)   | 227.96(8)   | 227.70(8)   | A <sub>1</sub> |
| 214.77(0)   | 214.77(0)   | 214.77(0)   | 214.77(0)   | 214.77(0)   | 214.77(0)   | 214.77(0)   | 214.77(0)   | B <sub>1</sub> |
| 160.51(0)   | 160.51(0)   | 160.51(0)   | 160.51(0)   | 160.51(0)   | 160.51(0)   | 160.51(0)   | 160.51(0)   | B <sub>2</sub> |
| 159.11(1)   | 159.10(1)   | 159.09(1)   | 159.08(1)   | 153.39(1)   | 153.38(1)   | 153.37(1)   | 153.35(1)   | E              |

# OPtF4 (<sup>3</sup>A<sub>2</sub>, C<sub>4v</sub>), BP86/AVTZ(-PP)

| 160/194Pt     | 160/195Pt   | 160/196Pt   | 160/198Pt   | 180/194Pt   | 180/195Pt   | 180/196Pt   | 180/198Pt   | Sym.           |
|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
| 844.93(1)     | 844.76(1)   | 844.59(1)   | 844.25(1)   | 800.48(1)   | 800.30(1)   | 800.12(1)   | 799.76(1)   | A <sub>1</sub> |
| 636.04(109)   | 636.77(109) | 635.50(109) | 634.97(109) | 636.01(109) | 635.74(109) | 635.47(109) | 634.94(109) | Е              |
| 612.37(8)     | 612.36(8)   | 612.34(8)   | 612.31(8)   | 612.33(8)   | 612.32(8)   | 612.31(8)   | 612.28(8)   | A <sub>1</sub> |
| 591.69(0)     | 591.69(0)   | 591.69(0)   | 591.69(0)   | 591.69(0)   | 591.69(0)   | 591.69(0)   | 591.69(0)   | B <sub>2</sub> |
| 260.40(3)     | 260.31(3)   | 260.22(3)   | 260.04(3)   | 259.53(3)   | 259.43(3)   | 259.34(3)   | 259.16(3)   | E              |
| 221.14(7)     | 221.01(7)   | 220.88(7)   | 220.62(7)   | 220.83(6)   | 220.70(6)   | 220.57(6)   | 220.32(6)   | A <sub>1</sub> |
| 203.00(0)     | 203.00(0)   | 203.00(0)   | 203.00(0)   | 203.00(0)   | 203.00(0)   | 203.00(0)   | 203.00(0)   | B1             |
| 157.30(0)     | 157.30(0)   | 157.30(0)   | 157.30(0)   | 157.30(0)   | 157.30(0)   | 157.30(0)   | 157.30(0)   | B <sub>2</sub> |
| <br>148.05(2) | 148.04(2)   | 148.04(2)   | 148.02(2)   | 142.77(2)   | 142.76(2)   | 142.75(2)   | 142.74(2)   | Е              |

**Table S4.5.** Structural parameters (bond lengths r in Å, angles in deg) and computed harmonic frequencies (cm<sup>-1</sup>) for OCuF ( ${}^{3}\Sigma^{-}$ ;  $C_{\infty\nu}$ ) and OCuF<sub>2</sub> ( ${}^{2}B_{2}$ ,  ${}^{4}A_{2}$ ;  $C_{2\nu}$ ).

| 0 | Cu | F,  | C <sub>∞v</sub> |
|---|----|-----|-----------------|
| - |    | - , |                 |

| Electronic State | Method            | Total energy | r(MO), r(MF), ang(FMF) | T <sub>1</sub> parameters |
|------------------|-------------------|--------------|------------------------|---------------------------|
| 3∑-              | CCSD(T)/VTZ-DK    | -1828.560199 | 1.666, 1.705, 180.0    | 0.079                     |
| 3∑-              | CCSD(T)/(A)VTZ-DK | -1828.584090 | 1.668, 1.712, 180.0    | 0.081                     |

## OCuF (<sup>3</sup>Σ<sup>-</sup>, C<sub>∞v</sub>), CCSD(T)/VTZ-DK

| <br>16O/63Cu | 16O/65Cu | 18O/63Cu | 180/65Cu | Sym.     |
|--------------|----------|----------|----------|----------|
| 858.50       | 854.05   | 835.78   | 831.09   | Σ (Cu-O) |
| 660.28       | 660.05   | 645.86   | 645.80   | Σ (Cu-F) |
| 157.26       | 156.40   | 154.09   | 153.22   | П        |

## OCuF (<sup>3</sup>Σ<sup>-</sup>, C<sub>∞ν</sub>), CCSD(T)/(A)VTZ-DK

| 16O/63Cu | 160/65Cu | 180/63Cu | 180/65Cu | Sym.     |
|----------|----------|----------|----------|----------|
| 852.99   | 848.64   | 829.16   | 824.55   | Σ (Cu-O) |
| 650.98   | 650.71   | 637.73   | 637.63   | Σ (Cu-F) |
| 155.45   | 154.60   | 152.31   | 151.44   | Π        |

| Electronic State               | Method            | Total energy  | r(MO), r(MF), ang(OMF) | T <sub>1</sub> parameters |
|--------------------------------|-------------------|---------------|------------------------|---------------------------|
| <sup>2</sup> B <sub>2</sub>    | B3LYP/AVTZ-PP     | -472.2710581  | 1.759, 1.713, 97.0     |                           |
| <sup>2</sup> B <sub>2</sub>    | CCSD(T)/AVDZ-PP   | -470.913789   | 1.820, 1.717, 95.2     | 0.051                     |
| <sup>2</sup> B <sub>2</sub>    | CCSD(T)/AVTZ-PP   | -471.2119437  | 1.771, 1.704, 95.8     |                           |
| <sup>2</sup> B <sub>2</sub>    | CCSD(T)/VTZ-DK    | -1928.328104  | 1.773, 1.702, 96.15    | 0.050                     |
| <sup>2</sup> B <sub>2</sub>    | CCSD(T)/(A)VTZ-DK | -1927.3649490 | 1.778, 1.707, 95.7     | 0.050                     |
| <sup>2</sup> B <sub>2</sub>    | CCSD(T)/AVTZ-DK   | -1928.3785992 | 1.779, 1.707, 95.7     | 0.051                     |
| <sup>4</sup> A <sub>2</sub> -2 | CCSD(T)/AVDZ-PP   | -470.9125929  | 2.087, 1.746, 94.8     | 0.029                     |
| <sup>4</sup> A <sub>2</sub> -2 | CCSD(T)/AVTZ-PP   | -471.2054971  | 2.00, 1.735, 95.6      |                           |
| <sup>4</sup> A <sub>2</sub> -2 | CCSD(T)/VTZ-DK    | -1928.320343  | 2.045, 1.732, 95.6     | 0.027                     |
| <sup>4</sup> A <sub>2</sub> -2 | CCSD(T)/(A)VTZ-DK | -1928.3574495 | 2.026, 1.739, 95.1     | 0.027                     |
| <sup>4</sup> A <sub>2</sub> -2 | CCSD(T)/AVTZ-DK   | -1928.3707900 | 2.025, 1.737, 95.2     | 0.028                     |
| <sup>4</sup> A <sub>2</sub> -1 | B3LYP/AVTZ-PP     | -472.2736039  | 1.725, 1.740, 115.2    |                           |
| <sup>4</sup> A <sub>2</sub> -1 | CCSD(T)/AVDZ-PP   | -469.818636   | 1.815, 1.755, 107.2    | 0.104                     |
| <sup>4</sup> A <sub>2</sub> -1 | CCSD(T)/VTZ-DK    | -1928.31093   | 1.699, 1.727, 114.2    | 0.053                     |
| <sup>4</sup> A <sub>2</sub> -1 | CCSD(T)/AVTZ-DK   | -1928.360589  | 1.700, 1.732, 114.0    | 0.053                     |

# OCuF<sub>2</sub>, *C*<sub>2v</sub>

# OCuF<sub>2</sub> (<sup>2</sup>B<sub>2</sub>, C<sub>2v</sub>), B3LYP/AVTZ(-PP)

| <br>16O/63Cu  | 16O/65Cu    | 18O/63Cu    | 18O/65Cu    | Sym.           |
|---------------|-------------|-------------|-------------|----------------|
| 762.35(132)   | 757.98(131) | 762.35(132) | 757.98(131) | B <sub>2</sub> |
| 621.81(5)     | 621.55(5)   | 621.34(5)   | 621.11(5)   | A1             |
| 508.15(6)     | 506.77(6)   | 485.22(6)   | 483.72(6)   | A1             |
| 204.92(31)    | 203.58(31)  | 204.70(31)  | 203.36(31)  | B <sub>1</sub> |
| 200.84(19)    | 200.04(18)  | 200.12(19)  | 199.35(18)  | A <sub>1</sub> |
| <br>169.93(0) | 169.72(0)   | 164.12(0)   | 163.91(0)   | B <sub>2</sub> |

## OCuF<sub>2</sub> (<sup>2</sup>B<sub>2</sub>, C<sub>2v</sub>), CCSD(T)/AVTZ(-PP)

| 160/63Cu   | 16O/65Cu | 180/63Cu | 180/65Cu | Sym.           |
|------------|----------|----------|----------|----------------|
| 788.75     | 784.22   | 788.75   | 784.22   | B <sub>2</sub> |
| 641.52     | 641.39   | 641.43   | 641.31   | A <sub>1</sub> |
| 510.49     | 509.05   | 487.03   | 485.49   | A1             |
| 216.06     | 214.67   | 215.90   | 214.52   | B1             |
| 203.76     | 202.92   | 203.08   | 202.28   | A1             |
| <br>160.12 | 159.93   | 154.62   | 154.42   | B <sub>2</sub> |

## $OCuF_2$ (<sup>2</sup>B<sub>2</sub>, $C_{2v}$ ), CCSD(T)/VTZ-DK

| <br>16O/63Cu | 16O/65Cu | 18O/63Cu | 18O/65Cu | Sym.           |
|--------------|----------|----------|----------|----------------|
| 795.47       | 790.91   | 795.47   | 790.91   | B <sub>2</sub> |
| 647.38       | 647.23   | 647.22   | 647.08   | A <sub>1</sub> |
| 489.22       | 487.85   | 466.81   | 465.34   | A <sub>1</sub> |
| 214.91       | 213.53   | 214.72   | 213.33   | B <sub>1</sub> |
| 204.24       | 203.39   | 203.55   | 202.74   | A <sub>1</sub> |
| <br>166.34   | 166.15   | 160.66   | 160.47   | B <sub>2</sub> |

## OCuF<sub>2</sub> (<sup>2</sup>B<sub>2</sub>, C<sub>2v</sub>), CCSD(T)/(A)VTZ-DK

| 160/63Cu | 16O/65Cu | 18O/63Cu | 18O/65Cu | Sym.                  |
|----------|----------|----------|----------|-----------------------|
| 783.77   | 779.27   | 783.77   | 779.27   | B <sub>2</sub>        |
| 636.11   | 635.97   | 635.97   | 635.84   | A <sub>1</sub>        |
| 485.51   | 484.13   | 463.32   | 461.84   | A <sub>1</sub>        |
| 214.06   | 212.68   | 213.96   | 212.58   | B1                    |
| 204.78   | 203.95   | 204.06   | 203.27   | A <sub>1</sub>        |
| 159.73   | 159.63   | 153.87   | 153.77   | <b>B</b> <sub>2</sub> |

OCuF<sub>2</sub> (<sup>4</sup>A<sub>2</sub>-1, C<sub>2v</sub>), B3LYP/AVTZ(-PP)

|  | 16O/63Cu   | 16O/65Cu   | 18O/63Cu   | 18O/65Cu   | Sym.           |  |  |  |
|--|------------|------------|------------|------------|----------------|--|--|--|
|  | 681.54(92) | 678.23(91) | 681.51(92) | 678.20(91) | B <sub>2</sub> |  |  |  |
|  | 636.23(13) | 633.79(13) | 625.86(23) | 623.64(24) | A1             |  |  |  |
|  | 580.32(28) | 580.29(27) | 561.83(18) | 561.50(17) | A <sub>1</sub> |  |  |  |
|  | 185.99(27) | 184.66(26) | 184.25(27) | 182.91(26) | B1             |  |  |  |
|  | 154.49(3)  | 154.14(3)  | 149.53(2)  | 149.16(2)  | B <sub>2</sub> |  |  |  |
|  | 130.48(1)  | 130.05(1)  | 130.25(1)  | 129.84(1)  | A <sub>1</sub> |  |  |  |

OCuF<sub>2</sub> (<sup>4</sup>A<sub>2</sub>-1, *C*<sub>2v</sub>), CCSD(T)/VTZ-DK

|  | 16O/63Cu | 16O/65Cu | 180/63Cu | 180/65Cu | Sym.           |  |  |  |
|--|----------|----------|----------|----------|----------------|--|--|--|
|  | 729.84   | 726.46   | 729.75   | 726.37   | B <sub>2</sub> |  |  |  |
|  | 688.88   | 686.47   | 678.36   | 676.11   | A <sub>1</sub> |  |  |  |
|  | 602.24   | 602.15   | 582.31   | 581.99   | A <sub>1</sub> |  |  |  |
|  | 229.68   | 228.41   | 226.51   | 225.20   | $B_1$          |  |  |  |
|  | 205.27   | 204.33   | 204.89   | 203.97   | A1             |  |  |  |
|  | 180.48   | 179.47   | 172.12   | 171.04   | B <sub>2</sub> |  |  |  |

## OCuF<sub>2</sub> (<sup>4</sup>A<sub>2</sub>-1, *C*<sub>2v</sub>), CCSD(T)/AVTZ-DK

| _ | 16O/63Cu | 16O/65Cu | 18O/63Cu | 18O/65Cu | sym.           |
|---|----------|----------|----------|----------|----------------|
|   | 728.13   | 724.28   | 728.12   | 724.27   | B <sub>2</sub> |
|   | 681.80   | 679.33   | 670.21   | 667.84   | A1             |
|   | 577.50   | 577.44   | 559.48   | 559.26   | A1             |
|   | 276.60   | 275.85   | 281.26   | 280.49   | $B_1$          |
|   | 205.51   | 204.03   | 204.90   | 203.46   | A <sub>1</sub> |
|   | 197.82   | 194.89   | 192.89   | 189.92   | B <sub>2</sub> |

# Part 5. RHF, CI and RCCSD(T) calculations on different spin-states of NiOF

Doublet and quartet spin states of NiOF were investigated by RHF, CI and RCCSD(T). The reference RHF wave function, which was used in subsequent CI and RCCSD(T) calculations, was obtained without the use of symmetry so that the molecular geometry could relax into the ground state. Geometry optimization and normal mode analysis were carried out in the reduced point group  $C_1$  and subsequently checked against the corresponding calculations in point group  $C_s$ .

#### NiOF <sup>2</sup>A':

**Table S5.1.** Natural orbitals obtained from RHF calculations at the RCCSD(T) optimized geometry using the AVTZ-DK basis set:

| Orbital | Occupatio | n Energy   | Coeffi | cients   |   |      |          |   |      |          |   |      |          |
|---------|-----------|------------|--------|----------|---|------|----------|---|------|----------|---|------|----------|
| 1.1     | 2.00000   | -308.58650 | 3 1s   | 0.99247  |   |      |          |   |      |          |   |      |          |
| 2.1     | 2.00000   | -38.41652  | 3 1s   | 0.99250  |   |      |          |   |      |          |   |      |          |
| 3.1     | 2.00000   | -32.89336  | 3 2py  | -0.64119 | 3 | 2pz  | 0.76732  |   |      |          |   |      |          |
| 4.1     | 2.00000   | -32.87945  | 3 2py  | 0.76732  | 3 | 2pz  | 0.64119  |   |      |          |   |      |          |
| 5.1     | 2.00000   | -26.27118  | 2 1s   | 0.99889  |   |      |          |   |      |          |   |      |          |
| 6.1     | 2.00000   | -20.59022  | 1 1s   | 0.99911  |   |      |          |   |      |          |   |      |          |
| 7.1     | 2.00000   | -4.81093   | 3 1s   | 0.99716  |   |      |          |   |      |          |   |      |          |
| 8.1     | 2.00000   | -3.13593   | 3 2py  | -0.56594 | 3 | 2pz  | 0.82254  |   |      |          |   |      |          |
| 9.1     | 2.00000   | -3.12709   | 3 2py  | 0.82378  | 3 | 2pz  | 0.56628  |   |      |          |   |      |          |
| 10.1    | 2.00000   | -1.52787   | 1 1s   | 0.29589  | 2 | 1s   | 0.88995  |   |      |          |   |      |          |
| 11.1    | 2.00000   | -1.17526   | 1 1s   | 0.88781  | 2 | 1s   | -0.38181 |   |      |          |   |      |          |
| 12.1    | 2.00000   | -0.63193   | 1 2pz  | 0.35245  | 2 | 2py  | -0.39800 | 2 | 2pz  | 0.67581  |   |      |          |
| 13.1    | 2.00000   | -0.57832   | 1 2py  | -0.31739 | 1 | 2pz  | -0.30801 | 2 | 2py  | 0.60951  | 2 | 2pz  | 0.33432  |
| 14.1    | 2.00000   | -0.48917   | 1 2pz  | 0.31595  | 2 | 2pz  | -0.42033 | 3 | 3d0  | 0.68740  | 3 | 3d2+ | 0.49132  |
| 15.1    | 2.00000   | -0.47142   | 1 2py  | 0.46824  | 1 | 2pz  | -0.56587 | 2 | 2py  | -0.36124 | 2 | 2pz  | 0.26326  |
| 16.1    | 2.00000   | -0.45487   | 3 3d0  | 0.40995  | 3 | 3d2+ | -0.80494 | 3 | 3d1- | 0.43294  |   |      |          |
| 17.1    | 1.00000   | -0.52990   | 3 3d0  | -0.40940 | 3 | 3d1- | 0.85403  |   |      |          |   |      |          |
| 1.2     | 2.00000   | -32.87680  | 3 2px  | 0.99996  |   |      |          |   |      |          |   |      |          |
| 2.2     | 2.00000   | -3.12435   | 3 2px  | 0.99976  |   |      |          |   |      |          |   |      |          |
| 3.2     | 2.00000   | -0.62145   | 1 2px  | 0.40698  | 2 | 2px  | 0.81212  |   |      |          |   |      |          |
| 4.2     | 2.00000   | -0.51252   | 1 2px  | 0.34778  | 2 | 2px  | -0.39691 | 3 | 3d2- | 0.52832  | 3 | 3d1+ | -0.65186 |
| 5.2     | 2.00000   | -0.45670   | 3 3d2- | 0.80617  | 3 | 3d1+ | 0.60363  |   |      |          |   |      |          |
| 6.2     | 2.00000   | -0.42386   | 1 2px  | 0.78485  | 2 | 2px  | -0.35427 | 3 | 3d2- | -0.29366 | 3 | 3d1+ | 0.44966  |
|         |           |            |        |          |   |      |          |   |      |          |   |      |          |

**Table S5.2.** Structural parameters for the ground state <sup>2</sup>A' NiOF.

| RHF            |                |               |                |                      |  |  |  |  |  |  |
|----------------|----------------|---------------|----------------|----------------------|--|--|--|--|--|--|
|                | Energy $(E_h)$ | $r_{O-F}$ (Å) | $r_{Ni-O}$ (Å) | Angle ( $^{\circ}$ ) |  |  |  |  |  |  |
| VDZ            | -1681.01619907 | 1.4719        | 1.9387         | 80.6250              |  |  |  |  |  |  |
| $\mathbf{VTZ}$ | -1681.07027174 | 1.4332        | 1.9116         | 90.9838              |  |  |  |  |  |  |
| VQZ            | -1681.08699476 | 1.4322        | 1.9133         | 91.1737              |  |  |  |  |  |  |
| AVDZ           | -1681.03209432 | 1.4567        | 1.9300         | 85.1923              |  |  |  |  |  |  |
| AVTZ           | -1681.07537612 | 1.4337        | 1.9157         | 91.0206              |  |  |  |  |  |  |
| AVQZ           | -1681.08850477 | 1.4318        | 1.9149         | 91.2930              |  |  |  |  |  |  |
| VDZ-DK         | -1693.33866845 | 1.4658        | 1.9196         | 82.7751              |  |  |  |  |  |  |
| VTZ-DK         | -1693.39349250 | 1.4277        | 1.8956         | 93.5108              |  |  |  |  |  |  |
| VQZ-DK         | -1693.41086091 | 1.4268        | 1.8973         | 93.7608              |  |  |  |  |  |  |
| AVDZ-DK        | -1693.35457670 | 1.4507        | 1.9127         | 87.8951              |  |  |  |  |  |  |
| AVTZ-DK        | -1693.39846097 | 1.4288        | 1.8998         | 93.4875              |  |  |  |  |  |  |

Continued on next page

| AVQZ-DK | -1693.41231976 | 1.4266        | 1.8989         | 93.7326            |
|---------|----------------|---------------|----------------|--------------------|
|         |                | CISD          |                |                    |
|         | Energy $(E_h)$ | $r_{O-F}$ (Å) | $r_{Ni-O}$ (Å) | Angle $(^{\circ})$ |
| VDZ     | -1681.63434693 | 1.4668        | 1.8691         | 87.6774            |
| VTZ     | -1681.83476495 | 1.4337        | 1.8556         | 95.2490            |
| VQZ     | -1681.91133910 | 1.4294        | 1.8547         | 95.8603            |
| AVDZ    | -1681.68481586 | 1.4653        | 1.8717         | 89.5951            |
| AVTZ    | -1681.85922271 | 1.4354        | 1.8584         | 95.2407            |
| AVQZ    | -1681.92164287 | 1.4299        | 1.8554         | 95.4821            |
| VDZ-DK  | -1693.95965837 | 1.4619        | 1.8508         | 90.3470            |
| VTZ-DK  | -1694.16023487 | 1.4311        | 1.8392         | 96.9859            |
| VQZ-DK  | -1694.23744222 | 1.4272        | 1.8386         | 97.4669            |
| AVDZ-DK | -1694.00941967 | 1.4612        | 1.8546         | 92.0489            |
| AVTZ-DK | -1694.18404909 | 1.4330        | 1.8420         | 96.9234            |
| AVQZ-DK | -1694.24756019 | 1.4275        | 1.8391         | 97.1434            |
|         | R              | RCCSD(T)      |                |                    |
|         | Energy $(E_h)$ | $r_{O-F}$ (Å) | $r_{Ni-O}$ (Å  | ) Angle (°)        |
| VDZ     | -1681.74211777 | 1.5528        | 1.8417         | 78.4392            |
| VTZ     | -1681.97707001 | 1.5008        | 1.8185         | 88.6637            |
| VQZ     | -1682.06897015 | 1.4956        | 1.8162         | 91.2182            |
| AVDZ    | -1681.81019576 | 1.5570        | 1.8471         | 78.0911            |
| AVTZ    | -1682.01265799 | 1.5032        | 1.8209         | 90.8299            |
| AVQZ    | -1682.08383389 | 1.4979        | 1.8174         | 90.7428            |
| VDZ-DK  | -1694.07017279 | 1.5597        | 1.8205         | 77.6751            |
| VTZ-DK  | -1694.30550601 | 1.5208        | 1.8058         | 80.2085            |
| VQZ-DK  | -1694.39782512 | 1.4968        | 1.7960         | 91.8918            |
| AVDZ-DK | -1694.13748505 | 1.5642        | 1.8267         | 77.0405            |
| AVTZ-DK | -1694.34009773 | 1.5053        | 1.8003         | 91.0270            |
| AVQZ-DK | -1694.41245504 | 1.5004        | 1.7972         | 90.5894            |

**Table S5.3.**  $T_1$  parameters for the <sup>2</sup>A' state NiOF, RCCSD(T) calculations.

| Basis set | $T_1$  |
|-----------|--------|
| VDZ       | 0.0413 |
| VTZ       | 0.0336 |
| VQZ       | 0.0321 |
| AVDZ      | 0.0410 |
| AVTZ      | 0.0337 |
| AVQZ      | 0.0324 |
| VDZ-DK    | 0.0485 |
| VTZ-DK    | 0.0418 |
| VQZ-DK    | 0.0349 |
| AVDZ-DK   | 0.0481 |
| AVTZ-DK   | 0.0368 |
| AVQZ-DK   | 0.0354 |

|         |          |        | RHF    |        |        | CISD   |         |        | RCCSD(T) |        |
|---------|----------|--------|--------|--------|--------|--------|---------|--------|----------|--------|
|         |          | 1A'    | 2A'    | 3A'    | 1A'    | 2A'    | 3A'     | 1A'    | 2A'      | 3A'    |
|         | ω        | 113.95 | 501.17 | 866.18 | 92.84  | 555.38 | 916.90  | 171.87 | 520.16   | 726.65 |
| VDZ     | Ι        | 7.29   | 37.86  | 83.45  | 7.72   | 38.22  | 39.51   | -      | -        | -      |
|         | $I_r$    | 8.74   | 45.37  | 100.00 | 19.55  | 96.74  | 100.00  | -      | -        | -      |
|         | ω        | 109.89 | 537.88 | 970.02 | 124.10 | 573.05 | 1001.28 | 95.48  | 574.14   | 804.38 |
| VTZ     | Ι        | 7.30   | 45.15  | 69.61  | 8.33   | 44.71  | 41.47   | -      | -        | -      |
|         | $I_r$    | 10.49  | 64.86  | 100.00 | 18.63  | 100.00 | 92.75   | -      | -        | -      |
|         | ω        | 104.02 | 535.28 | 961.71 | 124.70 | 573.25 | 998.98  | 96.90  | 573.84   | 800.00 |
| VQZ     | Ι        | 7.82   | 44.10  | 71.89  | 8.80   | 43.32  | 44.40   | -      | -        | -      |
|         | $I_r$    | 10.88  | 61.35  | 100.00 | 19.82  | 97.56  | 100.00  | -      | -        | -      |
|         | ω        | 100.58 | 514.50 | 891.26 | 106.44 | 559.18 | 924.44  | 149.13 | 509.00   | 727.23 |
| AVDZ    | Ι        | 8.41   | 41.57  | 85.03  | 9.66   | 39.19  | 49.89   | -      | -        | -      |
|         | $I_r$    | 9.90   | 48.89  | 100.00 | 19.36  | 78.56  | 100.00  | -      | -        | -      |
|         | ω        | 107.33 | 532.09 | 962.95 | 122.56 | 568.94 | 992.57  | 94.40  | 565.10   | 790.90 |
| AVTZ    | I        | 8.24   | 43.44  | 72.50  | 9.26   | 42.02  | 44.87   | -      | -        | -      |
|         | $I_r$    | 11.36  | 59.91  | 100.00 | 20.64  | 93.64  | 100.00  | -      | -        | -      |
|         | ω        | 105.06 | 532.26 | 959.90 | 121.93 | 571.60 | 995.67  | 95.64  | 569.71   | 795.07 |
| AVQZ    | Ι        | 8.14   | 43.59  | 71.89  | 9.13   | 42.26  | 45.34   | -      | -        | -      |
|         | $I_r$    | 11.32  | 60.63  | 100.00 | 20.14  | 93.22  | 100.00  | -      | -        | -      |
|         |          |        |        |        |        |        |         |        |          |        |
|         | ω        | 97.32  | 515.36 | 881.81 | 96.43  | 567.86 | 926.63  | 196.26 | 512.15   | 712.09 |
| VDZ-DK  | I        | 6.71   | 38.17  | 78.08  | 7.38   | 38.39  | 36.14   | -      | -        | -      |
|         | $I_r$    | 8.59   | 48.89  | 100.00 | 19.22  | 100.00 | 94.12   | -      | -        | -      |
|         | ω        | 119.44 | 548.08 | 986.63 | 134.65 | 581.89 | 1006.47 | 131.02 | 555.17   | 778.73 |
| VTZ-DK  | I        | 6.99   | 45.78  | 64.67  | 8.13   | 44.55  | 39.62   | -      | -        | -      |
|         | $I_r$    | 10.81  | 70.79  | 100.00 | 18.26  | 100.00 | 88.95   | -      | -        | -      |
|         | $\omega$ | 115.81 | 545.22 | 978.37 | 137.75 | 581.89 | 1003.87 | 100.71 | 585.01   | 792.21 |
| VQZ-DK  | I        | 7.51   | 44.66  | 66.91  | 8.60   | 43.11  | 42.59   | -      | -        | -      |
|         | $I_r$    | 11.22  | 66.74  | 100.00 | 19.94  | 100.00 | 98.80   | -      | -        | -      |
|         | ω        | 99.61  | 526.79 | 907.86 | 117.48 | 568.56 | 932.35  | 150.60 | 486.92   | 707.62 |
| AVDZ-DK | I        | 7.94   | 41.91  | 79.19  | 9.23   | 38.92  | 47.05   | -      | -        | -      |
|         | $I_r$    | 10.03  | 52.92  | 100.00 | 19.62  | 82.72  | 100.00  | -      | -        | -      |
|         | ω        | 116.48 | 541.65 | 978.09 | 133.06 | 577.26 | 997.29  | 68.84  | 573.04   | 781.01 |
| AVTZ-DK | I        | 7.91   | 43.91  | 67.82  | 9.01   | 41.75  | 43.05   | -      | -        | -      |
|         | $I_r$    | 11.66  | 64.74  | 100.00 | 20.94  | 97.00  | 100.00  | -      | -        | -      |
|         | ω        | 114.10 | 542.05 | 975.61 | 133.64 | 580.70 | 1000.66 | 84.70  | 580.03   | 785.76 |
| AVQZ-DK | I        | 7.84   | 44.10  | 67.27  | 8.90   | 42.08  | 43.52   | -      | -        | -      |
|         | $I_r$    | 11.66  | 65.55  | 100.00 | 20.46  | 96.69  | 100.00  | -      | -        | -      |

Table S5.4. Harmonic vibrational frequencies for the  ${}^{2}A'$   ${}^{58}Ni^{16}OF$  isotopologue.

|         |          |        | RHF    |        |        | CISD   |        |        | RCCSD(T) |        |
|---------|----------|--------|--------|--------|--------|--------|--------|--------|----------|--------|
|         |          | 1A'    | 2A'    | 3A'    | 1A'    | 2A'    | 3A'    | 1A'    | 2A'      | 3A'    |
|         | ω        | 112.85 | 480.05 | 841.91 | 91.84  | 531.18 | 890.38 | 170.77 | 498.52   | 705.02 |
| VDZ     | Ι        | 7.11   | 35.56  | 82.12  | 7.42   | 35.60  | 39.82  | -      | -        | -      |
|         | $I_r$    | 8.66   | 43.30  | 100.00 | 18.63  | 89.42  | 100.00 | -      | -        | -      |
|         | ω        | 108.87 | 514.41 | 941.69 | 122.89 | 547.96 | 971.54 | 95.30  | 548.58   | 781.14 |
| VTZ     | Ι        | 6.96   | 41.96  | 69.32  | 7.89   | 41.47  | 42.04  | -      | -        | -      |
|         | $I_r$    | 10.04  | 60.53  | 100.00 | 18.77  | 98.64  | 100.00 | -      | -        | -      |
|         | ω        | 103.05 | 511.92 | 933.61 | 123.48 | 548.18 | 969.25 | 96.30  | 548.34   | 776.85 |
| VQZ     | Ι        | 7.47   | 41.01  | 71.54  | 8.34   | 40.20  | 44.93  | -      | -        | -      |
|         | $I_r$    | 10.44  | 57.32  | 100.00 | 18.56  | 89.47  | 100.00 | -      | -        | -      |
|         | ω        | 99.68  | 492.25 | 865.77 | 105.73 | 534.53 | 897.46 | 148.07 | 487.90   | 705.23 |
| AVDZ    | Ι        | 8.12   | 38.85  | 84.02  | 9.26   | 36.52  | 50.08  | -      | -        | -      |
|         | $I_r$    | 9.67   | 46.24  | 100.00 | 18.50  | 72.92  | 100.00 | -      | -        | -      |
|         | ω        | 106.34 | 508.86 | 934.81 | 121.37 | 544.02 | 963.07 | 93.75  | 539.96   | 768.02 |
| AVTZ    | Ι        | 7.87   | 40.42  | 72.13  | 8.80   | 39.03  | 45.37  | -      | -        | -      |
|         | $I_r$    | 10.91  | 56.04  | 100.00 | 19.39  | 86.04  | 100.00 | -      | -        | -      |
|         | ω        | 104.09 | 509.02 | 931.84 | 120.76 | 546.58 | 966.07 | 95.14  | 544.41   | 772.05 |
| AVQZ    | Ι        | 7.77   | 40.55  | 71.54  | 8.67   | 39.25  | 45.82  | -      | -        | -      |
|         | $I_r$    | 10.86  | 56.68  | 100.00 | 18.91  | 85.66  | 100.00 | -      | -        | -      |
|         |          |        |        |        |        |        |        |        |          |        |
|         | $\omega$ | 96.39  | 493.39 | 857.01 | 95.54  | 543.00 | 899.73 | 194.59 | 491.36   | 690.32 |
| VDZ-DK  | Ι        | 6.54   | 35.72  | 77.00  | 7.05   | 35.69  | 36.60  | -      | -        | -      |
|         | $I_r$    | 8.49   | 46.39  | 100.00 | 19.26  | 97.51  | 100.00 | -      | -        | -      |
|         | $\omega$ | 118.25 | 524.18 | 957.61 | 133.27 | 556.47 | 976.46 | 130.32 | 531.59   | 755.46 |
| VTZ-DK  | Ι        | 6.62   | 42.47  | 64.59  | 7.68   | 41.27  | 40.27  | -      | -        | -      |
|         | $I_r$    | 10.25  | 65.76  | 100.00 | 18.60  | 100.00 | 97.56  | -      | -        | -      |
|         | $\omega$ | 114.68 | 521.44 | 949.58 | 136.39 | 556.48 | 973.88 | 100.53 | 558.95   | 769.43 |
| VQZ-DK  | Ι        | 7.12   | 41.46  | 66.79  | 8.12   | 39.97  | 43.19  | -      | -        | -      |
|         | $I_r$    | 10.66  | 62.08  | 100.00 | 18.79  | 92.55  | 100.00 | -      | -        | -      |
|         | ω        | 98.68  | 503.88 | 881.74 | 116.64 | 543.49 | 905.04 | 148.68 | 467.51   | 685.79 |
| AVDZ-DK | 1        | 7.63   | 39.06  | 78.46  | 8.81   | 36.19  | 47.36  | -      | -        | -      |
|         | $I_r$    | 9.73   | 49.79  | 100.00 | 18.61  | 76.41  | 100.00 | -      | -        | -      |
|         | ω        | 115.32 | 518.01 | 949.32 | 131.70 | 552.02 | 967.54 | 68.62  | 547.52   | 758.51 |
| AVTZ-DK | 1        | 7.52   | 40.79  | 67.65  | 8.53   | 38.75  | 43.61  | -      | -        | -      |
|         | $I_r$    | 11.11  | 60.30  | 100.00 | 19.57  | 88.85  | 100.00 | -      | -        | -      |
| MOZ DE  | $\omega$ | 112.98 | 518.40 | 946.90 | 132.36 | 555.32 | 970.80 | 85.01  | 554.23   | 763.18 |
| AVQZ-DK |          | 7.45   | 40.96  | 67.12  | 8.42   | 39.04  | 44.07  | -      | -        | -      |
|         | $I_r$    | 11.10  | 61.02  | 100.00 | 19.12  | 88.58  | 100.00 | -      | -        | -      |

Table S5.5. Harmonic vibrational frequencies for the  ${}^{2}A'$   ${}^{58}Ni^{18}OF$  isotopologue.

|         |          |        | RHF    |        |        | CISD   |         |        | RCCSD(T) |        |
|---------|----------|--------|--------|--------|--------|--------|---------|--------|----------|--------|
|         |          | 1A'    | 2A'    | 3A'    | 1A'    | 2A'    | 3A'     | 1A'    | 2A'      | 3A'    |
|         | ω        | 113.58 | 499.01 | 866.10 | 92.59  | 553.18 | 916.86  | 170.95 | 518.21   | 726.36 |
| VDZ     | I        | 7.25   | 37.39  | 84.22  | 7.75   | 37.75  | 39.88   | -      | -        | -      |
|         | $I_r$    | 8.61   | 44.39  | 100.00 | 19.43  | 94.67  | 100.00  | -      | -        | -      |
|         | ω        | 109.49 | 535.80 | 969.99 | 123.64 | 570.89 | 1001.26 | 94.68  | 572.03   | 804.32 |
| VTZ     | I        | 7.34   | 44.63  | 70.04  | 8.37   | 44.19  | 41.74   | -      | -        | -      |
|         | $I_r$    | 10.47  | 63.72  | 100.00 | 18.95  | 100.00 | 94.47   | -      | -        | -      |
| -       | ω        | 103.64 | 533.22 | 961.67 | 124.23 | 571.10 | 998.96  | 96.34  | 571.70   | 799.96 |
| VQZ     | I        | 7.85   | 43.58  | 72.32  | 8.84   | 42.80  | 44.68   | -      | -        | -      |
|         | $I_r$    | 10.86  | 60.27  | 100.00 | 19.79  | 95.80  | 100.00  | -      | -        | -      |
|         | ω        | 100.23 | 512.42 | 891.22 | 105.91 | 557.06 | 924.41  | 148.42 | 507.10   | 726.88 |
| AVDZ    | I        | 8.42   | 41.04  | 85.65  | 9.69   | 38.68  | 50.27   | -      | -        | -      |
|         | $I_r$    | 9.83   | 47.92  | 100.00 | 19.28  | 76.95  | 100.00  | -      | -        | -      |
|         | ω        | 106.94 | 530.04 | 962.92 | 122.11 | 566.80 | 992.54  | 93.86  | 563.01   | 790.85 |
| AVTZ    | I        | 8.27   | 42.91  | 72.94  | 9.30   | 41.50  | 45.16   | -      | -        | -      |
|         | $I_r$    | 11.34  | 58.83  | 100.00 | 20.59  | 91.91  | 100.00  | -      | -        | -      |
|         | ω        | 104.68 | 530.20 | 959.87 | 121.47 | 569.46 | 995.65  | 95.08  | 567.59   | 795.02 |
| AVQZ    | I        | 8.17   | 43.07  | 72.32  | 9.17   | 41.75  | 45.62   | -      | -        | -      |
|         | $I_r$    | 11.29  | 59.55  | 100.00 | 20.09  | 91.51  | 100.00  | -      | -        | -      |
|         |          |        |        |        |        |        |         |        |          |        |
|         | ω        | 96.99  | 513.19 | 881.74 | 96.06  | 565.67 | 926.60  | 195.50 | 510.35   | 711.61 |
| VDZ-DK  |          | 6.68   | 37.72  | 78.75  | 7.41   | 37.94  | 36.45   | -      | -        | -      |
|         | $I_r$    | 8.48   | 47.90  | 100.00 | 19.52  | 100.00 | 96.06   | -      | -        | -      |
|         | ω        | 119.02 | 545.98 | 986.60 | 134.14 | 579.73 | 1006.45 | 130.25 | 553.15   | 778.45 |
| VTZ-DK  |          | 7.03   | 45.27  | 65.04  | 8.17   | 44.03  | 39.87   | -      | -        | -      |
|         | $I_r$    | 10.80  | 69.60  | 100.00 | 18.57  | 100.00 | 90.55   | -      | -        | -      |
|         | ω        | 115.39 | 543.15 | 978.34 | 137.22 | 579.73 | 1003.85 | 100.02 | 582.88   | 792.17 |
| VQZ-DK  |          | 7.54   | 44.15  | 67.28  | 8.63   | 42.60  | 42.84   | -      | -        | -      |
|         | $I_r$    | 11.21  | 65.61  | 100.00 | 20.15  | 99.44  | 100.00  | -      | -        | -      |
|         | ω        | 99.26  | 524.70 | 907.83 | 116.90 | 566.42 | 932.32  | 150.50 | 485.08   | 707.14 |
| AVDZ-DK |          | 7.96   | 41.40  | 79.71  | 9.26   | 38.42  | 47.37   | -      | -        | -      |
|         | $I_r$    | 9.98   | 51.94  | 100.00 | 19.56  | 81.11  | 100.00  | -      | -        | -      |
|         | ω        | 116.07 | 539.58 | 978.06 | 132.56 | 575.11 | 997.26  | 68.31  | 570.94   | 780.93 |
| AVTZ-DK |          | 7.94   | 43.39  | 68.20  | 9.05   | 41.25  | 43.30   | -      | -        | -      |
|         | $I_r$    | 11.65  | 63.63  | 100.00 | 20.89  | 95.26  | 100.00  | -      | -        | -      |
| ANOZ DY | $\omega$ | 113.69 | 539.99 | 975.58 | 133.12 | 578.55 | 1000.63 | 84.00  | 577.92   | 785.71 |
| AVQZ-DK |          | 7.88   | 43.58  | 67.64  | 8.94   | 41.57  | 43.77   | -      | -        | -      |
|         | $ I_r $  | 11.64  | 64.43  | 100.00 | 20.42  | 94.97  | 100.00  | -      | -        | -      |

Table S5.6. Harmonic vibrational frequencies for the  ${}^{2}A' {}^{60}Ni^{16}OF$  isotopologue.

|         |          |        | RHF    |                 |        | CISD   |        |        | RCCSD(T) |        |
|---------|----------|--------|--------|-----------------|--------|--------|--------|--------|----------|--------|
|         |          | 1A'    | 2A'    | 3A'             | 1A'    | 2A'    | 3A'    | 1A'    | 2A'      | 3A'    |
|         | ω        | 112.51 | 477.86 | 841.89          | 91.56  | 528.93 | 890.37 | 170.11 | 496.52   | 704.79 |
| VDZ     | Ι        | 7.08   | 35.07  | 82.09           | 7.35   | 35.14  | 39.81  | -      | -        | -      |
|         | $I_r$    | 8.63   | 42.72  | 100.00          | 18.45  | 88.27  | 100.00 | -      | -        | -      |
|         | ω        | 108.50 | 512.27 | 941.68          | 122.45 | 545.74 | 971.53 | 94.80  | 546.41   | 781.11 |
| VTZ     | Ι        | 6.89   | 41.43  | 69.32           | 7.80   | 40.96  | 42.05  | -      | -        | -      |
|         | $I_r$    | 9.94   | 59.77  | 100.00          | 18.56  | 97.40  | 100.00 | -      | -        | -      |
|         | ω        | 102.70 | 509.79 | 933.60          | 123.04 | 545.96 | 969.24 | 95.88  | 546.14   | 776.84 |
| VQZ     | I        | 7.39   | 40.49  | 71.55           | 8.25   | 39.70  | 44.95  | -      | -        | -      |
|         | $I_r$    | 10.33  | 56.59  | 100.00          | 18.35  | 88.32  | 100.00 | -      | -        | -      |
|         | ω        | 99.35  | 490.12 | 865.76          | 105.34 | 532.34 | 897.45 | 147.48 | 485.93   | 705.02 |
| AVDZ    | Ι        | 8.06   | 38.33  | 84.00           | 9.17   | 36.03  | 50.07  | -      | -        | -      |
|         | $I_r$    | 9.59   | 45.63  | 100.00          | 18.32  | 71.95  | 100.00 | -      | -        | -      |
|         | ω        | 105.97 | 506.74 | 934.80          | 120.93 | 541.81 | 963.06 | 93.32  | 537.80   | 767.99 |
| AVTZ    | Ι        | 7.79   | 39.90  | 72.13           | 8.70   | 38.54  | 45.38  | -      | -        | -      |
|         | $I_r$    | 10.80  | 55.32  | 100.00          | 19.18  | 84.92  | 100.00 | -      | -        | -      |
|         | ω        | 103.73 | 506.91 | 931.83          | 120.32 | 544.37 | 966.06 | 94.73  | 542.23   | 772.03 |
| AVQZ    | I        | 7.69   | 40.03  | 71.54           | 8.57   | 38.75  | 45.84  | -      | -        | -      |
|         | $I_r$    | 10.75  | 55.95  | 100.00          | 18.70  | 84.55  | 100.00 | -      | -        | -      |
|         |          |        |        |                 |        |        |        |        |          |        |
|         | ω        | 96.08  | 491.19 | 856.99          | 95.20  | 540.74 | 899.72 | 193.88 | 489.47   | 689.96 |
| VDZ-DK  | I        | 6.50   | 35.25  | 76.98           | 6.98   | 35.24  | 36.60  | -      | -        | -      |
|         | $I_r$    | 8.44   | 45.79  | 100.00          | 19.06  | 96.28  | 100.00 | -      | -        | -      |
|         | ω        | 117.84 | 522.03 | 957.60          | 132.79 | 554.23 | 976.45 | 129.73 | 529.50   | 755.28 |
| VTZ-DK  | I        | 6.55   | 41.96  | 64.60           | 7.59   | 40.77  | 40.28  | -      | -        | -      |
|         | $I_r$    | 10.14  | 64.95  | 100.00          | 18.62  | 100.00 | 98.80  | -      | -        | -      |
|         | ω        | 114.28 | 519.30 | 949.57          | 135.90 | 554.24 | 973.87 | 100.19 | 556.73   | 769.41 |
| VQZ-DK  |          | 7.05   | 40.94  | 66.80           | 8.03   | 39.48  | 43.21  | -      | -        | -      |
|         | $I_r$    | 10.55  | 61.30  | 100.00          | 18.58  | 91.36  | 100.00 | -      | -        | -      |
|         | ω        | 98.34  | 501.74 | 881.73          | 116.19 | 541.28 | 905.03 | 148.27 | 465.61   | 685.44 |
| AVDZ-DK |          | 7.57   | 38.55  | 78.45           | 8.72   | 35.72  | 47.37  | -      | -        | -      |
|         | $I_r$    | 9.65   | 49.14  | 100.00          | 18.41  | 75.41  | 100.00 | -      | -        | -      |
|         | $\omega$ | 114.92 | 515.88 | 949.30          | 131.23 | 549.80 | 967.53 | 68.26  | 545.35   | 758.46 |
| AVTZ-DK |          | 7.44   | 40.28  | 67.66           | 8.44   | 38.26  | 43.63  | -      | -        | -      |
|         | $I_r$    | 11.00  | 59.54  | 100.00          | 19.35  | 87.70  | 100.00 | -      | -        | -      |
| AVOZ DV |          | 112.59 | 516.28 | 946.89          |        | 553.09 | 970.79 | 84.71  | 552.02   | 763.14 |
| AVQZ-DK |          | 7.37   | 40.45  | 67.13<br>100.00 | 8.33   | 38.55  | 44.09  | -      | -        | -      |
|         | $ I_r $  | 10.98  | 60.25  | 100.00          | 18.90  | 87.44  | 100.00 | -      | -        | -      |

Table S5.7. Harmonic vibrational frequencies for the  ${}^{2}A' {}^{60}Ni {}^{18}OF$  isotopologue.

## NiOF <sup>4</sup>A"

**Table S5.8.** Natural orbitals obtained from RHF calculations at the RCCSD(T) optimized geometry using the AVTZ-DK basis set:

| Orbital | Occupatio | n Energy   | Coefficients    |        |           |       |          |       |         |
|---------|-----------|------------|-----------------|--------|-----------|-------|----------|-------|---------|
| 1.1     | 2.00000   | -308.80642 | 3 1s 0.99247    |        |           |       |          |       |         |
| 2.1     | 2.00000   | -38.66117  | 3 1s 0.99245    |        |           |       |          |       |         |
| 3.1     | 2.00000   | -33.12758  | 3 2py -0.58920  | 3 2pz  | 0.80793   |       |          |       |         |
| 4.1     | 2.00000   | -33.12280  | 3 2py 0.80793   | 3 2pz  | 0.58920   |       |          |       |         |
| 5.1     | 2.00000   | -26.32901  | 2 1s 0.99888    |        |           |       |          |       |         |
| 6.1     | 2.00000   | -20.64359  | 1 1s 0.99908    |        |           |       |          |       |         |
| 7.1     | 2.00000   | -5.04465   | 3 1s 0.99859    |        |           |       |          |       |         |
| 8.1     | 2.00000   | -3.35005   | 3 2py -0.35879  | 3 2pz  | 0.93201   |       |          |       |         |
| 9.1     | 2.00000   | -3.34894   | 3 2py 0.93316   | 3 2pz  | 0.35951   |       |          |       |         |
| 10.1    | 2.00000   | -1.59084   | 1 1s 0.30494    | 2 1s   | 0.88324   |       |          |       |         |
| 11.1    | 2.00000   | -1.23253   | 1 1s 0.87756    | 2 1s   | -0.39694  |       |          |       |         |
| 12.1    | 2.00000   | -0.74433   | 1 2pz 0.25076   | 2 2pz  | 0.35762   | 3 3d0 | -0.81412 |       |         |
| 13.1    | 2.00000   | -0.72350   | 3 3d2+ -0.87235 | 3 3d1- | 0.34308   |       |          |       |         |
| 14.1    | 2.00000   | -0.66559   | 2 2py 0.36674   | 2 2pz  | -0.63088  | 3 3d0 | -0.50994 |       |         |
| 15.1    | 2.00000   | -0.61883   | 1 2py 0.37901   | 2 2py  | -0.61810  | 2 2pz | -0.38240 |       |         |
| 16.1    | 2.00000   | -0.52264   | 1 2py 0.40383   | 1 2pz  | -0.68140  | 2 2py | -0.25399 | 2 2pz | 0.42719 |
| 17.1    | 1.00000   | -0.78405   | 3 3d2+ -0.34061 | 3 3d1- | - 0.92276 |       |          |       |         |
| 18.1    | 1.00000   | -0.32258   | 3 ls 1.04537    | 3 2pz  | -0.49760  |       |          |       |         |
| 1.2     | 2.00000   | -33.12184  | 3 2px 0.99995   |        |           |       |          |       |         |
| 2.2     | 2.00000   | -3.34607   | 3 2px 1.00012   |        |           |       |          |       |         |
| 3.2     | 2.00000   | -0.70991   | 3 3d2- 0.75601  | 3 3d1+ | + 0.58679 |       |          |       |         |
| 4.2     | 2.00000   | -0.67339   | 1 2px 0.37708   | 2 2px  | 0.81293   |       |          |       |         |
| 5.2     | 2.00000   | -0.50422   | 1 2px -0.85304  | 2 2px  | 0.49348   |       |          |       |         |
| 6.2     | 1.00000   | -0.79195   | 3 3d20.59776    | 3 3d1+ | + 0.78582 |       |          |       |         |

**Table S5.9.** Structural parameters for the ground state <sup>4</sup>A" NiOF.

|         |                | RHF           |                |                    |
|---------|----------------|---------------|----------------|--------------------|
|         | Energy $(E_h)$ | $r_{O-F}$ (Å) | $r_{Ni-O}$ (Å) | Angle $(^{\circ})$ |
| VDZ     | -1681.05907783 | 1.4852        | 1.9544         | 74.2008            |
| VTZ     | -1681.13182516 | 1.4568        | 1.9248         | 76.5439            |
| VQZ     | -1681.13182516 | 1.4568        | 1.9248         | 76.5439            |
| AVDZ    | -1681.07548537 | 1.4803        | 1.9456         | 73.9172            |
| AVTZ    | -1681.11993081 | 1.4568        | 1.9263         | 76.8326            |
| AVQZ    | -1681.13313708 | 1.4565        | 1.9265         | 76.5754            |
| VDZ-DK  | -1693.39330186 | 1.4788        | 1.9401         | 75.8212            |
| VTZ-DK  | -1693.44983754 | 1.4315        | 1.8948         | 85.8539            |
| VQZ-DK  | -1693.46724156 | 1.4488        | 1.9097         | 79.1091            |
| AVDZ-DK | -1693.40960519 | 1.4751        | 1.9332         | 75.3069            |
| AVTZ-DK | -1693.45456857 | 1.4482        | 1.9105         | 79.7142            |
| AVQZ-DK | -1693.46850867 | 1.4486        | 1.9114         | 79.1200            |

|         |                | CISD          |                |                    |
|---------|----------------|---------------|----------------|--------------------|
|         | Energy $(E_h)$ | $r_{O-F}$ (Å) | $r_{Ni-O}$ (Å) | Angle $(^{\circ})$ |
| VDZ     | -1681.62492561 | 1.4673        | 1.8722         | 83.6009            |
| VTZ     | -1681.82533202 | 1.4322        | 1.8535         | 90.3936            |
| VQZ     | -1681.89933008 | 1.4320        | 1.8546         | 88.1748            |
| AVDZ    | -1681.67501299 | 1.4741        | 1.8802         | 80.3277            |
| AVTZ    | -1681.84776122 | 1.4397        | 1.8607         | 86.7096            |
| AVQZ    | -1681.90876430 | 1.4352        | 1.8583         | 86.3008            |
| VDZ-DK  | -1693.96189498 | 1.4628        | 1.8612         | 85.9235            |
| VTZ-DK  | -1694.16234109 | 1.4284        | 1.8442         | 93.0621            |
| VQZ-DK  | -1694.23706507 | 1.4265        | 1.8443         | 91.7808            |
| AVDZ-DK | -1694.01120240 | 1.4704        | 1.8697         | 82.2522            |
| AVTZ-DK | -1694.18422819 | 1.4341        | 1.8498         | 90.2944            |
| AVQZ-DK | -1694.24633363 | 1.4291        | 1.8470         | 90.1075            |

# RCCSD(T)

| Energy $(E_h)$ | $r_{O-F}$ (Å)                                                                                                                                                                                                                                                                      | $r_{Ni-O}$ (Å)                                                                                                                                                                                                                                        | Angle $(^{\circ})$                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| -1681.71875300 | 1.5203                                                                                                                                                                                                                                                                             | 1.8423                                                                                                                                                                                                                                                | 82.7658                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1681.94961709 | 1.4842                                                                                                                                                                                                                                                                             | 1.8271                                                                                                                                                                                                                                                | 86.3947                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1682.03711523 | 1.4858                                                                                                                                                                                                                                                                             | 1.8290                                                                                                                                                                                                                                                | 84.5869                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1681.78354788 | 1.5273                                                                                                                                                                                                                                                                             | 1.8538                                                                                                                                                                                                                                                | 80.1486                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1681.98138731 | 1.4930                                                                                                                                                                                                                                                                             | 1.8353                                                                                                                                                                                                                                                | 84.2061                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1682.05035092 | 1.4884                                                                                                                                                                                                                                                                             | 1.8324                                                                                                                                                                                                                                                | 83.6962                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1694.05656202 | 1.5214                                                                                                                                                                                                                                                                             | 1.8353                                                                                                                                                                                                                                                | 83.4465                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1694.28785683 | 1.4841                                                                                                                                                                                                                                                                             | 1.8197                                                                                                                                                                                                                                                | 87.5802                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1694.37606864 | 1.4858                                                                                                                                                                                                                                                                             | 1.8218                                                                                                                                                                                                                                                | 85.7092                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1694.12072091 | 1.5281                                                                                                                                                                                                                                                                             | 1.8471                                                                                                                                                                                                                                                | 80.8444                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1694.31896261 | 1.4929                                                                                                                                                                                                                                                                             | 1.8277                                                                                                                                                                                                                                                | 85.4043                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| -1694.38912605 | 1.4887                                                                                                                                                                                                                                                                             | 1.8250                                                                                                                                                                                                                                                | 84.6818                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                | $\begin{array}{r} Energy \ (E_h) \\ -1681.71875300 \\ -1681.94961709 \\ -1682.03711523 \\ -1681.78354788 \\ -1681.98138731 \\ -1682.05035092 \\ \hline \\ -1694.05656202 \\ -1694.28785683 \\ -1694.37606864 \\ -1694.37606864 \\ -1694.31896261 \\ -1694.38912605 \\ \end{array}$ | Energy (Eh) $r_{O-F}$ (Å)-1681.718753001.5203-1681.949617091.4842-1682.037115231.4858-1681.783547881.5273-1681.981387311.4930-1682.050350921.4884-1694.056562021.5214-1694.287856831.4841-1694.376068641.4858-1694.318962611.4929-1694.389126051.4887 | Energy (Eh) $r_{O-F}$ (Å) $r_{Ni-O}$ (Å)-1681.718753001.52031.8423-1681.949617091.48421.8271-1682.037115231.48581.8290-1681.783547881.52731.8538-1681.981387311.49301.8353-1682.050350921.48841.8324-1694.056562021.52141.8353-1694.287856831.48411.8197-1694.376068641.48581.8218-1694.120720911.52811.8471-1694.318962611.49291.8277-1694.389126051.48871.8250 |  |  |  |  |  |  |

| Basis set | $T_1$  |
|-----------|--------|
| VDZ       | 0.0367 |
| VTZ       | 0.0339 |
| VQZ       | 0.0334 |
| AVQZ      | 0.0337 |
| AVDZ      | 0.0362 |
| AVTZ      | 0.0344 |
| VDZ-DK    | 0.0359 |
| VTZ-DK    | 0.0331 |
| VQZ-DK    | 0.0327 |
| AVDZ-DK   | 0.0357 |
| AVTZ-DK   | 0.0337 |
| AVQZ-DK   | 0.0330 |

**Table S5.10.**  $T_1$  parameters for RCCSD(T) calculations, <sup>4</sup>A" NiOF.

**Table S5.11.** Harmonic vibrational frequencies for the  ${}^{4}A'' {}^{58}Ni^{16}OF$  isotopologue.

|         |          |        | RHF    |        |        | CISD   |         |        | RCCSD(T) |        |
|---------|----------|--------|--------|--------|--------|--------|---------|--------|----------|--------|
|         |          | 1A'    | 2A'    | 3A'    | 1A'    | 2A'    | 3A'     | 1A'    | 2A'      | 3A'    |
|         | ω        | 166.37 | 491.88 | 838.96 | 106.15 | 573.92 | 921.54  | 139.88 | 560.69   | 755.39 |
| VDZ     | I        | 6.75   | 76.29  | 57.74  | 8.69   | 80.20  | 19.50   | -      | -        | -      |
|         | $I_r$    | 8.85   | 100.00 | 75.68  | 10.83  | 100.00 | 24.32   | -      | -        | -      |
|         | ω        | 95.18  | 540.69 | 932.79 | 301.94 | 639.80 | 1056.47 | 102.25 | 585.35   | 838.05 |
| VTZ     | I        | 9.19   | 85.86  | 53.17  | 9.11   | 91.17  | 22.03   | -      | -        | -      |
|         | $I_r$    | 10.71  | 100.00 | 61.92  | 10.00  | 100.00 | 24.16   | -      | -        | -      |
|         | ω        | 134.75 | 525.99 | 897.83 | 78.81  | 590.77 | 999.61  | 102.38 | 581.30   | 828.85 |
| VQZ     | I        | 10.28  | 86.07  | 59.30  | 7.96   | 92.67  | 26.16   | -      | -        | -      |
|         | $I_r$    | 11.94  | 100.00 | 68.89  | 8.59   | 100.00 | 28.23   | -      | -        | -      |
|         | ω        | 173.90 | 500.37 | 840.06 | 132.70 | 558.11 | 914.75  | 153.92 | 551.54   | 767.80 |
| AVDZ    | I        | 9.48   | 86.20  | 65.04  | 11.91  | 86.24  | 30.89   | -      | -        | -      |
|         | $I_r$    | 11.00  | 100.00 | 75.45  | 13.81  | 100.00 | 35.82   | -      | -        | -      |
|         | ω        | 130.33 | 524.46 | 903.48 | 85.39  | 582.66 | 989.87  | 109.14 | 572.60   | 821.99 |
| AVTZ    | I        | 10.54  | 85.65  | 58.22  | 9.09   | 90.27  | 26.73   | -      | -        | -      |
|         | $I_r$    | 12.31  | 100.00 | 67.97  | 10.07  | 100.00 | 29.61   | -      | -        | -      |
|         | $\omega$ | 135.59 | 523.09 | 896.52 | 89.23  | 585.54 | 990.86  | 112.12 | 574.82   | 824.13 |
| AVQZ    | I        | 10.37  | 85.61  | 58.74  | 9.33   | 89.90  | 27.79   | -      | -        | -      |
|         | $ I_r $  | 12.11  | 100.00 | 68.62  | 10.38  | 100.00 | 30.91   | -      | -        | -      |
|         |          |        |        |        |        |        |         |        |          |        |
|         | ω        | 143.82 | 501.38 | 855.53 | 107.27 | 573.26 | 932.07  | 137.04 | 564.33   | 754.88 |
| VDZ-DK  | 1        | 6.74   | 77.98  | 55.99  | 6.58   | 83.19  | 18.61   | -      | -        | -      |
|         | $I_r$    | 8.64   | 100.00 | 71.80  | 7.91   | 100.00 | 22.37   | -      | -        | -      |
|         | ω        | 57.27  | 564.57 | 982.63 | 99.50  | 596.59 | 1021.30 | 96.66  | 589.99   | 837.96 |
| VTZ-DK  | 1        | 6.68   | 91.39  | 44.64  | 4.80   | 96.63  | 20.71   | -      | -        | -      |
|         | $I_r$    | 7.31   | 100.00 | 48.84  | 4.97   | 100.00 | 21.43   | -      | -        | -      |
|         | ω        | 97.34  | 540.23 | 921.24 | 87.65  | 596.58 | 1013.79 | 94.10  | 586.29   | 829.40 |
| VQZ-DK  | I        | 9.79   | 87.97  | 56.29  | 6.07   | 95.79  | 24.03   | -      | -        | -      |
|         | $I_r$    | 11.13  | 100.00 | 63.99  | 6.34   | 100.00 | 25.09   | -      | -        | -      |
|         | $\omega$ | 153.11 | 509.28 | 854.19 | 113.95 | 566.49 | 922.79  | 141.03 | 552.63   | 765.00 |
| AVDZ-DK |          | 9.57   | 87.30  | 63.90  | 11.02  | 87.62  | 30.01   | -      | -        | -      |
|         | $I_r$    | 10.96  | 100.00 | 73.19  | 12.58  | 100.00 | 34.25   | -      | -        | -      |
|         | $\omega$ | 90.59  | 539.67 | 929.15 | 87.16  | 590.51 | 1003.70 | 100.60 | 577.11   | 822.54 |
| AVTZ-DK |          | 9.93   | 87.66  | 54.89  | 7.17   | 93.25  | 24.70   | -      | -        | -      |
|         | $I_r$    | 11.33  | 100.00 | 62.62  | 7.69   | 100.00 | 26.49   | -      | -        | -      |
| AVOZ DV | ω        | 99.54  | 537.24 | 919.77 | 81.89  | 592.64 | 1005.38 | 101.73 | 579.68   | 824.11 |
| AVQZ-DK |          | 9.93   | 87.45  | 55.89  | 7.15   | 93.24  | 25.52   | -      | -        | -      |
|         | $I_r$    | 11.36  | 100.00 | 63.91  | 7.67   | 100.00 | 27.37   | -      | -        | -      |

|         |          |        | RHF    |        |        | CISD   |         |        | RCCSD(T) |        |
|---------|----------|--------|--------|--------|--------|--------|---------|--------|----------|--------|
|         |          | 1A'    | 2A'    | 3A'    | 1A'    | 2A'    | 3A'     | 1A'    | 2A'      | 3A'    |
|         | ω        | 164.30 | 472.86 | 816.43 | 105.26 | 548.60 | 895.11  | 138.59 | 536.59   | 733.78 |
| VDZ     | Ι        | 6.40   | 72.13  | 56.16  | 8.44   | 74.53  | 19.41   | -      | -        | -      |
|         | $I_r$    | 8.87   | 100.00 | 77.87  | 11.32  | 100.00 | 26.04   | -      | -        | -      |
|         | ω        | 94.28  | 518.02 | 906.61 | 304.23 | 609.69 | 1025.28 | 101.33 | 559.84   | 813.72 |
| VTZ     | Ι        | 8.94   | 80.26  | 51.88  | 8.61   | 84.43  | 22.01   | -      | -        | -      |
|         | $I_r$    | 11.14  | 100.00 | 64.64  | 10.20  | 100.00 | 26.07   | -      | -        | -      |
|         | ω        | 133.40 | 504.49 | 872.94 | 78.18  | 565.05 | 970.37  | 101.50 | 556.08   | 804.87 |
| VQZ     | Ι        | 9.92   | 80.82  | 57.78  | 7.75   | 85.89  | 25.96   | -      | -        | -      |
| -       | $I_r$    | 12.27  | 100.00 | 71.49  | 9.03   | 100.00 | 30.23   | -      | -        | -      |
|         | ω        | 171.90 | 480.73 | 817.26 | 131.55 | 534.36 | 888.48  | 152.73 | 528.00   | 745.61 |
| AVDZ    | I        | 8.99   | 81.43  | 63.31  | 11.56  | 80.49  | 30.44   | -      | -        | -      |
|         | $I_r$    | 11.05  | 100.00 | 77.75  | 14.36  | 100.00 | 37.82   | -      | -        | -      |
|         | ω        | 129.04 | 502.96 | 878.35 | 84.67  | 557.34 | 961.00  | 108.21 | 547.76   | 798.19 |
| AVTZ    | I        | 10.19  | 80.41  | 56.76  | 8.85   | 83.78  | 26.49   | -      | -        | -      |
|         | $I_r$    | 12.67  | 100.00 | 70.58  | 10.57  | 100.00 | 31.62   | -      | -        | -      |
|         | ω        | 134.23 | 501.71 | 871.65 | 88.76  | 560.06 | 961.99  | 111.10 | 549.95   | 800.29 |
| AVQZ    | Ι        | 10.00  | 80.39  | 57.25  | 9.09   | 83.45  | 27.51   | -      | -        | -      |
|         | $I_r$    | 12.44  | 100.00 | 71.22  | 10.89  | 100.00 | 32.96   | -      | -        | -      |
|         |          |        |        |        |        |        |         |        |          |        |
|         | ω        | 142.11 | 481.52 | 832.35 | 106.27 | 548.48 | 905.18  | 135.81 | 539.98   | 733.26 |
| VDZ-DK  | Ι        | 6.45   | 73.43  | 54.51  | 6.39   | 77.18  | 18.58   | -      | -        | -      |
|         | $I_r$    | 8.79   | 100.00 | 74.22  | 8.28   | 100.00 | 24.07   | -      | -        | -      |
|         | ω        | 56.72  | 540.28 | 954.46 | 98.51  | 570.64 | 991.01  | 95.73  | 564.21   | 813.62 |
| VTZ-DK  | Ι        | 6.52   | 84.82  | 43.76  | 4.65   | 89.28  | 20.77   | -      | -        | -      |
|         | $I_r$    | 7.68   | 100.00 | 51.59  | 5.21   | 100.00 | 23.26   | -      | -        | -      |
|         | ω        | 96.39  | 517.66 | 895.47 | 86.83  | 570.61 | 983.86  | 93.29  | 560.72   | 805.38 |
| VQZ-DK  | Ι        | 9.51   | 82.26  | 54.91  | 5.90   | 88.60  | 23.97   | -      | -        | -      |
|         | $I_r$    | 11.56  | 100.00 | 66.75  | 6.66   | 100.00 | 27.05   | -      | -        | -      |
|         | $\omega$ | 151.44 | 488.89 | 830.86 | 112.96 | 542.14 | 896.22  | 139.78 | 529.00   | 742.90 |
| AVDZ-DK | Ι        | 9.16   | 82.21  | 62.22  | 10.72  | 81.59  | 29.61   | -      | -        | -      |
|         | $I_r$    | 11.14  | 100.00 | 75.69  | 13.13  | 100.00 | 36.29   | -      | -        | -      |
|         | ω        | 89.72  | 517.04 | 903.07 | 86.33  | 564.76 | 974.19  | 99.69  | 551.95   | 798.71 |
| AVTZ-DK | Ι        | 9.66   | 81.93  | 53.58  | 6.97   | 86.35  | 24.59   | -      | -        | -      |
|         | $I_r$    | 11.79  | 100.00 | 65.39  | 8.07   | 100.00 | 28.48   | -      | -        | -      |
|         | ω        | 98.61  | 514.80 | 894.03 | 81.08  | 566.83 | 975.84  | 100.81 | 554.48   | 800.27 |
| AVQZ-DK | Ι        | 9.65   | 81.79  | 54.53  | 6.96   | 86.34  | 25.38   | -      | -        | -      |
|         | $I_r$    | 11.79  | 100.00 | 66.67  | 8.06   | 100.00 | 29.39   | -      | -        | -      |

**Table S5.12.** Harmonic vibrational frequencies for the <sup>4</sup>A" <sup>58</sup>Ni<sup>18</sup>OF isotopologue.

|         |               |        | RHF    |        |        | CISD   |         |        | RCCSD(T) |        |
|---------|---------------|--------|--------|--------|--------|--------|---------|--------|----------|--------|
|         |               | 1A'    | 2A'    | 3A'    | 1A'    | 2A'    | 3A'     | 1A'    | 2A'      | 3A'    |
|         | ω             | 165.91 | 489.42 | 838.83 | 105.58 | 571.83 | 921.47  | 139.38 | 558.40   | 755.32 |
| VDZ     | Ι             | 6.74   | 75.15  | 58.10  | 8.66   | 79.22  | 19.62   | -      | -        | -      |
|         | $I_r$         | 8.97   | 100.00 | 77.31  | 10.93  | 100.00 | 24.77   | -      | -        | -      |
|         | ω             | 94.88  | 538.32 | 932.71 | 298.75 | 637.98 | 1056.32 | 101.86 | 583.03   | 838.01 |
| VTZ     | Ι             | 9.16   | 84.70  | 53.42  | 9.23   | 90.01  | 22.12   | -      | -        | -      |
|         | $I_r$         | 10.82  | 100.00 | 63.07  | 10.26  | 100.00 | 24.57   | -      | -        | -      |
|         | ω             | 134.33 | 523.57 | 897.74 | 78.52  | 588.45 | 999.57  | 101.99 | 578.96   | 828.81 |
| VQZ     | Ι             | 10.26  | 84.84  | 59.59  | 7.93   | 91.60  | 26.28   | -      | -        | -      |
|         | $I_r$         | 12.09  | 100.00 | 70.23  | 8.66   | 100.00 | 28.69   | -      | -        | -      |
|         | ω             | 173.40 | 497.92 | 839.93 | 132.24 | 555.74 | 914.68  | 153.28 | 549.26   | 767.70 |
| AVDZ    | Ι             | 9.48   | 84.90  | 65.39  | 11.88  | 85.10  | 31.04   | -      | -        | -      |
|         | $I_r$         | 11.16  | 100.00 | 77.01  | 13.96  | 100.00 | 36.48   | -      | -        | -      |
|         | ω             | 129.93 | 522.06 | 903.38 | 85.09  | 580.33 | 989.83  | 108.71 | 570.30   | 821.94 |
| AVTZ    | I             | 10.52  | 84.44  | 58.51  | 9.05   | 89.19  | 26.85   | -      | -        | -      |
|         | $I_r$         | 12.46  | 100.00 | 69.30  | 10.15  | 100.00 | 30.11   | -      | -        | -      |
|         | ω             | 135.17 | 520.68 | 896.42 | 88.77  | 583.22 | 990.81  | 111.74 | 572.49   | 824.08 |
| AVQZ    | Ι             | 10.35  | 84.39  | 59.03  | 9.30   | 88.81  | 27.92   | -      | -        | -      |
|         | $I_r$         | 12.27  | 100.00 | 69.96  | 10.47  | 100.00 | 31.44   | -      | -        | -      |
|         |               |        |        |        |        |        |         |        |          |        |
|         | ω             | 143.41 | 498.95 | 855.42 | 106.89 | 570.93 | 932.03  | 136.52 | 562.05   | 754.81 |
| VDZ-DK  | Ι             | 6.72   | 76.85  | 56.32  | 6.56   | 82.21  | 18.72   | -      | -        | -      |
|         | $I_r$         | 8.74   | 100.00 | 73.29  | 7.98   | 100.00 | 22.77   | -      | -        | -      |
|         | ω             | 57.08  | 562.27 | 982.58 | 99.15  | 594.31 | 1021.27 | 96.33  | 587.67   | 837.93 |
| VTZ-DK  | Ι             | 6.65   | 90.31  | 44.83  | 4.78   | 95.61  | 20.82   | -      | -        | -      |
|         | $I_r$         | 7.36   | 100.00 | 49.65  | 5.00   | 100.00 | 21.77   | -      | -        | -      |
|         | $\omega$      | 97.04  | 537.84 | 921.16 | 87.35  | 594.27 | 1013.76 | 93.73  | 583.97   | 829.36 |
| VQZ-DK  | Ι             | 9.76   | 86.77  | 56.55  | 6.04   | 94.74  | 24.14   | -      | -        | -      |
|         | $I_r$         | 11.24  | 100.00 | 65.18  | 6.38   | 100.00 | 25.48   | -      | -        | -      |
|         | ω             | 152.65 | 506.86 | 854.07 | 113.55 | 564.14 | 922.73  | 140.52 | 550.36   | 764.91 |
| AVDZ-DK | Ι             | 9.56   | 86.02  | 64.23  | 10.99  | 86.49  | 30.15   | -      | -        | -      |
|         | $I_r$         | 11.11  | 100.00 | 74.67  | 12.70  | 100.00 | 34.86   | -      | -        | -      |
|         | $\omega$      | 90.30  | 537.31 | 929.08 | 86.85  | 588.22 | 1003.67 | 100.23 | 574.82   | 822.50 |
| AVTZ-DK | Ι             | 9.90   | 86.47  | 55.15  | 7.14   | 92.19  | 24.82   | -      | -        | -      |
|         | $I_r$         | 11.45  | 100.00 | 63.78  | 7.74   | 100.00 | 26.92   | -      | -        | -      |
|         | ω             | 99.20  | 534.87 | 919.69 | 81.64  | 590.32 | 1005.34 | 101.37 | 577.36   | 824.06 |
| AVQZ-DK | $\frac{1}{r}$ | 9.90   | 86.26  | 56.15  | 7.12   | 92.19  | 25.64   | -      | -        | -      |
|         | $I_r$         | 11.48  | 100.00 | 65.10  | 7.73   | 100.00 | 27.81   | -      | -        | -      |

**Table S5.13.** Harmonic vibrational frequencies for the <sup>4</sup>A" <sup>60</sup>Ni<sup>16</sup>OF isotopologue.

|         |               |        | RHF    |        |        | CISD   |         |        | RCCSD(T) |        |
|---------|---------------|--------|--------|--------|--------|--------|---------|--------|----------|--------|
|         |               | 1A'    | 2A'    | 3A'    | 1A'    | 2A'    | 3A'     | 1A'    | 2A'      | 3A'    |
|         | ω             | 163.88 | 470.41 | 816.38 | 104.87 | 546.37 | 895.11  | 138.10 | 534.25   | 733.75 |
| VDZ     | Ι             | 6.39   | 71.15  | 56.12  | 8.39   | 73.62  | 19.40   | -      | -        | -      |
|         | $I_r$         | 8.99   | 100.00 | 78.87  | 11.40  | 100.00 | 26.35   | -      | -        | -      |
|         | ω             | 93.99  | 515.63 | 906.59 | 302.84 | 607.74 | 1025.26 | 100.97 | 557.46   | 813.72 |
| VTZ     | Ι             | 8.89   | 79.23  | 51.86  | 8.64   | 83.39  | 22.01   | -      | -        | -      |
|         | $I_r$         | 11.22  | 100.00 | 65.45  | 10.36  | 100.00 | 26.39   | -      | -        | -      |
| -       | ω             | 133.01 | 502.06 | 872.91 | 77.94  | 562.66 | 970.36  | 101.15 | 553.69   | 804.86 |
| VQZ     | I             | 9.87   | 79.75  | 57.74  | 7.70   | 84.89  | 25.97   | -      | -        | -      |
|         | $I_r$         | 12.38  | 100.00 | 72.40  | 9.07   | 100.00 | 30.60   | -      | -        | -      |
|         | ω             | 171.44 | 478.29 | 817.21 | 131.12 | 531.97 | 888.46  | 152.18 | 525.69   | 745.58 |
| AVDZ    | I             | 8.97   | 80.32  | 63.26  | 11.49  | 79.46  | 30.42   | -      | -        | -      |
|         | $I_r$         | 11.17  | 100.00 | 78.76  | 14.46  | 100.00 | 38.28   | -      | -        | -      |
|         | ω             | 128.66 | 500.55 | 878.32 | 84.38  | 554.97 | 960.99  | 107.83 | 545.40   | 798.18 |
| AVTZ    | Ι             | 10.13  | 79.34  | 56.72  | 8.79   | 82.78  | 26.49   | -      | -        | -      |
|         | $I_r$         | 12.77  | 100.00 | 71.49  | 10.62  | 100.00 | 32.01   | -      | -        | -      |
|         | ω             | 133.84 | 499.29 | 871.62 | 88.43  | 557.68 | 961.98  | 110.71 | 547.58   | 800.28 |
| AVQZ    | Ι             | 9.95   | 79.33  | 57.22  | 9.02   | 82.44  | 27.51   | -      | -        | -      |
|         | $I_r$         | 12.55  | 100.00 | 72.13  | 10.94  | 100.00 | 33.37   | -      | -        | -      |
|         |               |        |        |        |        |        |         |        |          |        |
|         | $\omega$      | 141.72 | 479.10 | 832.31 | 105.91 | 546.11 | 905.17  | 135.32 | 537.64   | 733.23 |
| VDZ-DK  | Ι             | 6.44   | 72.46  | 54.47  | 6.35   | 76.27  | 18.57   | -      | -        | -      |
|         | $I_r$         | 8.89   | 100.00 | 75.17  | 8.32   | 100.00 | 24.35   | -      | -        | -      |
|         | $\omega$      | 56.54  | 537.93 | 954.44 | 98.16  | 568.29 | 991.00  | 95.40  | 561.84   | 813.62 |
| VTZ-DK  | Ι             | 6.47   | 83.82  | 43.76  | 4.62   | 88.30  | 20.79   | -      | -        | -      |
|         | $I_r$         | 7.72   | 100.00 | 52.21  | 5.24   | 100.00 | 23.54   | -      | -        | -      |
|         | $\omega$      | 96.09  | 515.25 | 895.44 | 86.54  | 568.24 | 983.84  | 92.96  | 558.34   | 805.37 |
| VQZ-DK  | Ι             | 9.45   | 81.21  | 54.88  | 5.86   | 87.61  | 23.99   | -      | -        | -      |
|         | $I_r$         | 11.64  | 100.00 | 67.58  | 6.69   | 100.00 | 27.38   | -      | -        | -      |
|         | $\omega$      | 151.01 | 486.47 | 830.82 | 112.58 | 539.76 | 896.21  | 139.29 | 526.69   | 742.86 |
| AVDZ-DK | I             | 9.13   | 81.11  | 62.18  | 10.65  | 80.57  | 29.59   | -      | -        | -      |
|         | $I_r$         | 11.25  | 100.00 | 76.66  | 13.21  | 100.00 | 36.73   | -      | -        | -      |
|         | ω             | 89.45  | 514.65 | 903.05 | 86.03  | 562.41 | 974.17  | 99.34  | 549.61   | 798.70 |
| AVTZ-DK | 1             | 9.60   | 80.88  | 53.55  | 6.92   | 85.36  | 24.61   | -      | -        | -      |
|         | $I_r$         | 11.87  | 100.00 | 66.21  | 8.11   | 100.00 | 28.83   | -      | -        | -      |
| ANOT DE | ω             | 98.31  | 512.41 | 894.01 | 80.81  | 564.45 | 975.83  | 100.45 | 552.11   | 800.26 |
| AVQZ-DK | $\frac{1}{r}$ | 9.59   | 80.74  | 54.50  | 6.91   | 85.35  | 25.39   | -      | -        | -      |
|         | $I_r$         | 11.88  | 100.00 | 67.50  | 8.10   | 100.00 | 29.75   | -      | -        | -      |

**Table S5.14.** Harmonic vibrational frequencies for the <sup>4</sup>A" <sup>60</sup>Ni<sup>18</sup>OF isotopologue.
### Part 6. CASSCF, MRCI, and CASPT2 calculations on ONiF ( ${}^{4}\Sigma^{-}$ ; $C_{\infty\nu}$ )

The  $4\Sigma^-$  electronic state of ONiF was investigated by CASSCF, MRCI and CASPT2. The CASSCF wave function, which served as reference for MRCI and CASPT2, included 13 electrons and 8 orbitals in the active space (13,8). Geometry optimization and normal mode analysis were carried out in the reduced point group  $C_1$ . To confirm the electronic state the results were checked against the calculation carried out in point group  $C_{2v}$ .

**Table S6.1.** Natural orbitals obtained from CASSCF(13,8) calculations at the CASPT2 optimized geometry using the AVTZ-DK basis set:

| Orbital | Occupatio | n Energy   | Co | peffic | cients   |   |             |          |
|---------|-----------|------------|----|--------|----------|---|-------------|----------|
| 1.1     | 2.00000   | -308.78744 | 1  | 1s     | 0.99247  |   |             |          |
| 2.1     | 2.00000   | -38.64571  | 1  | 1s     | 0.99255  |   |             |          |
| 3.1     | 2.00000   | -33.12252  | 1  | 2pz    | 0.99996  |   |             |          |
| 4.1     | 2.00000   | -26.24934  | 2  | 1s     | 0.99886  |   |             |          |
| 5.1     | 2.00000   | -20.59961  | 3  | 1s     | 0.99874  |   |             |          |
| 6.1     | 2.00000   | -5.02786   | 1  | 1s     | 0.99654  |   |             |          |
| 7.1     | 2.00000   | -3.34497   | 1  | 2pz    | 0.99310  |   |             |          |
| 8.1     | 2.00000   | -1.50483   | 2  | 1s     | 0.94523  |   |             |          |
| 9.1     | 2.00000   | -1.26295   | 3  | 1s     | 0.93581  |   |             |          |
| 10.1    | 2.00000   | -0.63201   | 2  | 2pz    | 0.88617  |   |             |          |
| 11.1    | 1.96554   | -0.65265   | 1  | 3d2+   | -1.00205 |   |             |          |
| 12.1    | 1.90504   | -0.58280   | 1  | 3d0    | -0.41579 | 3 | 2pz         | -0.82033 |
| 13.1    | 1.15226   | -0.28733   | 1  | 3d0    | -0.85792 | 3 | 2pz         | 0.36323  |
|         |           |            |    |        |          |   |             |          |
| 1.2     | 2.00000   | -33.10183  | 1  | 2px    | 0.99996  |   |             |          |
| 2.2     | 2.00000   | -3.32998   | 1  | 2px    | 0.99971  |   |             |          |
| 3.2     | 2.00000   | -0.59508   | 2  | 2px    | -0.91612 |   |             |          |
| 4.2     | 1.81586   | -0.54268   | 1  | 3d1+   | -0.58700 | 3 | 2px         | 0.68889  |
| 5.2     | 1.18995   | -0.30176   | 1  | 3d1+   | 0.80720  | 3 | 2p <b>x</b> | 0.59688  |
| 1.3     | 2.00000   | -33.10183  | 1  | 2pv    | 0.99996  |   |             |          |
| 2.3     | 2.00000   | -3.32998   | 1  | 2pv    | 0.99971  |   |             |          |
| 3.3     | 2.00000   | -0.59508   | 2  | 2pv    | -0.91612 |   |             |          |
| 4.3     | 1.81586   | -0.54268   | 1  | 3d1-   | -0.58700 | 3 | 2pv         | 0.68889  |
| 5.3     | 1.18995   | -0.30176   | 1  | 3d1-   | 0.80720  | 3 | 2py         | 0.59688  |
| 1.4     | 1.96554   | -0.65265   | 1  | 3d2-   | 1.00205  |   |             |          |

**Table S6.2.** CI vector at the geometry optimized at the CASPT2 level using the AVTZ-DK basis set. The most significantly contributing electronic configuration:  $1\delta^4 12\sigma^2 4\pi^4 5\pi^2 13\sigma^1$ 

| 22a | 2a | 2a | 2 | 0.8586477  |
|-----|----|----|---|------------|
| 22a | a2 | a2 | 2 | -0.3116725 |
| 2a2 | 2a | a2 | 2 | 0.1801057  |
| 2a2 | a2 | 2a | 2 | 0.1801057  |
| 2a2 | a2 | a2 | 2 | -0.1432929 |
| 222 | 22 | aa | а | 0.1196932  |
| a22 | 2a | a2 | 2 | 0.1196932  |
| 222 | aa | 22 | а | -0.1196932 |
| a22 | a2 | 2a | 2 | -0.1196932 |
| 2a2 | 2a | 2a | 2 | -0.0794179 |
| 22a | a2 | 2a | 2 | 0.0733333  |
| 22a | 2a | a2 | 2 | 0.0733333  |
| aa2 | 22 | 22 | а | 0.0569154  |
| a2a | 22 | 22 | а | -0.0506701 |

| $\begin{array}{c} CASSCF \\ \hline Fnorgy (F_1) & r_{11} & r_{22} & (\mathring{A}) \\ \end{array}$ |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                                                                                           |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                                                                                    | Energy $(E_h)$                                                                                                                                                                                                                                                                                                                        | $r_{Ni-F}$ (Å)                                                                                                                                                                                                                      | $r_{Ni-O}$ (Å)                                                                                                                            |  |  |  |  |  |  |  |  |  |
| VDZ                                                                                                | -1681.20840904                                                                                                                                                                                                                                                                                                                        | 1.7657                                                                                                                                                                                                                              | 1.7381                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| VTZ                                                                                                | -1681.26345515                                                                                                                                                                                                                                                                                                                        | 1.7588                                                                                                                                                                                                                              | 1.7355                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| VQZ                                                                                                | -1681.28171132                                                                                                                                                                                                                                                                                                                        | 1.7603                                                                                                                                                                                                                              | 1.7370                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| AVDZ                                                                                               | -1681.22794757                                                                                                                                                                                                                                                                                                                        | 1.7679                                                                                                                                                                                                                              | 1.7428                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| AVTZ                                                                                               | -1681.26985356                                                                                                                                                                                                                                                                                                                        | 1.7618                                                                                                                                                                                                                              | 1.7386                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| AVQZ                                                                                               | -1681.28293856                                                                                                                                                                                                                                                                                                                        | 1.7618                                                                                                                                                                                                                              | 1.7378                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| VDZ-DK                                                                                             | -1693.54197288                                                                                                                                                                                                                                                                                                                        | 1.7586                                                                                                                                                                                                                              | 1.7295                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| VTZ-DK                                                                                             | -1693.59771041                                                                                                                                                                                                                                                                                                                        | 1.7512                                                                                                                                                                                                                              | 1.7264                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| VQZ-DK                                                                                             | -1693.61646172                                                                                                                                                                                                                                                                                                                        | 1.7528                                                                                                                                                                                                                              | 1.7278                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| AVDZ-DK                                                                                            | -1693.56123120                                                                                                                                                                                                                                                                                                                        | 1.7609                                                                                                                                                                                                                              | 1.7340                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| AVTZ-DK                                                                                            | -1693.60378666                                                                                                                                                                                                                                                                                                                        | 1.7542                                                                                                                                                                                                                              | 1.7294                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| AVQZ-DK                                                                                            | -1693.61762551                                                                                                                                                                                                                                                                                                                        | 1.7542                                                                                                                                                                                                                              | 1.7285                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|                                                                                                    |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                                                                                           |  |  |  |  |  |  |  |  |  |
|                                                                                                    | MRC                                                                                                                                                                                                                                                                                                                                   | [                                                                                                                                                                                                                                   |                                                                                                                                           |  |  |  |  |  |  |  |  |  |
|                                                                                                    | MRC<br>Energy (E <sub>h</sub> )                                                                                                                                                                                                                                                                                                       | $r_{Ni-F}$ (Å)                                                                                                                                                                                                                      | $r_{Ni-O}$ (Å)                                                                                                                            |  |  |  |  |  |  |  |  |  |
| VDZ                                                                                                | MRC<br>Energy (E <sub>h</sub> )<br>-1681.77821657                                                                                                                                                                                                                                                                                     | $  \frac{ r_{Ni-F} (\text{\AA}) }{ 1.7457 } $                                                                                                                                                                                       | $r_{Ni-O}$ (Å)<br>1.6559                                                                                                                  |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ                                                                                         | MRC<br>Energy (E <sub>h</sub> )<br>-1681.77821657<br>-1681.97729810                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     | $\frac{r_{Ni-O} (\text{\AA})}{1.6559}$ 1.6554                                                                                             |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ<br>VQZ                                                                                  | MRC<br>Energy (E <sub>h</sub> )<br>-1681.77821657<br>-1681.97729810<br>-1682.05428609                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     | $\frac{r_{Ni-O} (\text{\AA})}{1.6559} \\ 1.6554 \\ 1.6547$                                                                                |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ<br>VQZ<br>AVDZ                                                                          | MRC<br>Energy (E <sub>h</sub> )<br>-1681.77821657<br>-1681.97729810<br>-1682.05428609<br>-1681.83190576                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     | $\begin{array}{r} r_{Ni-O} \left( \rm \mathring{A} \right) \\ 1.6559 \\ 1.6554 \\ 1.6547 \\ 1.6624 \end{array}$                           |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ<br>VQZ<br>AVDZ<br>AVTZ                                                                  | MRC<br>Energy (E <sub>h</sub> )<br>-1681.77821657<br>-1681.97729810<br>-1682.05428609<br>-1681.83190576<br>-1682.00249430                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | $\frac{r_{Ni-O} (\text{\AA})}{1.6559}$ $1.6554$ $1.6547$ $1.6624$ $1.6571$                                                                |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ<br>VQZ<br>AVDZ<br>AVTZ<br>AVQZ                                                          | MRC<br>Energy (E <sub>h</sub> )<br>-1681.77821657<br>-1681.97729810<br>-1682.05428609<br>-1681.83190576<br>-1682.00249430<br>-1682.06424149                                                                                                                                                                                           |                                                                                                                                                                                                                                     | $\frac{r_{Ni-O} (\text{\AA})}{1.6559}$ $\frac{1.6554}{1.6547}$ $\frac{1.6624}{1.6571}$ $\frac{1.6549}{1.6549}$                            |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ<br>VQZ<br>AVDZ<br>AVTZ<br>AVQZ<br>VDZ-DK                                                | MRC<br>Energy (E <sub>h</sub> )<br>-1681.77821657<br>-1681.97729810<br>-1682.05428609<br>-1681.83190576<br>-1682.00249430<br>-1682.06424149<br>-1694.11420587                                                                                                                                                                         |                                                                                                                                                                                                                                     | $\begin{array}{r} r_{Ni-O} (\text{\AA}) \\ \hline 1.6559 \\ 1.6554 \\ 1.6547 \\ 1.6624 \\ 1.6571 \\ 1.6549 \\ \hline 1.6469 \end{array}$  |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ<br>VQZ<br>AVDZ<br>AVTZ<br>AVQZ<br>VDZ-DK<br>VTZ-DK                                      | MRC<br>Energy (E <sub>h</sub> )<br>-1681.77821657<br>-1681.97729810<br>-1682.05428609<br>-1681.83190576<br>-1682.00249430<br>-1682.06424149<br>-1694.11420587<br>-1694.31353872                                                                                                                                                       | $ \begin{array}{c} \hline \\ \hline r_{Ni-F} \ (\text{\AA}) \\ \hline 1.7457 \\ 1.7387 \\ 1.7387 \\ 1.7381 \\ 1.7517 \\ 1.7416 \\ 1.7396 \\ \hline 1.7379 \\ 1.7302 \end{array} $                                                   | $\frac{r_{Ni-O} (\text{\AA})}{1.6559}$ $1.6554$ $1.6547$ $1.6624$ $1.6571$ $1.6549$ $1.6469$ $1.6457$                                     |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ<br>VQZ<br>AVDZ<br>AVTZ<br>AVQZ<br>VDZ-DK<br>VQZ-DK                                      | $\begin{array}{r} \text{MRC} \\ \hline \text{Energy } (\text{E}_{\text{h}}) \\ \hline -1681.77821657 \\ -1681.97729810 \\ -1682.05428609 \\ -1682.05428609 \\ -1681.83190576 \\ -1682.00249430 \\ -1682.00249430 \\ -1682.06424149 \\ \hline -1694.31353872 \\ -1694.31353872 \\ -1694.39110912 \\ \end{array}$                       | $ \begin{bmatrix} \\ r_{Ni-F} (\text{\AA}) \\ 1.7457 \\ 1.7387 \\ 1.7387 \\ 1.7381 \\ 1.7517 \\ 1.7416 \\ 1.7396 \\ \hline 1.7396 \\ \hline 1.7379 \\ 1.7302 \\ 1.7299 \\ \hline 1.7299 \\ \hline \end{tabular} $                   | $\frac{r_{Ni-O} (\text{\AA})}{1.6559}$ $1.6554$ $1.6547$ $1.6624$ $1.6571$ $1.6549$ $1.6469$ $1.6457$ $1.6450$                            |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ<br>VQZ<br>AVDZ<br>AVDZ<br>AVZ<br>VDZ-DK<br>VDZ-DK<br>VQZ-DK<br>AVDZ-DK                  | $\begin{array}{r} \text{MRC} \\ \hline \text{Energy } (\text{E}_{\text{h}}) \\ \hline -1681.77821657 \\ -1681.97729810 \\ -1682.05428609 \\ -1682.05428609 \\ -1682.00249430 \\ -1682.00249430 \\ -1682.06424149 \\ \hline -1694.11420587 \\ -1694.31353872 \\ -1694.39110912 \\ -1694.16690986 \\ \end{array}$                       | $ \begin{array}{c} \hline \\ \hline r_{Ni-F} \ (\text{\AA}) \\ \hline 1.7457 \\ 1.7387 \\ 1.7387 \\ 1.7381 \\ 1.7517 \\ 1.7416 \\ 1.7396 \\ \hline 1.7396 \\ \hline 1.7379 \\ 1.7302 \\ 1.7299 \\ 1.7442 \\ \hline \end{array} $    | $\frac{r_{Ni-O} (\text{\AA})}{1.6559}$ $1.6554$ $1.6547$ $1.6624$ $1.6571$ $1.6549$ $1.6469$ $1.6457$ $1.6450$ $1.6536$                   |  |  |  |  |  |  |  |  |  |
| VDZ<br>VTZ<br>VQZ<br>AVDZ<br>AVDZ<br>AVTZ<br>AVQZ<br>VDZ-DK<br>VQZ-DK<br>AVDZ-DK<br>AVDZ-DK        | $\begin{array}{r} \text{MRC} \\ \hline \text{Energy } (E_{h}) \\ \hline -1681.77821657 \\ -1681.97729810 \\ -1682.05428609 \\ -1682.05428609 \\ -1681.83190576 \\ -1682.00249430 \\ -1682.00249430 \\ -1682.06424149 \\ \hline -1694.11420587 \\ -1694.31353872 \\ -1694.39110912 \\ -1694.16690986 \\ -1694.33802092 \\ \end{array}$ | $ \begin{array}{c} \hline \\ \hline r_{Ni-F} \ (\text{\AA}) \\ \hline 1.7457 \\ 1.7387 \\ 1.7387 \\ 1.7381 \\ 1.7517 \\ 1.7416 \\ 1.7396 \\ \hline 1.7396 \\ \hline 1.7379 \\ 1.7302 \\ 1.7299 \\ 1.7442 \\ 1.7331 \\ \end{array} $ | $\frac{r_{Ni-O} (\text{\AA})}{1.6559}$ $1.6554$ $1.6547$ $1.6624$ $1.6571$ $1.6549$ $1.6469$ $1.6457$ $1.6450$ $1.6450$ $1.6536$ $1.6472$ |  |  |  |  |  |  |  |  |  |

Table S6.3. Structural parameters for the ground state  ${}^{4}\Sigma^{-}$  ONiF.

| CASPT2                                          |                |                |                |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------|----------------|----------------|----------------|--|--|--|--|--|--|--|--|--|
|                                                 | Energy $(E_h)$ | $r_{Ni-F}$ (Å) | $r_{Ni-O}$ (Å) |  |  |  |  |  |  |  |  |  |
| VDZ                                             | -1681.88877713 | 1.7308         | 1.6077         |  |  |  |  |  |  |  |  |  |
| VTZ                                             | -1682.11892918 | 1.7234         | 1.6019         |  |  |  |  |  |  |  |  |  |
| VQZ                                             | -1682.21301125 | 1.7228         | 1.6005         |  |  |  |  |  |  |  |  |  |
| AVDZ                                            | -1681.95415918 | 1.7396         | 1.6126         |  |  |  |  |  |  |  |  |  |
| AVTZ                                            | -1682.15247891 | 1.7273         | 1.6037         |  |  |  |  |  |  |  |  |  |
| AVQZ                                            | -1682.22730672 | 1.7249         | 1.6010         |  |  |  |  |  |  |  |  |  |
| VDZ-DK                                          | -1694.22701534 | 1.7218         | 1.5971         |  |  |  |  |  |  |  |  |  |
| VTZ-DK                                          | -1694.45779887 | 1.7134         | 1.5912         |  |  |  |  |  |  |  |  |  |
| VQZ-DK                                          | -1694.55255651 | 1.7131         | 1.5897         |  |  |  |  |  |  |  |  |  |
| AVDZ-DK                                         | -1694.29134581 | 1.7307         | 1.6021         |  |  |  |  |  |  |  |  |  |
| AVTZ-DK                                         | -1694.49049275 | 1.7173         | 1.5927         |  |  |  |  |  |  |  |  |  |
| $\mathbf{AVQZ}\text{-}\mathbf{DK}^{\mathrm{a}}$ | -              | -              | -              |  |  |  |  |  |  |  |  |  |

<sup>a</sup> No convergence in geometry optimization in CASSCF.

|      |       |        | CAS    | SCF    |        |        | MI     | RCI    |        |        | CAS    | PT2    |        |
|------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|      |       | $1B_1$ | $2B_2$ | $3A_1$ | $4A_1$ | $1B_1$ | $2B_2$ | $3A_1$ | $4A_1$ | $1B_1$ | $2B_2$ | $3A_1$ | $4A_1$ |
|      | ω     | 163.36 | 163.36 | 588.72 | 742.68 | 163.01 | 163.08 | 642.36 | 802.09 | 159.12 | 159.12 | 656.09 | 891.15 |
| VDZ  | Ι     | 69.62  | 69.62  | 2.24   | 137.84 | 0      | 0      | 7.77   | 140.57 | -      | -      | -      | -      |
|      | $I_r$ | 50.51  | 50.51  | 1.63   | 100    | 0      | 0      | 5.53   | 100    | -      | -      | -      | -      |
|      | ω     | 166.44 | 166.44 | 596.59 | 748.69 | 166.37 | 166.48 | 645.15 | 801.67 | 161.32 | 161.32 | 660.33 | 905.59 |
| VTZ  | Ι     | 68.46  | 68.46  | 1.04   | 154.14 | 0      | 0      | 9.46   | 151.6  | -      | -      | -      | -      |
|      | $I_r$ | 44.41  | 44.41  | 0.67   | 100    | 0      | 0      | 6.24   | 100    | -      | -      | -      | -      |
|      | ω     | 167.15 | 167.15 | 594.56 | 746.32 | 168.5  | 168.57 | 646.52 | 803.39 | 164.48 | 164.48 | 660.91 | 908.39 |
| VQZ  | Ι     | 68.35  | 68.35  | 1.09   | 158.44 | 0      | 0      | 9.72   | 155.73 | -      | -      | -      | -      |
|      | $I_r$ | 43.14  | 43.14  | 0.69   | 100    | 0      | 0      | 6.24   | 100    | -      | -      | -      | -      |
|      | ω     | 164.71 | 164.71 | 587.69 | 736.67 | 161.63 | 161.63 | 632.63 | 786.71 | 156.97 | 156.97 | 641.09 | 875.66 |
| AVDZ | Ι     | 68.4   | 68.4   | 1.14   | 161.32 | 0      | 0      | 10.67  | 158.2  | -      | -      | -      | -      |
|      | $I_r$ | 42.4   | 42.4   | 0.71   | 100    | 0      | 0      | 6.74   | 100    | -      | -      | -      | -      |
|      | ω     | 165.48 | 165.48 | 592.25 | 743.66 | 166.74 | 166.89 | 640.64 | 797.74 | 162.70 | 162.70 | 652.13 | 899.72 |
| AVTZ | Ι     | 68.29  | 68.29  | 1.04   | 160.65 | 0      | 0      | 10.35  | 156.67 | -      | -      | -      | -      |
|      | $I_r$ | 42.51  | 42.51  | 0.65   | 100    | 0      | 0      | 6.6    | 100    | -      | -      | -      | -      |
|      | ω     | 165.61 | 165.62 | 592.08 | 742.95 | 167.02 | 167.02 | 643.7  | 801.19 | 162.77 | 162.77 | 655.69 | 905.58 |
| AVQZ | Ι     | 67.94  | 67.94  | 1.02   | 160.64 | 0      | 0      | 10.56  | 156.32 | -      | -      | -      | -      |
|      | $I_r$ | 42.29  | 42.29  | 0.63   | 100    | 0      | 0      | 6.75   | 100    | -      | -      | -      | -      |

Table S6.4. Harmonic vibrational frequencies for the  ${}^{4}\Sigma^{-16}O^{58}NiF$ .

|         | ω     | 166.64 | 166.64 | 591.98 | 748.69 | 166.91 | 166.99 | 646.45 | 810.49 | 164.20 | 164.20 | 664.05 | 907.88 |
|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| VDZ-DK  | Ι     | 0      | 0      | 1.51   | 133.6  | 0      | 0      | 8.47   | 133.11 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.13   | 100    | 0      | 0      | 6.36   | 100    | -      | -      | -      | -      |
|         | ω     | 169.75 | 169.76 | 600.71 | 756.11 | 170.45 | 170.52 | 651.14 | 812.7  | 166.88 | 166.88 | 671.04 | 925.67 |
| VTZ-DK  | Ι     | 0      | 0      | 0.6    | 149.07 | 0      | 0      | 10.47  | 143.21 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.4    | 100    | 0      | 0      | 7.31   | 100    | -      | -      | -      | -      |
|         | ω     | 170.25 | 170.26 | 598.5  | 753.49 | 172.15 | 172.22 | 652.01 | 813.75 | 169.11 | 169.12 | 671.07 | 927.63 |
| VQZ-DK  | Ι     | 0      | 0      | 0.62   | 153.06 | 0      | 0      | 10.75  | 146.88 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.4    | 100    | 0      | 0      | 7.32   | 100    | -      | -      | -      | -      |
|         | ω     | 167.65 | 167.72 | 591.41 | 743.13 | 164.83 | 164.9  | 636.73 | 794.41 | 160.88 | 160.89 | 649.28 | 891.79 |
| AVDZ-DK | Ι     | 0      | 0      | 0.64   | 155.64 | 0      | 0      | 11.4   | 149.04 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.41   | 100    | 0      | 0      | 7.65   | 100    | -      | -      | -      | -      |
|         | ω     | 168.49 | 168.5  | 596.19 | 750.81 | 170.23 | 170.32 | 646.2  | 808.41 | 167.27 | 167.28 | 662.47 | 919.75 |
| AVTZ-DK | Ι     | 0      | 0      | 0.58   | 155.16 | 0      | 0      | 11.46  | 147.57 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.37   | 100    | 0      | 0      | 7.76   | 100    | -      | -      | -      | -      |
|         | ω     | 168.71 | 168.72 | 596.12 | 750.23 | 170.78 | 170.79 | 649.45 | 812.05 | -      | -      | -      | -      |
| AVQZ-DK | Ι     | 0      | 0      | 0.55   | 155.19 | 0      | 0      | 11.65  | 147.34 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.36   | 100    | 0      | 0      | 7.9    | 100    | -      | -      | -      | -      |

|      |       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |        |        |        | MI     | RCI    |        | CASPT2 |        |        |        |        |
|------|-------|--------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|      |       | $1B_1$                                                 | $2B_2$ | $3A_1$ | $4A_1$ | $1B_1$ | $2B_2$ | $3A_1$ | $4A_1$ | $1B_1$ | $2B_2$ | $3A_1$ | $4A_1$ |
|      | ω     | 160.2                                                  | 160.2  | 565.97 | 736.06 | 159.74 | 159.81 | 626.2  | 783.95 | 155.87 | 155.87 | 646.23 | 862.04 |
| VDZ  | I     | 67.19                                                  | 67.19  | 4.45   | 131.38 | 0      | 0      | 2.92   | 141.27 | -      | -      | -      | -      |
|      | $I_r$ | 51.14                                                  | 51.14  | 3.38   | 100    | 0      | 0      | 2.07   | 100    | -      | -      | -      | -      |
|      | ω     | 163.23                                                 | 163.23 | 573.86 | 741.6  | 163.04 | 163.14 | 628.34 | 784.26 | 158.03 | 158.03 | 651.01 | 875.19 |
| VTZ  | I     | 66.06                                                  | 66.06  | 2.99   | 147.86 | 0      | 0      | 3.71   | 153.28 | -      | -      | -      | -      |
|      | $I_r$ | 44.68                                                  | 44.68  | 2.02   | 100    | 0      | 0      | 2.42   | 100    | -      | -      | -      | -      |
|      | ω     | 163.92                                                 | 163.92 | 571.83 | 739.36 | 165.13 | 165.2  | 629.59 | 786.05 | 161.11 | 161.11 | 651.64 | 877.82 |
| VQZ  | Ι     | 65.96                                                  | 65.96  | 3.09   | 152.02 | 0      | 0      | 3.82   | 157.49 | -      | -      | -      | -      |
|      | $I_r$ | 43.39                                                  | 43.39  | 2.03   | 100    | 0      | 0      | 2.43   | 100    | -      | -      | -      | -      |
|      | ω     | 161.53                                                 | 161.53 | 565.25 | 729.76 | 158.39 | 158.39 | 616.34 | 769.37 | 153.76 | 153.76 | 631.71 | 846.72 |
| AVDZ | Ι     | 66.01                                                  | 66.01  | 3.21   | 154.71 | 0      | 0      | 4.37   | 160.27 | -      | -      | -      | -      |
|      | $I_r$ | 42.67                                                  | 42.67  | 2.08   | 100    | 0      | 0      | 2.73   | 100    | -      | -      | -      | -      |
|      | ω     | 162.29                                                 | 162.29 | 569.66 | 736.65 | 163.4  | 163.54 | 624.05 | 780.29 | 159.38 | 159.38 | 643.05 | 869.35 |
| AVTZ | I     | 65.89                                                  | 65.89  | 3.03   | 154.18 | 0      | 0      | 4.23   | 158.62 | -      | -      | -      | -      |
|      | $I_r$ | 42.74                                                  | 42.74  | 1.96   | 100    | 0      | 0      | 2.67   | 100    | -      | -      | -      | -      |
|      | ω     | 162.41                                                 | 162.41 | 569.51 | 735.93 | 163.68 | 163.68 | 627.12 | 783.55 | 159.44 | 159.44 | 646.70 | 874.83 |
| AVQZ | I     | 65.55                                                  | 65.55  | 3      | 154.17 | 0      | 0      | 4.35   | 158.35 | -      | -      | -      | -      |
|      | $I_r$ | 42.52                                                  | 42.52  | 1.95   | 100    | 0      | 0      | 2.75   | 100    | -      | -      | -      | -      |

**Table S6.5.** Harmonic vibrational frequencies for the  ${}^{4}\Sigma^{-18}O^{58}NiF$ .

|         | ω     | 163.43 | 163.43 | 569.2  | 741.9  | 163.57 | 163.64 | 630.11 | 792.27 | 160.83 | 160.83 | 654.29 | 877.92 |
|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| VDZ-DK  | Ι     | 0      | 0      | 3.38   | 127.82 | 0      | 0      | 3.53   | 134.34 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 2.65   | 100    | 0      | 0      | 2.62   | 100    | -      | -      | -      | -      |
|         | ω     | 166.45 | 166.46 | 577.84 | 748.91 | 167.04 | 167.1  | 634.11 | 795.13 | 163.47 | 163.47 | 661.76 | 894.34 |
| VTZ-DK  | Ι     | 0      | 0      | 2.16   | 143.55 | 0      | 0      | 4.57   | 145.52 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.51   | 100    | 0      | 0      | 3.14   | 100    | -      | -      | -      | -      |
|         | ω     | 167.03 | 167.1  | 575.73 | 746.4  | 168.71 | 168.78 | 634.88 | 796.25 | 165.65 | 165.66 | 661.86 | 896.14 |
| VQZ-DK  | Ι     | 0      | 0      | 2.21   | 147.42 | 0      | 0      | 4.7    | 149.27 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.5    | 100    | 0      | 0      | 3.15   | 100    | -      | -      | -      | -      |
|         | ω     | 164.39 | 164.47 | 568.89 | 736.07 | 161.51 | 161.58 | 620.2  | 777.09 | 157.59 | 157.59 | 639.97 | 862.05 |
| AVDZ-DK | Ι     | 0      | 0      | 2.31   | 149.82 | 0      | 0      | 5.07   | 151.64 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.54   | 100    | 0      | 0      | 3.34   | 100    | -      | -      | -      | -      |
|         | ω     | 165.27 | 165.27 | 573.5  | 743.67 | 166.83 | 166.92 | 629.43 | 790.77 | 163.85 | 163.86 | 653.45 | 888.42 |
| AVTZ-DK | Ι     | 0      | 0      | 2.17   | 149.48 | 0      | 0      | 5.19   | 150.16 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.45   | 100    | 0      | 0      | 3.46   | 100    | -      | -      | -      | -      |
|         | ω     | 165.46 | 165.46 | 573.47 | 743.06 | 167.36 | 167.36 | 632.69 | 794.22 | -      | -      | -      | -      |
| AVQZ-DK | I     | 0      | 0      | 2.13   | 149.52 | 0      | 0      | 5.3    | 150    | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.42   | 100    | 0      | 0      | 3.54   | 100    | -      | -      | -      | -      |

|      |       | CASSCF $1B_1$ $2B_2$ $3A_1$ $4A$ $162.34$ $162.34$ $588.65$ $738$ $68.75$ $68.75$ $2.35$ $135.$ $50.56$ $50.56$ $1.73$ $100$ $165.4$ $165.4$ $596.53$ $744.$ $67.6$ $67.6$ $1.11$ $152.$ $44.44$ $44.44$ $0.73$ $100$ $166.11$ $166.11$ $594.5$ $741.$ $67.49$ $67.49$ $1.17$ $156.$ $43.17$ $43.17$ $0.75$ $100$ $163.68$ $163.68$ $587.63$ $732.$ $67.54$ $67.54$ $1.22$ $159.$ $42.42$ $42.42$ $0.76$ $100$ $164.45$ $164.45$ $592.19$ $739.$ $67.43$ $67.43$ $1.11$ $158.$ $42.53$ $42.53$ $0.7$ $100$ $164.58$ $164.58$ $592.01$ $738.$ $67.09$ $67.09$ $1.09$ $158$ |        |        |        | MI     | RCI    |        | CASPT2 |        |        |        |        |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|      |       | $1B_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2B_2$ | $3A_1$ | $4A_1$ | $1B_1$ | $2B_2$ | $3A_1$ | $4A_1$ | $1B_1$ | $2B_2$ | $3A_1$ | $4A_1$ |
|      | ω     | 162.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 162.34 | 588.65 | 738.1  | 162    | 162.07 | 642.22 | 797.23 | 158.13 | 158.13 | 655.48 | 886.36 |
| VDZ  | Ι     | 68.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68.75  | 2.35   | 135.97 | 0      | 0      | 8.05   | 138.43 | -      | -      | -      | -      |
|      | $I_r$ | 50.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.56  | 1.73   | 100    | 0      | 0      | 5.81   | 100    | -      | -      | -      | -      |
|      | ω     | 165.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 165.4  | 596.53 | 744.05 | 165.33 | 165.42 | 645.03 | 796.77 | 160.31 | 160.31 | 659.66 | 900.80 |
| VTZ  | Ι     | 67.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67.6   | 1.11   | 152.13 | 0      | 0      | 9.76   | 149.3  | -      | -      | -      | -      |
|      | $I_r$ | 44.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.44  | 0.73   | 100    | 0      | 0      | 6.53   | 100    | -      | -      | -      | -      |
|      | ω     | 166.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 166.11 | 594.5  | 741.71 | 167.44 | 167.52 | 646.41 | 798.48 | 163.45 | 163.45 | 660.24 | 903.59 |
| VQZ  | Ι     | 67.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67.49  | 1.17   | 156.36 | 0      | 0      | 10.02  | 153.37 | -      | -      | -      | -      |
|      | $I_r$ | 43.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43.17  | 0.75   | 100    | 0      | 0      | 6.53   | 100    | -      | -      | -      | -      |
|      | ω     | 163.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 163.68 | 587.63 | 732.11 | 160.62 | 160.62 | 632.51 | 781.91 | 155.99 | 155.99 | 640.48 | 870.99 |
| AVDZ | Ι     | 67.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67.54  | 1.22   | 159.21 | 0      | 0      | 11     | 155.77 | -      | -      | -      | -      |
|      | $I_r$ | 42.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.42  | 0.76   | 100    | 0      | 0      | 7.06   | 100    | -      | -      | -      | -      |
|      | ω     | 164.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 164.45 | 592.19 | 739.06 | 165.7  | 165.83 | 640.52 | 792.87 | 161.69 | 161.69 | 651.47 | 894.98 |
| AVTZ | Ι     | 67.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67.43  | 1.11   | 158.56 | 0      | 0      | 10.66  | 154.27 | -      | -      | -      | -      |
|      | $I_r$ | 42.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.53  | 0.7    | 100    | 0      | 0      | 6.91   | 100    | -      | -      | -      | -      |
|      | ω     | 164.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 164.58 | 592.01 | 738.35 | 165.97 | 165.97 | 643.57 | 796.31 | 161.75 | 161.75 | 655.01 | 900.82 |
| AVQZ | Ι     | 67.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67.09  | 1.09   | 158.54 | 0      | 0      | 10.88  | 153.91 | -      | -      | -      | -      |
|      | $I_r$ | 42.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.31  | 0.69   | 100    | 0      | 0      | 7.07   | 100    | -      | -      | -      | -      |

**Table S6.6.** Harmonic vibrational frequencies for the  ${}^{4}\Sigma^{-16}O^{60}NiF$ .

|         | ω     | 165.61 | 165.61 | 591.9  | 744.08 | 165.87 | 165.94 | 646.32 | 805.57 | 163.17 | 163.17 | 663.42 | 903.03 |
|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| VDZ-DK  | Ι     | 0      | 0      | 1.6    | 131.82 | 0      | 0      | 8.74   | 131.07 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.21   | 100    | 0      | 0      | 6.67   | 100    | -      | -      | -      | -      |
|         | ω     | 168.71 | 168.71 | 600.65 | 751.42 | 169.4  | 169.47 | 651.03 | 807.73 | 165.84 | 165.84 | 670.35 | 920.80 |
| VTZ-DK  | Ι     | 0      | 0      | 0.65   | 147.15 | 0      | 0      | 10.76  | 141.02 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.44   | 100    | 0      | 0      | 7.63   | 100    | -      | -      | -      | -      |
|         | ω     | 169.19 | 169.2  | 598.44 | 748.83 | 171.09 | 171.16 | 651.9  | 808.77 | 168.06 | 168.07 | 670.37 | 922.76 |
| VQZ-DK  | Ι     | 0      | 0      | 0.67   | 151.08 | 0      | 0      | 11.04  | 144.62 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.44   | 100    | 0      | 0      | 7.63   | 100    | -      | -      | -      | -      |
|         | ω     | 166.59 | 166.67 | 591.35 | 738.53 | 163.8  | 163.87 | 636.62 | 789.57 | 159.88 | 159.88 | 648.65 | 887.05 |
| AVDZ-DK | I     | 0      | 0      | 0.7    | 153.63 | 0      | 0      | 11.72  | 146.73 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.46   | 100    | 0      | 0      | 7.99   | 100    | -      | -      | -      | -      |
|         | ω     | 167.42 | 167.42 | 596.12 | 746.16 | 169.17 | 169.27 | 646.08 | 803.47 | 166.23 | 166.24 | 661.78 | 914.93 |
| AVTZ-DK | I     | 0      | 0      | 0.63   | 153.16 | 0      | 0      | 11.77  | 145.29 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.41   | 100    | 0      | 0      | 8.1    | 100    | -      | -      | -      | -      |
|         | ω     | 167.67 | 167.67 | 596.06 | 745.58 | 169.71 | 169.72 | 649.34 | 807.1  | -      | -      | -      | -      |
| AVQZ-DK | I     | 0      | 0      | 0.6    | 153.19 | 0      | 0      | 11.97  | 145.05 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 0.39   | 100    | 0      | 0      | 8.25   | 100    | -      | -      | -      | -      |

|      |       | CASSCF $1B_1$ $2B_2$ $3A_1$ $4A_1$ 159.16         159.16         565.75         731.3           66.32         66.32         4.66         129.4           51.25         51.25         3.6         100           162.16         162.16         573.66         737.0           65.2         65.2         3.17         145.7           44.74         44.74         2.18         100           162.86         162.86         571.62         734.8           65.1         65.1         3.28         149.8           43.45         43.45         2.19         100           160.48         160.48         565.05         725.3           65.15         65.15         3.41         152.4           42.73         42.73         2.24         100           161.23         161.23         569.46         732.3           65.04         65.04         3.22         151.9           42.8         42.8         2.12         100           161.36         161.36         569.31         731.5 |        |        |        | MI     | RCI    |        | CASPT2 |          |        |        |        |
|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|
|      |       | $1B_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2B_2$ | $3A_1$ | $4A_1$ | $1B_1$ | $2B_2$ | $3A_1$ | $4A_1$ | $1B_{1}$ | $2B_2$ | $3A_1$ | $4A_1$ |
|      | ω     | 159.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 159.16 | 565.75 | 731.55 | 158.7  | 158.77 | 626.19 | 778.86 | 154.86   | 154.86 | 645.88 | 856.89 |
| VDZ  | Ι     | 66.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66.32  | 4.66   | 129.41 | 0      | 0      | 2.97   | 139.36 | -        | -      | -      | -      |
|      | $I_r$ | 51.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51.25  | 3.6    | 100    | 0      | 0      | 2.13   | 100    | -        | -      | -      | -      |
|      | ω     | 162.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 162.16 | 573.66 | 737.03 | 161.98 | 162.08 | 628.33 | 779.16 | 157.00   | 157.00 | 650.60 | 870.03 |
| VTZ  | Ι     | 65.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65.2   | 3.17   | 145.73 | 0      | 0      | 3.75   | 151.24 | -        | -      | -      | -      |
|      | $I_r$ | 44.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.74  | 2.18   | 100    | 0      | 0      | 2.48   | 100    | -        | -      | -      | -      |
|      | ω     | 162.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 162.86 | 571.62 | 734.81 | 164.05 | 164.13 | 629.59 | 780.94 | 160.07   | 160.07 | 651.23 | 872.65 |
| VQZ  | Ι     | 65.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65.1   | 3.28   | 149.83 | 0      | 0      | 3.86   | 155.4  | -        | -      | -      | -      |
|      | $I_r$ | 43.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.45  | 2.19   | 100    | 0      | 0      | 2.48   | 100    | -        | -      | -      | -      |
|      | ω     | 160.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 160.48 | 565.05 | 725.26 | 157.36 | 157.36 | 616.34 | 764.37 | 152.76   | 152.76 | 631.35 | 841.69 |
| AVDZ | Ι     | 65.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.15  | 3.41   | 152.47 | 0      | 0      | 4.43   | 158.12 | -        | -      | -      | -      |
|      | $I_r$ | 42.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42.73  | 2.24   | 100    | 0      | 0      | 2.8    | 100    | -        | -      | -      | -      |
|      | ω     | 161.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 161.23 | 569.46 | 732.11 | 162.34 | 162.49 | 624.04 | 775.22 | 158.34   | 158.34 | 642.64 | 864.25 |
| AVTZ | Ι     | 65.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.04  | 3.22   | 151.97 | 0      | 0      | 4.28   | 156.49 | -        | -      | -      | -      |
|      | $I_r$ | 42.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42.8   | 2.12   | 100    | 0      | 0      | 2.74   | 100    | -        | -      | -      | -      |
|      | ω     | 161.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 161.36 | 569.31 | 731.39 | 162.61 | 162.61 | 627.12 | 778.45 | 158.40   | 158.40 | 646.27 | 869.71 |
| AVQZ | Ι     | 64.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64.7   | 3.19   | 151.96 | 0      | 0      | 4.41   | 156.22 | -        | -      | -      | -      |
|      | $I_r$ | 42.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42.58  | 2.1    | 100    | 0      | 0      | 2.82   | 100    | -        | -      | -      | -      |

**Table S6.7.** Harmonic vibrational frequencies for the  ${}^{4}\Sigma^{-18}O^{60}NiF$ .

|         | ω     | 162.39 | 162.39 | 569    | 737.35 | 162.5  | 162.57 | 630.09 | 787.12 | 159.79 | 159.79 | 653.92 | 872.70 |
|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| VDZ-DK  | Ι     | 0      | 0      | 3.56   | 125.94 | 0      | 0      | 3.58   | 132.52 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 2.83   | 100    | 0      | 0      | 2.7    | 100    | -      | -      | -      | -      |
|         | ω     | 165.38 | 165.38 | 577.65 | 744.29 | 165.95 | 166.02 | 634.11 | 789.97 | 162.41 | 162.41 | 661.33 | 889.10 |
| VTZ-DK  | Ι     | 0      | 0      | 2.32   | 141.52 | 0      | 0      | 4.61   | 143.57 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.64   | 100    | 0      | 0      | 3.21   | 100    | -      | -      | -      | -      |
|         | ω     | 165.9  | 165.91 | 575.48 | 741.79 | 167.62 | 167.7  | 634.87 | 791.07 | 164.57 | 164.58 | 661.42 | 890.89 |
| VQZ-DK  | Ι     | 0      | 0      | 2.37   | 145.35 | 0      | 0      | 4.73   | 147.27 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.63   | 100    | 0      | 0      | 3.21   | 100    | -      | -      | -      | -      |
|         | ω     | 163.33 | 163.4  | 568.7  | 731.53 | 160.47 | 160.54 | 620.19 | 772.04 | 156.56 | 156.56 | 639.59 | 856.96 |
| AVDZ-DK | Ι     | 0      | 0      | 2.48   | 147.7  | 0      | 0      | 5.11   | 149.6  | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.68   | 100    | 0      | 0      | 3.42   | 100    | -      | -      | -      | -      |
|         | ω     | 164.18 | 164.18 | 573.31 | 739.09 | 165.75 | 165.84 | 629.42 | 785.63 | 162.79 | 162.79 | 653.02 | 883.23 |
| AVTZ-DK | Ι     | 0.00   | 0.00   | 2.32   | 147.38 | 0.00   | 0.00   | 5.24   | 148.14 | -      | -      | -      | -      |
|         | $I_r$ | 0.00   | 0.00   | 1.58   | 100.00 | 0.00   | 0.00   | 3.54   | 100.00 | -      | -      | -      | -      |
|         | ω     | 164.52 | 164.59 | 573.36 | 738.51 | 166.27 | 166.27 | 632.68 | 789.05 | -      | -      | -      | -      |
| AVQZ-DK | Ι     | 0      | 0      | 2.28   | 147.42 | 0      | 0      | 5.36   | 147.98 | -      | -      | -      | -      |
|         | $I_r$ | 0      | 0      | 1.55   | 100.00 | 0      | 0      | 3.62   | 100.00 | -      | -      | -      | -      |

#### Table S6.8. ONiF $(C_{2\nu}/C_{\alpha\nu} - {}^{4}A_{2}/{}^{4}\Sigma^{-})$

#### CASSCF(13,8)/MRCI/cc-pVTZ-DK

Optimization and normal mode calculation carried out in  $C_1$  point group symmetry.

Optimized variables

| NiO = | 1.64817316 ANGSTROM |
|-------|---------------------|
| NiF = | 1.73031828 ANGSTROM |

NATURAL ORBITALS

| Orbital | Occupation | Energy     | C | oeffi | cients   |   |      |          |
|---------|------------|------------|---|-------|----------|---|------|----------|
| 1.1     | 2.00000    | -308.79061 | 2 | 1s    | 0.99247  |   |      |          |
| 2.1     | 2.00000    | -38.64817  | 2 | 1s    | 0.99244  |   |      |          |
| 3.1     | 2.00000    | -33.12485  | 2 | 2pz   | 0.99996  |   |      |          |
| 4.1     | 2.00000    | -33.10447  | 2 | 2ру   | 0.99995  |   |      |          |
| 5.1     | 2.00000    | -33.10447  | 2 | 2рх   | 0.99995  |   |      |          |
| 6.1     | 2.00000    | -26.24249  | 3 | 1s    | 0.99920  |   |      |          |
| 7.1     | 2.00000    | -20.59807  | 1 | . 1s  | 0.99903  |   |      |          |
| 8.1     | 2.00000    | -5.03053   | 2 | 1s    | 0.99934  |   |      |          |
| 9.1     | 2.00000    | -3.34662   | 2 | 2pz   | -0.99708 |   |      |          |
| 10.1    | 2.00000    | -3.33295   | 2 | 2рх   | 0.99997  |   |      |          |
| 11.1    | 2.00000    | -3.33295   | 2 | 2ру   | 0.99997  |   |      |          |
| 12.1    | 2.00000    | -1.49688   | 3 | 1s    | 0.94508  |   |      |          |
| 13.1    | 2.00000    | -1.25760   | 1 | 1s    | 0.93965  |   |      |          |
| 14.1    | 2.00000    | -0.62375   | 3 | 2pz   | 0.88195  |   |      |          |
| 15.1    | 2.00000    | -0.58780   | 3 | 2рх   | 0.91774  |   |      |          |
| 16.1    | 2.00000    | -0.58780   | 3 | 2ру   | 0.91774  |   |      |          |
| 17.1    | 1.95997    | -0.65356   | 2 | 3d2+  | 1.00267  |   |      |          |
| 18.1    | 1.95997    | -0.65356   | 2 | 3d2-  | 1.00267  |   |      |          |
| 19.1    | 1.91067    | -0.57764   | 1 | 2pz   | 0.82420  | 2 | 3d0  | 0.38813  |
| 20.1    | 1.79921    | -0.53530   | 1 | 2ру   | 0.68226  | 2 | 3d1- | -0.60165 |
| 21.1    | 1.79921    | -0.53530   | 1 | 2рх   | 0.68226  | 2 | 3d1+ | -0.60165 |
| 22.1    | 1.20619    | -0.31090   | 1 | 2рх   | 0.60403  | 2 | 3d1+ | 0.79794  |
| 23.1    | 1.20619    | -0.31090   | 1 | 2ру   | 0.60403  | 2 | 3d1- | 0.79794  |
| 24.1    | 1.15858    | -0.29497   | 1 | 2pz   | 0.33559  | 2 | 3d0  | -0.87352 |

## CI vector

| 22222aaa | 0.8467492  |
|----------|------------|
| 222aa22a | 0.3332225  |
| 22a2a2a2 | -0.1724011 |
| 22aa2a22 | 0.1724011  |
| 22aaa222 | -0.1406388 |
| 2a2a22a2 | 0.1315807  |
| 2a22aa22 | -0.1315807 |
| a22a2a22 | 0.1315807  |
| a222a2a2 | 0.1315807  |
| 22a22aa2 | 0.0827662  |
| 222a2a2a | -0.0750015 |
| 2222a2aa | 0.0750015  |
| aaa22222 | -0.0570575 |

Harmonic Wavenumbers:

|                        | $1 B_1$ | $2 B_2$ | 3 A <sub>1</sub> | $4 A_1$ |
|------------------------|---------|---------|------------------|---------|
| Wavenumbers [cm-1]     | 173.93  | 174.15  | 653.76           | 812.43  |
| Intensities [km/mol]   | 0.00    | 0.00    | 9.04             | 144.46  |
| Intensities [relative] | 0.00    | 0.00    | 6.26             | 100.00  |
|                        |         |         |                  |         |
|                        | $1 B_1$ | $2 B_2$ | $3 A_1$          | $4 A_1$ |
| Wavenumbers [cm-1]     | 170.47  | 170.59  | 636.22           | 795.42  |
| Intensities [km/mol]   | 0.00    | 0.00    | 3.58             | 146.25  |
| Intensities [relative] | 0.00    | 0.00    | 2.45             | 100.00  |

Spin population: Individual basis function populations:

| Symmetr            | y no. 1           |                    |                   |                    |                   |                   |                   |                     |                   |
|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|-------------------|-------------------|---------------------|-------------------|
| 1 1s<br>0 00000    | 1 1s<br>0 00202   | 1 1s<br>0 00003    | 1 1s<br>0 00096   | 1 2px<br>0 40265   | 1 2py<br>0 40265  | 1 2pz<br>0 14138  | 1 2px<br>0 00352  | 1 2py<br>0 00352    | 1 2pz<br>0 00200  |
| 0.00000            | 0.00202           | 0.00005            | 0.00050           | 0.40205            | 0.40205           | 0.14150           | 0.00552           | 0.00552             | 0.00200           |
| 1 2px<br>0.01896   | 1 2py<br>0.01896  | 1 2pz<br>0.00987   | 1 3d0<br>0.00005  | 1 3d2-<br>0.00000  | 1 3d1+<br>0.00002 | 1 3d2+<br>0.00000 | 1 3d1-<br>0.00002 | 1 3d0<br>0.00008    | 1 3d2-<br>0.00000 |
| 0.01050            | 0101050           | 0100507            | 0.00005           | 0100000            | 0.00002           | 0100000           | 0100002           | 0100000             | 0.00000           |
| 1 3d1+<br>-0.00003 | 1 3d2+<br>0.00000 | 1 3d1-<br>-0.00003 | 1 4f1+<br>0.00003 | 1 4f1-<br>0.00003  | 1 4f0<br>0.00009  | 1 4f3+<br>0.00000 | 1 4f2-<br>0.00000 | 1 4f3-<br>0.00000   | 1 4f2+<br>0.00000 |
|                    |                   |                    |                   |                    |                   |                   |                   |                     |                   |
| 0.00000            | 0.00015           | 0.06182            | 0.01700           | 0.00076            | 0.00000           | 0.00612           | -0.00000          | -0.00000            | 0.00000           |
| 2 2px              | 2 2ру             | 2 2pz              | 2 2px             | 2 2ру              | 2 2pz             | 2 2px             | 2 2ру             | 2 2pz               | 2 2px             |
| 0.00003            | 0.00003           | 0.00019            | -0.00149          | -0.00149           | -0.00300          | 0.00851           | 0.00851           | 0.00738             | 0.00053           |
| 2 2py              | 2 2pz             | 2 2px              | 2 2py             | 2 2pz              | 2 3d0             | 2 3d2-            | 2 3d1+            | 2 3d2+              | 2 3d1-            |
| 0.00053            | -0.00058          | 0.00194            | 0.00194           | -0.00052           | 0.63/91           | 0.04583           | 0.51941           | 0.04583             | 0.51941           |
| 2 3d0              | 2 3d2-            | 2 3d1+             | 2 3d2+            | 2 3d1-             | 2 3d0             | 2 3d2-            | 2 3d1+            | 2 3d2+              | 2 3d1-            |
| 0.01995            | 0.00019           | 0.03038            | 0.00019           | 0.03030            | -0.00098          | 0.00002           | 0.00355           | 0.00002             | 0.00555           |
| 2 3d0<br>0 00725   | 2 3d2-            | 2 3d1+             | 2 3d2+            | 2 3d1-<br>-0 00031 | 2 4f1+<br>0 00000 | 2 4f1-<br>0 00000 | 2 4f0<br>0 00000  | 2 4f3+<br>a aaaaa   | 2 4f2-<br>0 00000 |
| 0.00725            | 0.00022           | 0.00051            | 0.00022           | 0.00051            | 0.00000           | 0.00000           | 0.00000           | 0.00000             | 0.00000           |
| 2 4f3-<br>0.00000  | 2 4f2+<br>0.00000 | 2 4f1+<br>0.00024  | 2 4f1-<br>0.00024 | 2 4f0<br>0.00009   | 2 4f3+<br>0.00000 | 2 4f2-<br>0.00000 | 2 4f3-<br>0.00000 | 2 4f2+<br>0.00000 · | 2 5g0<br>-0.00000 |
| 2 5 2              | 2 5 4             |                    | 2 5 4             | 2 5 2              | 2 5 4             | 2 5 2             | 2 5 2             | 2.4                 | 2.4               |
| 2 5g2-<br>0.00000  | 2 5g1+<br>0.00000 | 2 5g4+<br>0.00000  | 2 5g1-<br>0.00000 | 2 5g2+<br>0.00000  | 2 5g4-<br>0.00000 | 2 5g3+<br>0.00000 | 2 5g3-<br>0.00000 | 3 1s<br>-0.00000    | 3 1s<br>0.00040   |
| 2 1c               | 2 1c              | 2 204              | 3 2014            | 2 207              | 2 Jny             | 2 2014            | 2 207             | 2 2nv               | 2 2014            |
| 0.00000            | 0.00021           | 0.00731            | 0.00731           | 0.00585            | -0.00001          | -0.00001          | 0.00009           | 0.00004             | 0.00004           |
| 3 2nz              | 3 3d0             | 3 3d2-             | 3 3d1+            | 3 3d2+             | 3 3d1-            | 3 3d0             | 3 3d2-            | 3 3d1+              | 3 3d2+            |
| 0.00127            | 0.00001           | 0.00000            | 0.00000           | 0.00000            | 0.00000           | 0.00017           | 0.00000           | 0.00009             | 0.00000           |
| 3 3d1-             | 3 4f1+            | 3 4f1-             | 3 4f0             | 3 4f3+             | 3 4f2-            | 3 4f3-            | 3 4f2+            |                     |                   |
| 0.00009            | 0.00001           | 0.00001            | 0.00002           | 0.00000            | 0.00000           | 0.00000           | 0.00000           |                     |                   |

Population analysis by basis function type

| Unique | atom | S       | р       | d       | f       | g        | Total   | Charge    |
|--------|------|---------|---------|---------|---------|----------|---------|-----------|
| 1      | 0    | 0.00301 | 1.00350 | 0.00013 | 0.00015 | 0.00000  | 1.00679 | + 6.99321 |
| 2      | Ni   | 0.08585 | 0.02252 | 1.86136 | 0.00058 | -0.00000 | 1.97030 | +26.02970 |
| 3      | F    | 0.00060 | 0.02190 | 0.00037 | 0.00004 | 0.00000  | 0.02291 | + 8.97709 |

Spin density plot of ONiF ( ${}^{4}\Sigma^{-}$ , iso-surface = 0.08 electron a.u.<sup>-3</sup>)



AIM Charge:

Total result:

#Basin Integral(a.u.) Vol(Bohr^3) Vol(rho>0.001) 1 8.7275249386 144.069 1480.095 2 26.4642164056 730.919 102.875 3 9.8081290293 1347.283 128.520 Sum of above integrals: 44.99987037 Sum of basin volumes (rho>0.001): 375.465 Bohr^3

Normalization factor of the integral of electron density is 0.999997 The atomic charges after normalization and atomic volumes:

| 1(0)   | Charge: | -0.727550 | Volume: | 144.069 Bohr^3 |
|--------|---------|-----------|---------|----------------|
| 2 (Ni) | Charge: | 1.535707  | Volume: | 102.875 Bohr^3 |
| 3 (F ) | Charge: | -0.808157 | Volume: | 128.520 Bohr^3 |

# Part 7. CASSCF, CASPT2 calculations of different spin states of ONiF<sub>2</sub> (<sup>3</sup>A<sub>1</sub>, <sup>3</sup>B<sub>1</sub>, <sup>3</sup>B<sub>2</sub>, <sup>3</sup>A<sub>2</sub>, <sup>5</sup>A<sub>1</sub>, <sup>5</sup>A<sub>2</sub>; C<sub>2v</sub>)

| Electronic state $(C_{2v})$              | r(Ni–O) | r(Ni-F) | α(F-Ni-F) | $\Delta E_{ m CASPT2}  {}^{ m d}$ | $\Delta E_{ m MRCI}^{\ e}$ |
|------------------------------------------|---------|---------|-----------|-----------------------------------|----------------------------|
| ${}^{3}A_{1}{}^{a}$                      | 1.639   | 1.714   | 118.0     | 126.4                             |                            |
| $^{3}B_{1}^{a}$                          | 1.628   | 1.691   | 104.9     | 76.0                              |                            |
| ${}^{3}\mathrm{B}_{2}{}^{a}$             | 1.622   | 1.700   | 107.2     | 71.7                              |                            |
| ${}^{3}A_{2}{}^{a}$                      | 1.613   | 1.697   | 106.1     | 0.0                               | 0.0                        |
| <sup>5</sup> A <sub>1</sub> <sup>b</sup> | 1.725   | 1.713   | 110.7     | 0.0                               | 11.4                       |
| ${}^{5}A_{2}{}^{b}$                      | 1.732   | 1.741   | 113.0     | 16.6                              | 19.5                       |
| <sup>5</sup> A <sub>1</sub> <sup>c</sup> | 1.692   | 1.722   | 129.2     |                                   | (6.8) <sup>c</sup>         |

**Table S7.1.** Electronic states, structural parameters (Å, deg) and electronic energy differences (kJ  $mol^{-1}$ ) of selected triplet and quintet states of  $ONiF_2$ .

<sup>a</sup>: CASSCF(12,8)/CASPT2/VTZ-DK level (state-averaging of the four triplet states with equal weights of 0.25). <sup>b</sup>: CASSCF(12,9)/CASPT2/VTZ-DK level (state-averaging of the two quintet states with equal weights of 0.5). <sup>c</sup>: CASSCF(12,9)/CASPT2/AVDZ-DK level. <sup>d</sup>: CASPT2 state energies ( $\Delta E_{CASPT2}$ ) relative to the lowest state of the same multiplicity. <sup>e</sup>: MRCI single point calculations at CASSCF(12,9)/CASPT2 minimum structures and state-averaging of the three spin states <sup>3</sup>A<sub>2</sub>, <sup>5</sup>A<sub>1</sub> and <sup>5</sup>A<sub>2</sub> with equal weights.

#### Table S7.2. ONiF<sub>2</sub> (*C*<sub>2v</sub>, <sup>3</sup>A<sub>1</sub>)

SA-CASSCF(12,8)/CASPT2/VTZ-DK

One state of each irrep was included in the state average formalism with equal weights of 0.25:  ${}^{3}A_{1}$ ,  ${}^{3}B_{1}$ ,  ${}^{3}B_{2}$ ,  ${}^{3}A_{2}$ 

| NiO= | 1.63905401 ANGSTROM |
|------|---------------------|
| NiF= | 1.71416023 ANGSTROM |
| A1=  | 118.00635602 DEGREE |

OPTG(RS2C) -1794.39728019

| 2aa | 22 | 20 | 2 | 0.8215916  |
|-----|----|----|---|------------|
| 2aa | 22 | 02 | 2 | -0.3929021 |
| 2ab | 22 | aa | 2 | -0.2051485 |
| 2aa | 22 | ba | 2 | 0.1736848  |
| 2aa | 22 | ab | 2 | 0.1584947  |
| 2ba | 22 | aa | 2 | -0.1270311 |
| a2a | 22 | ba | 2 | -0.1128319 |
| 22a | 2a | 2b | а | 0.1017100  |
| a2a | 22 | ab | 2 | 0.0781010  |
| 22a | 2a | b2 | а | 0.0683184  |
| 2aa | 20 | 22 | 2 | -0.0529065 |

## NATURAL ORBITALS FOR STATE 1.1 (ms2=2)

| Orbital | Occupation | Energy   | Coetticients    |                 |                |                |                 |
|---------|------------|----------|-----------------|-----------------|----------------|----------------|-----------------|
| 10.1    | 2.00000    | -0.70918 | 3 2pz 0.50365   | 3 2py 0.66143   |                |                |                 |
| 11.1    | 2.00000    | -0.65028 | 3 2pz -0.71366  | 3 2py 0.55061   |                |                |                 |
| 12.1    | 1.97325    | -0.69723 | 1 2pz 0.80236   | 2 2pz 0.35893   | 2 2pz -0.32141 | 2 3d0 0.40901  |                 |
| 13.1    | 1.04532    | -0.40172 | 1 2pz 0.36453   | 2 2pz 0.25400   | 2 2pz -0.26310 | 2 3d0 -0.74279 | 2 3d2+ -0.45396 |
|         |            |          | 3 2pz 0.26757   |                 |                |                |                 |
| 14.1    | 1.00597    | -0.42566 | 2 3d0 0.46580   | 2 3d2+ -0.83963 |                |                |                 |
| 15.1    | -0.00000   | 0.04716  | 2 1s 0.49386    | 2 1s 1.57952    | 2 1s -0.39118  | 2 1s -2.66670  |                 |
| 16.1    | -0.00000   | 0.11462  | 2 1s 0.40845    | 2 1s -0.30979   | 2 2pz -2.85072 | 2 2pz 1.42828  | 2 2pz 2.49318   |
| 17.1    | -0.00000   | 0.21208  | 1 1s -0.28333   | 2 1s 1.19197    | 2 1s 5.42406   | 2 1s -1.10275  | 2 1s 0.32508    |
|         |            |          | 2 1s -4.98882   | 2 2pz 0.40044   | 2 2pz -0.29169 | 2 3d2+ 0.25646 | 3 1s -0.28716   |
|         |            |          | 3 2py 0.29990   |                 |                |                |                 |
| 18.1    | -0.00000   | 0.36796  | 1 1s 0.34679    | 2 1s -0.36214   | 2 1s -1.65610  | 2 1s 1.01603   | 2 2pz -4.21482  |
|         |            |          | 2 2pz 2.06659   | 2 2pz -0.28682  | 2 2pz 2.06871  | 2 3d0 -0.90672 | 2 3d2+ 0.90129  |
|         |            |          | 3 1s 0.68038    | 3 2py -0.27494  |                |                |                 |
| 4.2     | 1.99550    | -0.68440 | 1 2px 0.82616   | 2 3d1+ -0.39051 |                |                |                 |
| 5.2     | 1.96783    | -0.79574 | 1 2px 0.41369   | 2 3d1+ 0.90170  |                |                |                 |
| 6.2     | -0.00000   | 0.07363  | 2 2px -1.00740  | 2 2px 0.73189   | 2 2px 1.45514  |                |                 |
| 7.2     | -0.00000   | 0.23001  | 2 2px 6.33962   | 2 2px -2.93682  | 2 2px 0.41183  | 2 2px -3.39531 |                 |
| 8.2     | -0.00000   | 0.37970  | 1 2px 0.26190   | 1 2px 0.40564   | 2 2px -0.63446 | 2 2px 0.30706  | 2 2px 0.25834   |
|         |            |          | 2 3d1+ -0.29554 | 2 3d1+ 1.60077  |                |                |                 |
| 9.2     | -0.00000   | 0.86844  | 1 2px -0.49443  | 1 2px -0.46307  | 1 2px 1.64139  | 2 2px 6.44802  | 2 2px -4.75574  |
|         |            |          | 2 2px 0.73116   | 2 2px -2.71260  | 2 3d1+ 0.36822 |                |                 |
| 5.3     | 2.00000    | -0.68698 | 2 2py -0.41401  | 2 2py 0.39699   | 3 2py -0.84164 |                |                 |
| 6.3     | 2.00000    | -0.63122 | 3 2py -0.27116  | 3 2pz 0.89084   |                |                |                 |
| 7.3     | 1.54320    | -0.52865 | 1 2py 0.60309   | 2 3d10.68983    |                |                |                 |
| 8.3     | 0.49434    | -0.19569 | 1 2py 0.70955   | 2 3d1- 0.63841  |                |                |                 |
| 9.3     | -0.00000   | 0.12185  | 2 2py -2.83979  | 2 2py 1.45143   | 2 2py 2.49399  |                |                 |
| 10.3    | -0.00000   | 0.39464  | 1 2py -0.26593  | 1 2py -0.29926  | 2 2py 0.41581  | 2 2py 9.31728  | 2 2py -4.47118  |
|         |            |          | 2 2py 0.60884   | 2 2py -4.34605  | 2 3d10.36962   | 3 1s -0.69421  | 3 2pz 0.27164   |
|         |            |          | 3 2py 0.26531   | 3 2pz 0.28992   |                |                |                 |
| 11.3    | -0.00000   | 0.50835  | 1 2py 0.34928   | 2 2py 0.31770   | 2 2py 4.85550  | 2 2py -2.10310 | 2 2py 0.25121   |
|         |            |          | 2 2py -2.08047  | 2 3d1- 2.16938  | 3 1s -1.68923  | 3 2py 0.60121  |                 |
| 12.3    | -0.00000   | 0.89270  | 1 2py 0.39561   | 1 2py 0.43841   | 1 2py -1.56075 | 2 2py -8.10632 | 2 2py 5.85445   |
|         |            |          | 2 2py -0.87934  | 2 2py 3.24532   | 2 3d10.36303   | 2 3d10.38506   | 3 1s 0.42882    |
| 1.4     | 2.00000    | -0.65577 | 3 2px 0.92094   |                 |                |                |                 |
| 2.4     | 1.97459    | -0.88394 | 2 3d20.97675    |                 |                |                |                 |
| 3.4     | -0.00000   | 0.37600  | 2 3d20.30326    | 2 3d2- 1.53872  | 3 2px -0.28766 | 3 2px -0.36083 |                 |
| 4.4     | -0.00000   | 1.09612  | 2 3d2- 0.49262  | 3 2px 0.59781   | 3 2px 0.47335  | 3 2px -1.73417 |                 |
| 5.4     | -0.00000   | 1.34811  | 2 3d2- 1.07234  | 2 3d2- 2.86959  | 2 3d2- 0.92906 | 2 3d23.16151   | 3 2px 0.39607   |
| 6.4     | -0.00000   | 1.70711  | 1 3d2- 1.00139  | 2 3d20.29394    | 3 2px 0.36486  |                |                 |
|         |            |          |                 |                 |                |                |                 |

## Table S7.3. ONiF<sub>2</sub> (C<sub>2v</sub>, <sup>3</sup>B<sub>1</sub>)

SA-CASSCF(12,8)/CASPT2/VTZ-DK One state of each irrep was included in the state average formalism with equal weights of 0.25:  ${}^{3}A_{1}$ ,  ${}^{3}B_{1}$ ,  ${}^{3}B_{2}$ ,  ${}^{3}A_{2}$ 

| 1.62846725 ANGSTROM |
|---------------------|
| 1.69084681 ANGSTROM |
| 104.91145451 DEGREE |
|                     |

OPTG(RS2C) -1794.41644445

| 220 | 22 | 2a | а | 0.8955373  |
|-----|----|----|---|------------|
| 202 | 22 | 2a | а | -0.2598133 |
| a20 | 2a | 22 | 2 | -0.1773850 |
| 2ba | 22 | a2 | а | 0.1473950  |
| 2aa | 22 | 2a | b | -0.1454093 |
| 2ab | 22 | a2 | а | -0.1205321 |
| 2aa | 22 | 2b | а | 0.1096303  |
| 222 | 20 | 2a | а | -0.0524042 |
| 22a | 2b | aa | 2 | 0.0505131  |
|     |    |    |   |            |

# NATURAL ORBITALS FOR STATE 1.2 (ms2=2)

| Orbital | Occupation | Energy   | Coefficients    |                 |                 |                |                 |
|---------|------------|----------|-----------------|-----------------|-----------------|----------------|-----------------|
| 10.1    | 2.00000    | -0.69269 | 3 2pz 0.26431   | 3 2py 0.79291   |                 |                |                 |
| 11.1    | 2.00000    | -0.62277 | 3 2pz -0.86120  | 3 2py 0.30435   |                 |                |                 |
| 12.1    | 1.95825    | -0.72025 | 2 3d0 0.37890   | 2 3d2+ -0.89543 |                 |                |                 |
| 13.1    | 1.78012    | -0.60450 | 1 2pz 0.66841   | 2 2pz 0.25337   | 2 3d0 0.60315   | 2 3d2+ 0.25141 |                 |
| 14.1    | 0.24449    | -0.05040 | 1 2pz 0.72015   | 2 3d0 -0.69287  |                 |                |                 |
| 15.1    | -0.00000   | 0.05170  | 2 1s -0.55489   | 2 1s -1.85102   | 2 1s 0.42845    | 2 1s 2.86727   |                 |
| 16.1    | -0.00000   | 0.10415  | 2 1s 0.91578    | 2 1s -0.91259   | 2 2pz -2.72478  | 2 2pz 1.39984  | 2 2pz 2.39073   |
| 17.1    | -0.00000   | 0.22751  | 2 1s -1.15827   | 2 1s -5.35188   | 2 1s 1.16577    | 2 1s -0.33562  | 2 1s 4.94181    |
|         |            |          | 2 2pz -1.36100  | 2 2pz 0.66532   | 2 2pz 0.82471   | 2 3d2+ 0.28123 | 2 3d2+ -0.28379 |
|         |            |          | 3 1s 0.29855    | 3 2py -0.33645  |                 |                |                 |
| 18.1    | -0.00000   | 0.34299  | 2 1s 0.32031    | 2 2pz 5.05690   | 2 2pz -2.53390  | 2 2pz 0.35691  | 2 2pz -2.53149  |
|         |            |          | 2 3d0 -0.25919  | 2 3d0 0.91507   | 2 3d2+ -0.57790 |                |                 |
| 4.2     | 1.99177    | -0.77934 | 1 2px 0.58673   | 2 3d1+ -0.74872 |                 |                |                 |
| 5.2     | 1.95052    | -0.62223 | 1 2px -0.76339  | 2 3d1+ -0.66304 |                 |                |                 |
| 6.2     | -0.00000   | 0.08215  | 2 2px -1.33977  | 2 2px 0.87148   | 2 2px 1.63621   |                |                 |
| 7.2     | -0.00000   | 0.25731  | 2 2px 6.75407   | 2 2px -3.22926  | 2 2px 0.45294   | 2 2px -3.49528 |                 |
| 8.2     | -0.00000   | 0.38014  | 1 2px 0.26317   | 1 2px 0.36199   | 2 2px -1.19651  | 2 2px 0.57419  | 2 2px 0.50601   |
|         |            |          | 2 3d1+ -0.33621 | 2 3d1+ -0.27913 | 2 3d1+ 1.57746  |                |                 |
| 9.2     | -0.00000   | 0.83746  | 1 2px -0.55614  | 1 2px -0.48867  | 1 2px 1.85931   | 2 2px 1.33129  | 2 2px -1.31471  |
|         |            |          | 2 2px -0.69376  | 2 3d1+ 0.33638  | 2 3d1+ 0.26222  |                |                 |
| 5.3     | 2.00000    | -0.65022 | 2 2py -0.28255  | 2 2py 0.28985   | 3 2py -0.85935  | 3 2pz 0.27668  |                 |
| 6.3     | 2.00000    | -0.61764 | 3 2py 0.25894   | 3 2pz 0.88036   |                 |                |                 |
| 7.3     | 1.94824    | -0.72737 | 1 2py -0.30694  | 2 3d1- 0.91313  |                 |                |                 |
| 8.3     | 1.07744    | -0.36467 | 1 2py 0.94302   | 2 3d1- 0.37597  |                 |                |                 |
| 9.3     | -0.00000   | 0.13235  | 2 2py 3.03961   | 2 2py -1.50679  | 2 2py -2.61945  |                |                 |
| 10.3    | -0.00000   | 0.45475  | 1 2py -0.28489  | 2 2py 0.53758   | 2 2py 11.60866  | 2 2py -5.70143 | 2 2py 0.77132   |
|         |            |          | 2 2py -5.23324  | 3 1s -1.11931   | 3 2py 0.43963   |                |                 |
| 11.3    | -0.00000   | 0.50676  | 1 2py -0.25685  | 1 2py -0.32131  | 2 2py -1.84188  | 2 2py 0.78371  | 2 2py 0.78936   |
|         |            |          | 2 3d1- 0.30487  | 2 3d1- 0.33615  | 2 3d12.11295    | 3 1s 0.82495   | 3 2pz 0.34876   |
|         |            |          | 3 2py -0.32769  | 3 2pz 0.34019   |                 |                |                 |
| 12.3    | -0.00000   | 0.85771  | 1 2py -0.45172  | 1 2py -0.48043  | 1 2py 1.88652   | 2 2py 2.32063  | 2 2py -2.44515  |
|         |            |          | 2 2py 0.41057   | 2 2py -0.90080  | 2 3d1- 0.69605  | 3 2py -0.45156 |                 |
| 1.4     | 2.00000    | -0.63069 | 3 2px 0.91739   |                 |                 |                |                 |
| 2.4     | 1.04917    | -0.32777 | 2 3d20.99073    |                 |                 |                |                 |
| 3.4     | -0.00000   | 0.42251  | 2 3d20.33868    | 2 3d20.32116    | 2 3d2- 1.69160  | 3 2px -0.33352 | 3 2px -0.40783  |
| 4.4     | -0.00000   | 1.17010  | 2 3d20.61141    | 3 2px -0.56646  | 3 2px -0.48368  | 3 2px 1.85333  |                 |
| 5.4     | -0.00000   | 1.44049  | 2 3d2- 1.02870  | 2 3d2- 2.82057  | 2 3d2- 0.93098  | 2 3d23.17885   | 3 2px -0.29904  |
|         |            |          | 3 2px 0.54343   |                 |                 |                |                 |
| 6.4     | -0.00000   | 1.67333  | 1 3d2- 0.99908  | 2 3d20.33566    | 3 2px 0.46714   |                |                 |
|         |            |          |                 |                 |                 |                |                 |

### Table S7.4. ONiF<sub>2</sub> (C<sub>2v</sub>, <sup>3</sup>B<sub>2</sub>)

SA-CASSCF(12,8)/CASPT2/VTZ-DK

One state of each irrep was included in the state average formalism with equal weights of 0.25:  ${}^{3}A_{1}$ ,  ${}^{3}B_{1}$ ,  ${}^{3}B_{2}$ ,  ${}^{3}A_{2}$ 

\_

Optimized variables

\_

| 1.62227942 ANGSTROM |
|---------------------|
| 1.70008875 ANGSTROM |
| 107.16317080 DEGREE |
|                     |

OPTG(RS2C) -1794.41811465

| 2a0 | 22 | 2a | 2 | 0.9207864  |
|-----|----|----|---|------------|
| 0a2 | 22 | 2a | 2 | -0.2405264 |
| baa | 22 | a2 | 2 | 0.1765311  |
| aab | 22 | a2 | 2 | -0.1380549 |
| aba | 22 | 2a | 2 | 0.1230884  |
| aaa | 22 | 2b | 2 | -0.0810875 |
| 2a2 | 20 | 2a | 2 | -0.0508304 |

# NATURAL ORBITALS FOR STATE 1.3 (ms2=2)

| Orbital | Occupation | Energy   | Coefficients    |                 |                 |        |          |        |          |
|---------|------------|----------|-----------------|-----------------|-----------------|--------|----------|--------|----------|
| 10.1    | 2.00000    | -0.67989 | 3 2pz 0.28308   | 3 2py 0.78730   |                 |        |          |        |          |
| 11.1    | 2.00000    | -0.61782 | 3 2pz -0.85110  | 3 2py 0.32731   |                 |        |          |        |          |
| 12.1    | 1.80066    | -0.61183 | 1 2pz 0.66626   | 2 2pz 0.26224   | 2 3d0 0.64814   |        |          |        |          |
| 13.1    | 1.00660    | -0.31524 | 2 3d0 0.30226   | 2 3d2+ -0.91756 |                 |        |          |        |          |
| 14.1    | 0.21611    | -0.04361 | 1 2pz 0.70606   | 2 3d0 -0.68471  | 2 3d2+ -0.25809 |        |          |        |          |
| 15.1    | -0.00000   | 0.05247  | 2 1s -0.55886   | 2 1s -1.87154   | 2 1s 0.43495    | 2 1s   | 2.89734  |        |          |
| 16.1    | -0.00000   | 0.10545  | 2 1s 0.83479    | 2 1s -0.80932   | 2 2pz -2.72695  | 2 2pz  | 1.39518  | 2 2pz  | 2.39887  |
| 17.1    | -0.00000   | 0.22944  | 1 1s 0.25509    | 2 1s -1.16578   | 2 1s -5.38217   | 2 1s   | 1.16386  | 2 1s   | -0.33575 |
|         |            |          | 2 1s 4.94934    | 2 2pz -1.27583  | 2 2pz 0.62059   | 2 2pz  | 0.77586  | 2 3d2+ | 0.27589  |
|         |            |          | 2 3d2+ -0.28949 | 3 1s 0.30333    | 3 2py -0.33689  |        |          |        |          |
| 18.1    | -0.00000   | 0.34457  | 2 1s 0.27140    | 2 2pz 5.15752   | 2 2pz -2.56896  | 2 2pz  | 0.36053  | 2 2pz  | -2.57143 |
|         |            |          | 2 3d0 -0.25723  | 2 3d0 0.90870   | 2 3d2+ -0.60259 | 3 1s   | -0.26848 |        |          |
| 4.2     | 1.99712    | -0.75959 | 1 2px 0.74325   | 2 3d1+ -0.57673 |                 |        |          |        |          |
| 5.2     | 1.98477    | -0.67341 | 1 2px 0.60652   | 2 3d1+ 0.81544  |                 |        |          |        |          |
| 6.2     | -0.00000   | 0.07953  | 2 2px -1.24408  | 2 2px 0.82567   | 2 2px 1.58784   |        |          |        |          |
| 7.2     | -0.00000   | 0.25100  | 2 2px 6.70003   | 2 2px -3.18925  | 2 2px 0.44614   | 2 2px  | -3.48833 |        |          |
| 8.2     | -0.00000   | 0.37684  | 1 2px 0.26069   | 1 2px 0.37514   | 2 2px -1.13808  | 2 2px  | 0.54547  | 2 2px  | 0.48176  |
|         |            |          | 2 3d1+ -0.32846 | 2 3d1+ -0.26946 | 2 3d1+ 1.57868  |        |          |        |          |
| 9.2     | -0.00000   | 0.84176  | 1 2px -0.55061  | 1 2px -0.48945  | 1 2px 1.84844   | 2 2px  | 1.79346  | 2 2px  | -1.62887 |
|         |            |          | 2 2px 0.26754   | 2 2px -0.87465  | 2 3d1+ 0.35220  |        |          |        |          |
| 5.3     | 2.00000    | -0.64596 | 2 2py -0.29541  | 2 2py 0.30198   | 3 2py -0.87537  |        |          |        |          |
| 6.3     | 2.00000    | -0.60917 | 3 2pz 0.89923   |                 |                 |        |          |        |          |
| 7.3     | 1.94189    | -0.71142 | 1 2py 0.38247   | 2 3d10.87501    |                 |        |          |        |          |
| 8.3     | 1.05983    | -0.35447 | 1 2py 0.90715   | 2 3d1- 0.44980  |                 |        |          |        |          |
| 9.3     | -0.00000   | 0.13190  | 2 2py -3.02815  | 2 2py 1.50790   | 2 2py 2.61039   |        |          |        |          |
| 10.3    | -0.00000   | 0.44870  | 1 2py 0.29620   | 2 2py -0.51819  | 2 2py -11.28098 | 2 2py  | 5.53072  | 2 2py  | -0.74877 |
|         |            |          | 2 2py 5.10459   | 3 1s 1.04513    | 3 2py -0.41490  |        |          |        |          |
| 11.3    | -0.00000   | 0.50941  | 1 2py 0.30560   | 2 2py 2.75627   | 2 2py -1.20695  | 2 2py  | -1.18033 | 2 3d1- | -0.28333 |
|         |            |          | 2 3d10.31638    | 2 3d1- 2.11557  | 3 1s -1.01739   | 3 2pz  | -0.32338 | 3 2py  | 0.40269  |
|         |            |          | 3 2pz -0.28109  |                 |                 |        |          |        |          |
| 12.3    | -0.00000   | 0.86687  | 1 2py 0.44618   | 1 2py 0.47762   | 1 2py -1.85550  | 2 2py  | -2.93341 | 2 2py  | 2.78450  |
|         |            |          | 2 2py -0.45672  | 2 2py 1.14854   | 2 3d10.67290    | 3 2py  | 0.42367  |        |          |
| 1.4     | 2.00000    | -0.63202 | 3 2px 0.91885   |                 |                 |        |          |        |          |
| 2.4     | 1.99300    | -0.76749 | 2 3d20.98952    |                 |                 |        |          |        |          |
| 3.4     | -0.00000   | 0.41174  | 2 3d20.32776    | 2 3d20.28742    | 2 3d2- 1.64810  | 3 2px  | -0.32550 | 3 2px  | -0.40316 |
| 4.4     | -0.00000   | 1.15855  | 2 3d2- 0.62579  | 3 2px 0.56883   | 3 2px 0.48168   | 3 2px  | -1.81970 |        |          |
| 5.4     | -0.00000   | 1.40675  | 2 3d2- 1.03333  | 2 3d2- 2.82148  | 2 3d2- 0.92023  | 2 3d2- | -3.17973 | 3 2px  | -0.28988 |
|         |            |          | 3 2px 0.54019   |                 |                 |        |          |        |          |
| 6.4     | -0.00000   | 1.68110  | 1 3d2- 0.99917  | 2 3d20.33775    | 3 2px 0.45799   |        |          |        |          |
|         |            |          |                 |                 |                 |        |          |        |          |

### Table S7.5. ONiF<sub>2</sub> (*C*<sub>2v</sub>, <sup>3</sup>A<sub>2</sub>)

SA-CASSCF(12,8)/CASPT2/VTZ-DK

One state of each irrep was included in the state average formalism with equal weights of 0.25:  ${}^{3}A_{1}$ ,  ${}^{3}B_{1}$ ,  ${}^{3}B_{2}$ ,  ${}^{3}A_{2}$ 

Optimized variables

| NiO= | 1.61334849 ANGSTROM |
|------|---------------------|
| NiF= | 1.69730988 ANGSTROM |
| A1=  | 106.14936968 DEGREE |

OPTG(RS2C) -1794.44540863

| 220 | 2a | 2a | 2 | 0.8846321  |
|-----|----|----|---|------------|
| 220 | a2 | a2 | 2 | -0.2089927 |
| 202 | 2a | 2a | 2 | -0.1747528 |
| 2ba | 2a | a2 | 2 | 0.1494223  |
| 2ab | 2a | a2 | 2 | -0.1321089 |
| 2ba | a2 | 2a | 2 | 0.1306030  |
| 202 | a2 | a2 | 2 | 0.1297548  |
| 2ab | a2 | 2a | 2 | -0.1073386 |
| 2aa | b2 | 2a | 2 | -0.0632194 |
| 022 | 2a | 2a | 2 | -0.0627763 |
| 22b | aa | 22 | а | -0.0583334 |
| 202 | a2 | 2a | 2 | 0.0574001  |
| 22a | 20 | 22 | а | -0.0562372 |
| 2aa | 2b | 2a | 2 | 0.0556615  |
| 2aa | 2a | b2 | 2 | -0.0546472 |
| 222 | 2a | 2a | 0 | -0.0543905 |
|     |    |    |   |            |

### NATURAL ORBITALS FOR STATE 1.4 (ms2=2)

| Orbita | l Occupatio | n Energy | Coefficients    |                 |                 |                |                |
|--------|-------------|----------|-----------------|-----------------|-----------------|----------------|----------------|
| 10.1   | 2.00000     | -0.68025 | 3 2pz 0.27370   | 3 2py 0.78957   |                 |                |                |
| 11.1   | 2.00000     | -0.61603 | 3 2pz -0.85631  | 3 2py 0.31582   |                 |                |                |
| 12.1   | 1.97836     | -0.73346 | 2 3d0 0.61357   | 2 3d2+ -0.75862 |                 |                |                |
| 15.1   | -0.00000    | 0.05263  | 2 1s -0.56483   | 2 1s -1.89512   | 2 1s 0.43518    | 2 1s 2.91423   |                |
| 16.1   | -0.00000    | 0.10340  | 2 1s 0.82638    | 2 1s -0.78125   | 2 2pz -2.68984  | 2 2pz 1.37822  | 2 2pz 2.37925  |
| 17.1   | -0.00000    | 0.23123  | 1 1s 0.27261    | 2 1s -1.17174   | 2 1s -5.41100   | 2 1s 1.18393   | 2 1s -0.34044  |
|        |             |          | 2 1s 4.98085    | 2 2pz -1.26251  | 2 2pz 0.60917   | 2 2pz 0.78393  | 2 3d2+ 0.27615 |
|        |             |          | 2 3d2+ -0.28952 | 3 1s 0.29620    | 3 2py -0.33671  |                |                |
| 18.1   | -0.00000    | 0.34126  | 2 1s 0.39043    | 2 2pz 5.12354   | 2 2pz -2.56783  | 2 2pz 0.36115  | 2 2pz -2.55230 |
|        |             |          | 2 3d0 -0.25105  | 2 3d0 0.89093   | 2 3d2+ -0.58756 |                |                |
| 4.2    | 1.88583     | -0.65664 | 1 2px 0.73485   | 2 3d1+ -0.58651 |                 |                |                |
| 5.2    | 1.11121     | -0.38858 | 1 2px 0.61538   | 2 3d1+ 0.80847  |                 |                |                |
| 6.2    | -0.00000    | 0.08320  | 2 2px -1.39722  | 2 2px 0.89285   | 2 2px 1.66988   |                |                |
| 7.2    | -0.00000    | 0.26131  | 2 2px 6.82390   | 2 2px -3.27915  | 2 2px 0.45971   | 2 2px -3.50721 |                |
| 8.2    | -0.00000    | 0.38298  | 1 2px 0.26401   | 1 2px 0.37239   | 2 2px -1.34562  | 2 2px 0.66128  | 2 2px 0.57578  |
|        |             |          | 2 3d1+ -0.33730 | 2 3d1+ -0.29805 | 2 3d1+ 1.60236  |                |                |
| 9.2    | -0.00000    | 0.83282  | 1 2px -0.55021  | 1 2px -0.49201  | 1 2px 1.86828   | 2 2px 1.41577  | 2 2px -1.38168 |
|        |             |          | 2 2px -0.72629  | 2 3d1+ 0.34181  | 2 3d1+ 0.26718  |                |                |
| 5.3    | 2.00000     | -0.64213 | 2 2py -0.29168  | 2 2py 0.29822   | 3 2py -0.86664  |                |                |
| 6.3    | 2.00000     | -0.60787 | 3 2pz 0.89022   |                 |                 |                |                |
| 7.3    | 1.88732     | -0.67962 | 1 2py 0.55659   | 2 3d10.76725    |                 |                |                |
| 8.3    | 1.12247     | -0.39710 | 1 2py 0.81192   | 2 3d1- 0.61682  |                 |                |                |
| 9.3    | -0.00000    | 0.13270  | 2 2py -3.06052  | 2 2py 1.51948   | 2 2py 2.62615   |                |                |
| 10.3   | -0.00000    | 0.45577  | 1 2py -0.28911  | 2 2py 0.52569   | 2 2py 11.47138  | 2 2py -5.64645 | 2 2py 0.76554  |
|        |             |          | 2 2py -5.17679  | 3 1s -1.06456   | 3 2py 0.42138   |                |                |
| 11.3   | -0.00000    | 0.50822  | 1 2py 0.25703   | 1 2py 0.29426   | 2 2py 2.50818   | 2 2py -1.09394 | 2 2py -1.07339 |
|        |             |          | 2 3d10.29089    | 2 3d10.32936    | 2 3d1- 2.10998  | 3 1s -0.94640  | 3 2pz -0.33044 |
|        |             |          | 3 2py 0.37580   | 3 2pz -0.30535  |                 |                |                |
| 12.3   | -0.00000    | 0.85606  | 1 2py 0.45652   | 1 2py 0.47597   | 1 2py -1.90640  | 2 2py -2.25603 | 2 2py 2.36190  |
|        |             |          | 2 2py -0.39613  | 2 2py 0.88996   | 2 3d10.72168    | 3 2py 0.40867  |                |
| 1.4    | 2.00000     | -0.62815 | 3 2px 0.91832   |                 |                 |                |                |
| 2.4    | 1.97156     | -0.71737 | 2 3d20.98936    |                 |                 |                |                |
| 3.4    | -0.00000    | 0.41964  | 2 3d20.33281    | 2 3d20.30347    | 2 3d2- 1.66901  | 3 2px -0.32856 | 3 2px -0.40626 |
| 4.4    | -0.00000    | 1.16613  | 2 3d20.61512    | 3 2px -0.56738  | 3 2px -0.48176  | 3 2px 1.82851  |                |
| 5.4    | -0.00000    | 1.42658  | 2 3d2- 1.02908  | 2 3d2- 2.81353  | 2 3d2- 0.91982  | 2 3d23.17538   | 3 2px -0.29429 |
|        |             |          | 3 2px 0.54665   |                 |                 |                |                |
| 6.4    | -0.00000    | 1.66250  | 1 3d2- 0.99719  | 2 3d20.30747    | 3 2px 0.47539   |                |                |

### Table S7.6. ONiF<sub>2</sub> (C<sub>2v</sub>, <sup>3</sup>A<sub>2</sub>)

CASSCF(12,8)/CASPT2/VTZ-DK (State specific reference wavefunction) Optimization and normal mode calculation carried out in C<sub>1</sub> point group symmetry. NiO= 1.60065022 ANGSTROM NiF= 1.69444611 ANGSTROM

A1= 107.85986869 DEGREE

#### PSEUDO CANONICAL ORBITALS

| 2.00000<br>2.00000<br>2.00000<br>2.00000 | -308.87462<br>-38.74149<br>-33.21709                                                                                                                                                                                                                                                         | 2 1s<br>2 1s                                         | 0.99248<br>0.99241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 2.00000<br>2.00000<br>2.00000            | -38.74149<br>-33.21709                                                                                                                                                                                                                                                                       | 2 1s                                                 | 0 992/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000<br>2.00000                       | -33,21709                                                                                                                                                                                                                                                                                    |                                                      | 0.77241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  |                                                                                                                                                                                                                                                                                              | 2 2pz                                                | 0.99995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
|                                          | -33.20500                                                                                                                                                                                                                                                                                    | 2 2py                                                | 0.99996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -33.18995                                                                                                                                                                                                                                                                                    | 2 2px                                                | 0.99995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -26.27000                                                                                                                                                                                                                                                                                    | 3 1s                                                 | 0.70657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                    | 1s                                                   | -0.70656                                             |                                                      |                                                      |                                                      |
| 2.00000                                  | -26.26999                                                                                                                                                                                                                                                                                    | 3 1s                                                 | 0.70654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                    | 1s                                                   | 0.70655                                              |                                                      |                                                      |                                                      |
| 2.00000                                  | -20.77408                                                                                                                                                                                                                                                                                    | 1 1s                                                 | 0.99912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -5.06522                                                                                                                                                                                                                                                                                     | 2 1s                                                 | 0.99065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -3.42727                                                                                                                                                                                                                                                                                     | 2 2pz                                                | 0.99636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -3.41480                                                                                                                                                                                                                                                                                     | 2 2py                                                | 0.99735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -3.40206                                                                                                                                                                                                                                                                                     | 2 2px                                                | 0.99957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -1.53148                                                                                                                                                                                                                                                                                     | 3 1s                                                 | 0.66532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                    | 1s                                                   | 0.66532                                              |                                                      |                                                      |                                                      |
| 2.00000                                  | -1.52171                                                                                                                                                                                                                                                                                     | 3 1s                                                 | 0.67110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                    | 1s                                                   | -0.67110                                             |                                                      |                                                      |                                                      |
| 2.00000                                  | -1.38502                                                                                                                                                                                                                                                                                     | 1 1s                                                 | 0.98287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -0.68427                                                                                                                                                                                                                                                                                     | 3 2py                                                | 0.54300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                    | 2py                                                  | -0.54300                                             |                                                      |                                                      |                                                      |
| 2.00000                                  | -0.64205                                                                                                                                                                                                                                                                                     | 2 2py                                                | -0.29144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                    | 2py                                                  | 0.29802                                              | 3                                                    | 2py                                                  | -0.62588                                             |
|                                          |                                                                                                                                                                                                                                                                                              | 4 2py                                                | -0.62588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -0.62496                                                                                                                                                                                                                                                                                     | 3 2px                                                | 0.65461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                    | 2px                                                  | -0.65461                                             |                                                      |                                                      |                                                      |
| 2.00000                                  | -0.61649                                                                                                                                                                                                                                                                                     | 3 2py                                                | 0.25937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                    | 2pz                                                  | -0.58844                                             | 4                                                    | 2py                                                  | -0.25937                                             |
|                                          |                                                                                                                                                                                                                                                                                              | 4 2pz                                                | -0.58844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | •                                                    |                                                      |                                                      |                                                      |                                                      |
| 2.00000                                  | -0.61582                                                                                                                                                                                                                                                                                     | 3 2px                                                | 0.65169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                    | 2px                                                  | 0.65169                                              |                                                      |                                                      |                                                      |
| 2.00000                                  | -0.60517                                                                                                                                                                                                                                                                                     | 3 2pz                                                | 0.64126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                    | 2pz                                                  | -0.64126                                             |                                                      |                                                      |                                                      |
| 1.97105                                  | -0.78225                                                                                                                                                                                                                                                                                     | 1 2pz                                                | 0.26043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                    | 3d0                                                  | 0.66211                                              | 2                                                    | 3d2+                                                 | -0.64394                                             |
| 1.98090                                  | -0.72439                                                                                                                                                                                                                                                                                     | 2 3d2-                                               | -0.99709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| 1.88561                                  | -0.68633                                                                                                                                                                                                                                                                                     | 1 2py                                                | 0.51591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                    | 3d1-                                                 | -0.79930                                             |                                                      |                                                      |                                                      |
| 1.88427                                  | -0.66110                                                                                                                                                                                                                                                                                     | 1 2px                                                | 0.66247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                    | 3d1+                                                 | -0.66911                                             |                                                      |                                                      |                                                      |
| 1.81922                                  | -0.61965                                                                                                                                                                                                                                                                                     | 1 2pz                                                | -0.76619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                    | 3d2+                                                 | -0.53021                                             |                                                      |                                                      |                                                      |
| 1.12004                                  | -0.39123                                                                                                                                                                                                                                                                                     | 1 2py                                                | 0.84344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                    | 3d1-                                                 | 0.57562                                              |                                                      |                                                      |                                                      |
| 1.11111                                  | -0.38485                                                                                                                                                                                                                                                                                     | 1 2px                                                | 0.71454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                    | 3d1+                                                 | 0.73900                                              |                                                      |                                                      |                                                      |
| 0.22780                                  | 0.00657                                                                                                                                                                                                                                                                                      | 1 2pz                                                | -0.64716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                    | 3d0                                                  | 0.70291                                              | 2                                                    | 3d2+                                                 | 0.42539                                              |
| -0.00000                                 | 0.05447                                                                                                                                                                                                                                                                                      | 2 1s                                                 | -0.58431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                    | 1s                                                   | -1.98008                                             | 2                                                    | 1s                                                   | 0.44597                                              |
|                                          |                                                                                                                                                                                                                                                                                              | 2 1s                                                 | 2.99393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| -0.00000                                 | 0.08392                                                                                                                                                                                                                                                                                      | 2 2px                                                | -1.43258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                    | 2рх                                                  | 0.91086                                              | 2                                                    | 2рх                                                  | 1.68801                                              |
| -0.00000                                 | 0.10477                                                                                                                                                                                                                                                                                      | 2 1s                                                 | 0.63754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                    | 1s                                                   | -0.52807                                             | 2                                                    | 2pz                                                  | -2.72599                                             |
|                                          |                                                                                                                                                                                                                                                                                              | 2 2pz                                                | 1.39148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
|                                          |                                                                                                                                                                                                                                                                                              | 2 2pz                                                | 2.40275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                      |                                                      |                                                      |                                                      |                                                      |
| -0.00000                                 | 0.13167                                                                                                                                                                                                                                                                                      | 2 2py                                                | -3.06290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                    | 2py                                                  | 1.51928                                              | 2                                                    | 2ру                                                  | 2.62372                                              |
|                                          | 2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>2.00000<br>1.97105<br>1.98090<br>1.88561<br>1.88427<br>1.81922<br>1.12004<br>1.11111<br>0.22780<br>-0.00000<br>-0.00000 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2.00000 -33.20500 2 2py<br>2.00000 -33.18995 2 2px<br>2.00000 -26.27000 3 1s<br>2.00000 -26.26999 3 1s<br>2.00000 -5.06522 2 1s<br>2.00000 -3.42727 2 2pz<br>2.00000 -3.41480 2 2py<br>2.00000 -3.40206 2 2px<br>2.00000 -1.53148 3 1s<br>2.00000 -1.52171 3 1s<br>2.00000 -0.68427 3 2py<br>2.00000 -0.64205 2 2py<br>4 2py<br>2.00000 -0.61582 3 2px<br>2.00000 -0.61582 3 2px<br>2.00000 -0.61582 3 2px<br>2.00000 -0.66157 3 2pz<br>1.97105 -0.78225 1 2pz<br>1.98090 -0.72439 2 3d2-<br>1.88561 -0.68633 1 2py<br>1.88427 -0.66110 1 2px<br>1.81922 -0.61965 1 2pz<br>1.12004 -0.39123 1 2py<br>1.11111 -0.38485 1 2px<br>0.22780 0.00657 1 2pz<br>-0.00000 0.13167 2 2py | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

## CI vector

| 22222aa0 | 0.8837864  |
|----------|------------|
| 22aa2220 | -0.2073761 |
| 22220aa2 | -0.1516064 |
| 22a2b2aa | 0.1441517  |
| 22a2a2ab | -0.1332465 |
| 222aba2a | -0.1286885 |
| 22aa0222 | 0.1199331  |
| 222aaa2b | 0.1080996  |

=

| 2222aaab       -0.09         2222baaa       0.08         a22a2a2b       0.06         b22a2a2a       -0.06         02222aa2       -0.06         222baa2a       0.05 | 17411<br>77084<br>79282<br>66418<br>31732<br>82711   |                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Gradient norm at referen<br>Atomic masses<br>Center Mass<br>O 15.99491<br>Ni 57.93530<br>F 18.99840<br>F 18.99840                                                  | ce geometry: 0.29822D-04                             |                                                      |
| <sup>16</sup> O <sup>58</sup> NiF <sub>2</sub><br>Wavenumbers [cm <sup>-1</sup> ]<br>Intensities [km/mol]<br>Intensities [relative]                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| <sup>16</sup> O <sup>60</sup> NiF <sub>2</sub><br>Wavenumbers [cm <sup>-1</sup> ]<br>Intensities [km/mol]<br>Intensities [relative]                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| <sup>16</sup> O <sup>62</sup> NiF <sub>2</sub><br>Wavenumbers [cm <sup>-1</sup> ]<br>Intensities [km/mol]<br>Intensities [relative]                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| <sup>18</sup> O <sup>58</sup> NiF <sub>2</sub><br>Wavenumbers [cm <sup>-1</sup> ]<br>Intensities [km/mol]<br>Intensities [relative]                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| <sup>18</sup> O <sup>60</sup> NiF <sub>2</sub><br>Wavenumbers [cm <sup>-1</sup> ]<br>Intensities [km/mol]<br>Intensities [relative]                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| <sup>18</sup> O <sup>62</sup> NiF <sub>2</sub><br>Wavenumbers [cm <sup>-1</sup> ]<br>Intensities [km/mol]<br>Intensities [relative]                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| Spin population: | Individual | basis | function | populations: |
|------------------|------------|-------|----------|--------------|
| Symmetry no. 1   |            |       |          |              |

| 1 1s     | 1 1s              | 1 1s     | 1 1s              | 1 2px             | 1 2py            | 1 2pz             | 1 2px    | 1 2py    | 1 2pz    |
|----------|-------------------|----------|-------------------|-------------------|------------------|-------------------|----------|----------|----------|
| 0.00000  | 0.00012           | -0.00000 | 0.00005           | 0.44611           | 0.57322          | 0.00960           | 0.00356  | 0.00568  | 0.00004  |
| 1 2px    | 1 2py             | 1 2pz    | 1 3d0             | 1 3d2-            | 1 3d1+           | 1 3d2+            | 1 3d1-   | 1 3d0    | 1 3d2-   |
| 0.00063  | -0.00514          | -0.00060 | 0.00000           | 0.00000           | 0.00002          | 0.00000           | 0.00001  | 0.00002  | 0.00000  |
| 1 3d1+   | 1 3d2+<br>0 00000 | 1 3d1-   | 1 4f1+<br>0 00002 | 1 4f1-<br>0 00001 | 1 4f0<br>0 00000 | 1 4f3+<br>0 00000 | 1 4f2-   | 1 4f3-   | 1 4f2+   |
| 2 1s     | 2 1s              | 2 1s     | 2 1s              | 2 1s              | 2 1s             | 2 1s              | 2 2px    | 2 2pv    | 2 2pz    |
| 0.00000  | 0.00010           | -0.00027 | -0.00005          | 0.00000           | 0.00000          | -0.00000          | -0.00000 | 0.00000  | 0.00000  |
| 2 2px    | 2 2py             | 2 2pz    | 2 2px             | 2 2py             | 2 2pz            | 2 2px             | 2 2py    | 2 2pz    | 2 2px    |
| 0.00005  | 0.00007           | 0.00006  | -0.00852          | -0.00491          | -0.00037         | 0.00768           | 0.00216  | 0.00042  | 0.00040  |
| 2 2py    | 2 2pz             | 2 2px    | 2 2py             | 2 2pz             | 2 3d0            | 2 3d2-            | 2 3d1+   | 2 3d2+   | 2 3d1-   |
| 2 240    | 2 242             | 2 2d1+   | 2 242+            | 2 241             | 2 340            | 2 242             | 2 2d1+   | 2 242+   | 2 241    |
| 0.00148  | 0.00014           | 0.03145  | 0.00003           | 0.04499           | -0.00005         | 0.00001           | 0.00310  | -0.00001 | 0.00363  |
| 2 3d0    | 2 3d2-            | 2 3d1+   | 2 3d2+            | 2 3d1-            | 2 4f1+           | 2 4f1-            | 2 4f0    | 2 4f3+   | 2 4f2-   |
| 0.00015  | -0.00002          | -0.00312 | -0.00011          | -0.00795          | 0.00000          | 0.00000           | 0.00000  | 0.00000  | 0.00000  |
| 2 4f3-   | 2 4f2+            | 2 4f1+   | 2 4f1-            | 2 4f0             | 2 4f3+           | 2 4f2-            | 2 4f3-   | 2 4f2+   | 2 5g0    |
| 0.00000  | 0.00000           | 0.00031  | 0.00046           | 0.00001           | 0.00001          | 0.00000           | 0.00004  | -0.00000 | -0.00000 |
| 2 5g2-   | 2 5g1+            | 2 5g4+   | 2 5g1-            | 2 5g2+            | 2 5g4-           | 2 5g3+            | 2 5g3-   | 3 1s     | 3 1s     |
| 0.00000  | -0.00000          | 0.00000  | -0.00000          | -0.00000          | 0.00000          | 0.00000           | -0.00000 | 0.00000  | 0.00028  |
| 3 1s     | 3 1s              | 3 2px    | 3 2py             | 3 2pz             | 3 2px            | 3 2py             | 3 2pz    | 3 2px    | 3 2py    |
| -0.00000 | -0.00008          | 0.00233  | 0.01121           | 0.00047           | -0.00002         | 0.00024           | -0.00001 | 0.00006  | 0.00070  |
| 3 2pz    | 3 3d0             | 3 3d2-   | 3 3d1+            | 3 3d2+            | 3 3d1-           | 3 3d0             | 3 3d2-   | 3 3d1+   | 3 3d2+   |
| -0.00003 | 0.00000           | 0.00000  | 0.00000           | 0.00000           | 0.00000          | 0.00002           | 0.00000  | 0.00000  | -0.00002 |
| 3 3d1-   | 3 4f1+            | 3 4f1-   | 3 4f0             | 3 4f3+            | 3 4f2-           | 3 4f3-            | 3 4f2+   | 4 1s     | 4 1s     |
| 0.00002  | 0.00000           | 0.00000  | 0.00000           | 0.00000           | 0.00000          | 0.00000           | 0.00000  | 0.00000  | 0.00028  |
| 4 1s     | 4 1s              | 4 2px    | 4 2py             | 4 2pz             | 4 2px            | 4 2py             | 4 2pz    | 4 2px    | 4 2py    |
| -0.00000 | -0.00008          | 0.00233  | 0.01121           | 0.00047           | -0.00002         | 0.00024           | -0.00001 | 0.00006  | 0.00070  |
| 4 2pz    | 4 3d0             | 4 3d2-   | 4 3d1+            | 4 3d2+            | 4 3d1-           | 4 3d0             | 4 3d2-   | 4 3d1+   | 4 3d2+   |
|          | 0 00000           | 0 00000  | 0 00000           | 0 00000           | 0 00000          | 0 00007           | 0 00000  | 0 00000  | -0 0000  |
| 4 3d1-   | 4 4f1+            | 4 4f1-   | 4 4f0             | 4 4f3+            | 4 4f2-           | 4 4f3-            | 4 4f2+   | 0.00000  | 0.00002  |
| 0.00002  | 0.00000           | 0.00000  | 0.00000           | 0.00000           | 0.00000          | 0.00000           | 0.00000  |          |          |

| Population analysis by basis function type |         |          |         |          |         |          |         |           |
|--------------------------------------------|---------|----------|---------|----------|---------|----------|---------|-----------|
| Uniq                                       | ue atom | S        | р       | d        | f       | g        | Total   | Charge    |
| 1                                          | 0       | 0.00017  | 1.03309 | -0.00065 | 0.00003 | 0.00000  | 1.03263 | +6.96737  |
| 2                                          | Ni      | -0.00023 | 0.00263 | 0.93375  | 0.00083 | -0.00000 | 0.93698 | +27.06302 |
| 3                                          | F       | 0.00020  | 0.01496 | 0.00003  | 0.00001 | 0.00000  | 0.01519 | +8.98481  |
| 4                                          | F       | 0.00020  | 0.01496 | 0.00003  | 0.00001 | 0.00000  | 0.01519 | +8.98481  |

Spin density plots of  $ONiF_2$  (<sup>3</sup>A<sub>2</sub>; iso-surface = 0.05 electron a.u.<sup>-3</sup>)



| AIM Char   | :ge:             |                              |
|------------|------------------|------------------------------|
| Total resu | lt:              |                              |
| #Basin     | Integral(a.u.)   | Vol(Bohr^3) Vol(rho > 0.001) |
| 1          | 8.2788193535     | 1208.853 116.755             |
| 2          | 26.1908143122    | 309.992 78.373               |
| 3          | 9.7649091561     | 1115.337 123.987             |
| 4          | 9.7649092619     | 1115.347 123.987             |
| Sum of ab  | ove integrals:   | 53.99945208                  |
| Sum of ba  | sin volumes (rho | > 0.001): 443.103 Bohr^3     |

Normalization factor of the integral of electron density is 0.999990 The atomic charges after normalization and atomic volumes:

| 1(0)   | Charge: | -0.278903 | Volume: | 116.755 Bohr^3 |
|--------|---------|-----------|---------|----------------|
| 2 (Ni) | Charge: | 1.808920  | Volume: | 78.373 Bohr^3  |
| 3 (F)  | Charge: | -0.765008 | Volume: | 123.987 Bohr^3 |
| 4 (F ) | Charge: | -0.765008 | Volume: | 123.987 Bohr^3 |

Summary of Natural Population Analysis:

| Summary of Natural Population Analysis. |                  |                                             |                                           |                                                                          |                                           |  |  |
|-----------------------------------------|------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|--|--|
| Natural Population                      |                  |                                             |                                           |                                                                          |                                           |  |  |
| Atom No                                 |                  | Natural<br>Charge                           | Core                                      | Valence Rydberg                                                          | Total                                     |  |  |
| O<br>Ni<br>F                            | 1<br>2<br>3<br>4 | -0.22559<br>1.81370<br>-0.79406<br>-0.79406 | 2.00000<br>17.99892<br>2.00000<br>2.00000 | 6.21413 0.01146<br>8.13876 0.04862<br>7.78546 0.00860<br>7.78546 0.00860 | 8.22559<br>26.18630<br>9.79406<br>9.79406 |  |  |
| <br>Tot                                 | <br>al           | 0.00000                                     | 23.99891                                  | 29.92381 0.07728                                                         | 54.00000                                  |  |  |

### Table S7.7. ONiF<sub>2</sub> (*C*<sub>2v</sub>, <sup>5</sup>A<sub>1</sub>)

SA-CASSCF(12,9)/CASPT2/VTZ-DK With equal weights of 0.5: <sup>5</sup>A<sub>1</sub>, <sup>5</sup>A<sub>2</sub>

Optimized variables

| optimized | variables           |
|-----------|---------------------|
| NiO=      | 1.72522963 ANGSTROM |
| NiF=      | 1.71334104 ANGSTROM |
| A1=       | 110.67700622 DEGREE |

OPTG(RS2C) -1794.59535611

| 22a0 | 2a | 2a | а | 0.8971782  |
|------|----|----|---|------------|
| 2a20 | 2a | a2 | а | -0.2071621 |
| 22a0 | a2 | a2 | а | 0.1928959  |
| 22a0 | a2 | 2a | а | -0.1543252 |
| 22a0 | 2a | a2 | а | 0.1542808  |
| 2a20 | a2 | 2a | а | 0.1239580  |
| a2a0 | aa | 22 | 2 | -0.1188943 |
| 2a20 | 2a | 2a | а | 0.1006073  |
| a220 | a2 | 2a | а | 0.0576828  |
| 2aa0 | 22 | aa | 2 | -0.0524862 |
|      |    |    |   |            |

NATURAL ORBITALS FOR STATE 1.1 (ms2=4)

| 10.1 | 2.00000  | -0.68549 | 3 2pz 0.41982   | 3 2py 0.73395   |                 |                 |                 |
|------|----------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 11.1 | 2.00000  | -0.61730 | 3 2pz -0.79337  | 3 2py 0.44818   |                 |                 |                 |
| 12.1 | 1.98144  | -0.76956 | 2 3d0 -0.30020  | 2 3d2+ 0.92351  |                 |                 |                 |
| 13.1 | 1.90996  | -0.71005 | 1 2pz -0.76664  | 2 2pz -0.31356  | 2 2pz 0.27523   | 2 3d0 -0.51188  |                 |
| 14.1 | 1.07305  | -0.33662 | 1 2pz 0.54933   | 2 3d0 -0.79138  | 2 3d2+ -0.25414 |                 |                 |
| 15.1 | 0.01927  | 0.77403  | 1 1s 0.29617    | 1 2pz 1.08964   | 1 2pz -0.65922  | 2 1s -0.32643   | 2 1s -0.40141   |
|      |          |          | 2 1s -0.28343   | 2 2pz -1.52019  | 2 2pz 1.52889   | 2 2pz 0.47932   | 2 3d0 -0.51900  |
|      |          |          | 2 3d2+ -0.35197 | 2 3d0 0.39947   | ·               | •               |                 |
| 16.1 | -0.00000 | 0.06904  | 2 1s -0.76024   | 2 1s -2.89060   | 2 1s 0.57830    | 2 1s 3.71199    | 2 2pz 0.90948   |
|      |          |          | 2 2pz -0.38100  | 2 2pz -0.73650  |                 |                 |                 |
| 17.1 | -0.00000 | 0.11213  | 2 1s -0.66133   | 2 1s 0.82795    | 2 2pz -2.46120  | 2 2pz 1.33853   | 2 2pz 2.24666   |
| 18.1 | -0.00000 | 0.31798  | 2 1s 0.73361    | 2 1s 3.47543    | 2 1s -0.93310   | 2 1s 0.25882    | 2 1s -3.28523   |
|      |          |          | 2 2pz 5.60612   | 2 2pz -2.60004  | 2 2pz 0.36065   | 2 2pz -2.75701  | 2 3d0 0.30465   |
|      |          |          | 3 1s -0.31938   | 3 2py 0.32359   | 3 2py 0.25223   | ·               |                 |
| 19.1 | -0.00000 | 0.37987  | 1 1s 0.93684    | 1 2pz 0.26766   | 2 1s -0.25298   | 2 1s -1.00952   | 2 2pz 1.57684   |
|      |          |          | 2 2pz -0.59123  | 2 2pz -0.59611  | 2 3d0 -1.07625  | 2 3d2+ 1.15945  | 3 1s 0.41851    |
| 4.2  | 1.90802  | -0.71214 | 1 2px 0.38108   | 2 3d1+ -0.88734 |                 |                 |                 |
| 5.2  | 1.07920  | -0.38838 | 1 2px 0.90221   | 2 3d1+ 0.44912  |                 |                 |                 |
| 6.2  | -0.00000 | 0.07790  | 2 2px -1.19482  | 2 2px 0.80362   | 2 2px 1.56073   |                 |                 |
| 7.2  | -0.00000 | 0.24572  | 2 2px -6.65568  | 2 2px 3.16527   | 2 2px -0.44431  | 2 2px 3.48339   |                 |
| 8.2  | -0.00000 | 0.38098  | 1 2px 0.30836   | 2 2px -0.54047  | 2 2px 0.28965   | 2 3d1+ -0.35425 | 2 3d1+ -0.28574 |
|      |          |          | 2 3d1+ 1.57775  |                 |                 |                 |                 |
| 9.2  | -0.00000 | 0.82628  | 1 2px -0.54569  | 1 2px -0.50225  | 1 2px 1.80748   | 2 2px 0.75384   | 2 2px -0.82580  |
|      |          |          | 2 2px -0.47369  | 2 3d1+ 0.27890  | 2 3d1+ 0.28616  |                 |                 |
| 5.3  | 2.00000  | -0.64572 | 2 2py -0.33638  | 2 2py 0.34490   | 3 2py -0.88972  |                 |                 |
| 6.3  | 2.00000  | -0.60909 | 3 2pz 0.92304   |                 |                 |                 |                 |
| 7.3  | 1.89097  | -0.65632 | 1 2py -0.57289  | 2 3d1- 0.75395  |                 |                 |                 |
| 8.3  | 1.11840  | -0.40054 | 1 2py 0.78518   | 2 3d1- 0.62597  |                 |                 |                 |
| 9.3  | -0.00000 | 0.12927  | 2 2py -2.97662  | 2 2py 1.49406   | 2 2py 2.57616   |                 |                 |
| 10.3 | -0.00000 | 0.42289  | 1 2py -0.26703  | 2 2py 0.43138   | 2 2py 9.83681   | 2 2py -4.82202  | 2 2py 0.65717   |
|      |          |          | 2 2py -4.53041  | 2 3d10.52199    | 3 1s -0.74346   | 3 2py 0.30673   | 3 2pz 0.28682   |
| 11.3 | -0.00000 | 0.51576  | 2 2py 0.31643   | 2 2py 5.35474   | 2 2py -2.44686  | 2 2py 0.30699   | 2 2py -2.30988  |
|      |          |          | 2 3d10.26263    | 2 3d1- 2.01259  | 3 1s -1.37843   | 3 2py 0.54418   |                 |
| 12.3 | -0.00000 | 0.85829  | 1 2py -0.49018  | 1 2py -0.47711  | 1 2py 1.79747   | 2 2py 2.86562   | 2 2py -2.42527  |
|      |          |          | 2 2py 0.38861   | 2 2py -1.19713  | 2 3d1- 0.70044  | 3 2py -0.26824  |                 |
| 2.4  | 1.01970  | -0.34299 | 2 3d20.98378    |                 |                 |                 |                 |
| 3.4  | -0.00000 | 0.40719  | 2 3d2- 0.33240  | 2 3d2- 0.30781  | 2 3d21.65051    | 3 2px 0.31542   | 3 2px 0.39686   |
| 4.4  | -0.00000 | 1.14559  | 2 3d2- 0.50577  | 3 2px 0.58650   | 3 2px 0.48260   | 3 2px -1.79801  |                 |
| 5.4  | -0.00000 | 1.42690  | 2 3d2- 1.05907  | 2 3d2- 2.86748  | 2 3d2- 0.94627  | 2 3d23.16503    | 3 2px -0.26125  |
|      |          |          | 3 2px 0.42478   |                 |                 |                 |                 |
| 6.4  | -0.00000 | 1.66328  | 1 3d2- 1.00332  | 2 3d20.41851    | 3 2px 0.43579   |                 |                 |

Symmetry no. 1 1 1s 1 1s 1 1s 1 1s 1 2pz 1 2pz 1 2pz 1 3d0 1 3d2+ 1 3d0 0.00000 0.00144 -0.00001 -0.00004 0.29911 0.00377 -0.00167 0.00003 -0.00000 0.00003 1 3d2+ 1 4f0 1 4f2+ 2 1s -0.00002 0.00009 -0.00000 -0.00000 -0.00002 -0.00853 -0.00030 0.00012 -0.00000 0.00043 2 2pz 2 2pz 2 3d0 2 3d2+ 2 3d0 2 3d2+ 2 2pz 2 2pz 2 2pz 2 2pz 0.00000 0.00033 -0.02179 0.03714 -0.00153 -0.00076 0.53871 0.06347 0.03521 0.01612 2 3d0 2 3d2+ 2 3d0 2 3d2+ 2 4f0 2 4f2+ 2 4f0 2 4f2+ 2 5g0 2 5g4+ -0.00030 0.00004 0.00225 0.00320 0.00000 -0.00000 0.00016 0.00001 0.00000 0.00000 2 5g2+ 3 1s 3 1s 3 1s 3 1s 3 2pz 3 2py 3 2pz 3 2py 3 2pz -0.00000 0.00000 0.00077 -0.00000 -0.00011 0.02903 0.00913 0.00003 0.00018 0.00098 3 3d0 3 3d2+ 3 3d1-3 3d0 3 3d2+ 3 3d1-3 4f0 3 4f2+ 3 4f1-3 2pv 0.00073 0.00000 -0.00000 0.00001 -0.00001 -0.00001 0.00007 0.00001 0.00001 0.00000 3 4f3--0.00000 Symmetry no. 2 1 2px 1 2px 1 2px 1 3d1+ 1 3d1+ 1 4f1+ 1 4f3+ 2 2px 2 2px 2 2px 0.79256 0.00854 -0.01135 0.00001 -0.00018 0.00001 0.00000 0.00000 0.00003 -0.01024 2 2px 2 2px 2 2px 2 3d1+ 2 3d1+ 2 3d1+ 2 3d1+ 2 4f1+ 2 4f3+2 4f1+ 0.00885 0.00066 0.00294 0.18710 0.02576 0.00310 -0.00630 0.00000 0.00000 0.00028 2 4f3+ 2 5g1+ 2 5g3+ 3 2px 3 2px 3 2px 3 3d1+ 3 3d2-3 3d1+ 3 3d2-0.00000 0.00000 0.00000 0.00352 -0.00003 0.00014 0.00000 0.00000 0.00000 -0.00000 3 4f1+ 3 4f3+ 3 4f2-0.00000 0.00000 -0.00000 Symmetry no. 3 1 2py 1 3d1-1 3d1-1 4f1-1 4f3-2 2py 1 2py 1 2py 2 2py 2 2py 0.65533 0.00636 -0.00847 0.00001 -0.00024 0.00002 0.00000 0.00000 0.00006 -0.00233 2 3d1-2 2py 2 2py 2 3d1-2 3d1-2 3d1-2 4f1-2 4f3-2 4f1-2 2pv 0.00127 0.00002 0.00201 0.29059 0.03747 0.00371 -0.00746 0.00000 0.00000 0.00024 3 1s 2 4f3-2 5g1-2 5g3-3 1s 3 1 5 3 1s 3 2py 3 2pz 3 2py 0.00003 0.00000 0.00000 0.00000 0.00046 0.00000 -0.00007 0.01926 0.00042 0.00031 3 3d0 3 3d0 3 4f1-3 2pz 3 2py 3 2pz 3 3d1-3 3d2+ 3 3d1-3 3d2+  $-0.00001 \quad 0.00119 \quad -0.00007 \quad -0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00004 \quad -0.00001 \quad 0.00001$ 3 4f3-3 4f0 3 4f2+ 0.00000 0.00000 -0.00000 Symmetry no. 4 1 3d2-1 3d2-1 4f2-2 3d2-2 3d2-2 3d2-2 3d2-2 4f2-2 4f2-2 5g2-0.00000 0.00005 0.00000 0.92390 0.03413 0.00282 0.00246 0.00000 0.00003 0.00000 2 5g4-3 2px 3 2px 3 2px 3 3d2-3 3d1+ 3 3d2-3 3d1+ 3 4f2-3 4f1+ 0.00000 0.02300 -0.00010 0.00058 0.00001 0.00000 0.00001 0.00003 0.00001 -0.00000 3 4f3+ 0.00001

Spin population: Individual basis function populations:

Population analysis by basis function type

| Uni | que | atom s   | р       | d        | f       | g       | Total   | Charge    |
|-----|-----|----------|---------|----------|---------|---------|---------|-----------|
| 1   | 0   | 0.00139  | 1.74419 | -0.00030 | 0.00013 | 0.00000 | 1.74540 | +6.25460  |
| 2   | Ni  | -0.00831 | 0.01666 | 2.15596  | 0.00075 | 0.00001 | 2.16507 | +25.83493 |
| 3   | F   | 0.00052  | 0.04415 | 0.00007  | 0.00002 | 0.00000 | 0.04476 | + 8.95524 |
| 4   | F   | 0.00052  | 0.04415 | 0.00007  | 0.00002 | 0.00000 | 0.04476 | + 8.95524 |

|  | Sr | oin | densities | of | ONiF <sub>2</sub> | $({}^{5}A_{1})$ | : isc | -surface = | 0.05 | electron | a.u. <sup>-3</sup> | 3 |
|--|----|-----|-----------|----|-------------------|-----------------|-------|------------|------|----------|--------------------|---|
|--|----|-----|-----------|----|-------------------|-----------------|-------|------------|------|----------|--------------------|---|



#### NPA Charge (aus NBO Programm):

 Natural Population

 Atom No
 Charge
 Core
 Valence
 Rydberg
 Total

 0
 1
 -0.12737
 2.00000
 6.11925
 0.00812
 8.12737

 Ni
 2
 1.79734
 17.99955
 8.14235
 0.06075
 26.20266

 F
 3
 -0.83499
 2.00000
 7.82479
 0.01020
 9.83499

 F
 4
 -0.83499
 2.00000
 7.82479
 0.01020
 9.83499

 \*
 Total
 \*
 0.00000
 23.99955
 29.91119
 0.08926
 54.00000

#### AIM Ladungen:

Total result:

| #Basin   | Integral(a.u.)      | Vol(Bohr^3)   | Vol(rho > 0.001) |
|----------|---------------------|---------------|------------------|
| 1        | 8.1523581247        | 1256.891      | 119.256          |
| 2        | 26.2675125866       | 352.368       | 84.731           |
| 3        | 9.7900107256        | 1116.780      | 126.445          |
| 4        | 9.7900100472        | 1109.084      | 126.445          |
| Sum of a | bove integrals:     | 53.99989148   |                  |
| Sum of b | asin volumes (rho > | > 0.001): 456 | .877 Bohr^3      |

Normalization factor of the integral of electron density is 0.999998 The atomic charges after normalization and atomic volumes:

| 1(0)   | Charge: | -0.152375 | Volume: | 119.256 Bohr^3 |
|--------|---------|-----------|---------|----------------|
| 2 (Ni) | Charge: | 1.732435  | Volume: | 84.731 Bohr^3  |
| 3 (F)  | Charge: | -0.790030 | Volume: | 126.445 Bohr^3 |
| 4 (F)  | Charge: | -0.790030 | Volume: | 126.445 Bohr^3 |

## ONiF<sub>2</sub> ( $C_{2v}$ , <sup>5</sup>A<sub>1</sub>)

SS-CASSCF (12,9) (SS: State-Specific)

| CI vector for state symme | try 1 |
|---------------------------|-------|
|---------------------------|-------|

| 22a0 | 2a | 2a | а | 0.9214245  |
|------|----|----|---|------------|
| 2A20 | 2a | a2 | а | -0.2541023 |
| 2A20 | a2 | 2a | а | 0.1659817  |
| 22a0 | a2 | a2 | а | 0.1496710  |
| 2A20 | a2 | a2 | а | -0.0747341 |
| a2a0 | aa | 22 | 2 | -0.0642670 |
| 2BA0 | 22 | aa | 2 | -0.0550659 |
| 02a2 | 2a | 2a | а | -0.0538621 |
| 2220 | aa | aa | 2 | -0.0528501 |
|      |    |    |   |            |

### Table S7.8. ONiF<sub>2</sub> (*C*<sub>2v</sub>, <sup>5</sup>A<sub>2</sub>)

SA-CASSCF(12,9)/CASPT2/VTZ-DK - With equal weights of 0.5: <sup>5</sup>A<sub>1</sub>, <sup>5</sup>A<sub>2</sub>

Optimized variables

| NiO= | 1.73212203 ANGSTROM |
|------|---------------------|
| NiF= | 1.74061303 ANGSTROM |
| A1=  | 113.00320763 DEGREE |

OPTG(RS2C) -1794.58902559

| 2aa0 | 2a | 2a | 2 | 0.9257083  |
|------|----|----|---|------------|
| a2a0 | 2a | a2 | 2 | -0.2135060 |
| 2aa0 | a2 | a2 | 2 | 0.1973532  |
| a2a0 | a2 | 2a | 2 | 0.1391540  |
| 2a20 | 22 | aa | а | 0.0935902  |
| 2a20 | aa | 22 | а | -0.0571379 |

### NATURAL ORBITALS FOR STATE 1.4 (ms2=4)

\_\_\_\_\_

| Orbital | Occupation | Energy    | Coefficients    |                 |                |                 |                 |
|---------|------------|-----------|-----------------|-----------------|----------------|-----------------|-----------------|
| 10.1    | 2.00000    | -0.66519  | 3 2pz 0.43674   | 3 2py 0.72413   |                |                 |                 |
| 11.1    | 2.00000    | -0.60756  | 3 2pz -0.78142  | 3 2py 0.46853   |                |                 |                 |
| 12.1    | 1.91164    | -0.70997  | 1 2pz -0.75778  | 2 2pz -0.32660  | 2 2pz 0.28835  | 2 3d0 -0.53226  |                 |
| 13.1    | 1.07247    | -0.35477  | 1 2pz 0.54726   | 2 3d0 -0.83001  | -              |                 |                 |
| 14.1    | 1.01457    | -0.33775  | 2 3d2+ 0.96557  |                 |                |                 |                 |
| 15.1    | 0.01921    | 0.76519   | 1 1s 0.29214    | 1 2pz 1.10379   | 1 2pz -0.66716 | 2 1s -0.29309   | 2 1s -0.41781   |
|         |            |           | 2 1s -0.31364   | 2 2pz -1.51839  | 2 2pz 1.52825  | 2 2pz 0.47998   | 2 3d0 -0.50540  |
|         |            |           | 2 3d2+ -0.31467 | 2 3d0 0.39083   |                |                 |                 |
| 16.1    | -0.00000   | 0.06710   | 2 1s -0.73821   | 2 1s -2.80310   | 2 1s 0.56343   | 2 1s 3.63490    | 2 2pz 0.94728   |
|         |            |           | 2 2pz -0.40469  | 2 2pz -0.79036  |                |                 | •               |
| 17.1    | -0.00000   | 0.11427   | 2 1s -0.76787   | 2 1s 0.96768    | 2 2pz -2.42860 | 2 2pz 1.32375   | 2 2pz 2.22819   |
| 18.1    | -0.00000   | 0.32039   | 2 1s 0.74216    | 2 1s 3.53610    | 2 1s -0.95589  | 2 1s 0.26529    | 2 1s -3.36606   |
|         |            |           | 2 2pz 5.63320   | 2 2pz -2.59515  | 2 2pz 0.35859  | 2 2pz -2.75373  | 2 3d2+ 0.28617  |
|         |            |           | 3 1s -0.32228   | 3 2py 0.33800   | 3 2py 0.26452  |                 |                 |
| 19.1    | -0.00000   | 0.37729   | 1 1s 0.83385    | 2 1s -0.26903   | 2 1s -1.13203  | 2 1s 0.35564    | 2 2pz 0.72236   |
|         |            |           | 2 3d0 -1.04754  | 2 3d2+ 1.19355  | 3 1s 0.48043   |                 |                 |
| 1.2     | 2.00000    | -33.23794 | 2 2px 0.99995   |                 |                |                 |                 |
| 4.2     | 1.92754    | -0.74921  | 1 2px 0.31570   | 2 3d1+ -0.91762 |                |                 |                 |
| 5.2     | 1.07794    | -0.38394  | 1 2px 0.92988   | 2 3d1+ 0.38330  |                |                 |                 |
| 6.2     | -0.00000   | 0.07442   | 2 2px 1.06955   | 2 2px -0.74311  | 2 2px -1.49524 |                 |                 |
| 7.2     | -0.00000   | 0.23859   | 2 2px 6.60185   | 2 2px -3.13275  | 2 2px 0.43879  | 2 2px -3.48312  |                 |
| 8.2     | -0.00000   | 0.37868   | 1 2px 0.30406   | 2 2px -0.45408  | 2 2px 0.25667  | 2 3d1+ -0.35161 | 2 3d1+ -0.27875 |
|         |            |           | 2 3d1+ 1.57644  |                 |                |                 |                 |
| 9.2     | -0.00000   | 0.82367   | 1 2px -0.54329  | 1 2px -0.50429  | 1 2px 1.80477  | 2 2px 0.74621   | 2 2px -0.81217  |
|         |            |           | 2 2px -0.47099  | 2 3d1+ 0.27746  | 2 3d1+ 0.28934 |                 | •               |
| 5.3     | 2.00000    | -0.63384  | 2 2py -0.33325  | 2 2py 0.34643   | 3 2py -0.88007 |                 |                 |
| 6.3     | 2.00000    | -0.59625  | 3 2pz 0.91531   |                 |                |                 |                 |
| 7.3     | 1.89076    | -0.64152  | 1 2py -0.64910  | 2 3d1- 0.68709  |                |                 |                 |
| 8.3     | 1.10319    | -0.39609  | 1 2py 0.72467   | 2 3d1- 0.69770  |                |                 |                 |
| 9.3     | -0.00000   | 0.12825   | 2 2py -2.95818  | 2 2py 1.50179   | 2 2py 2.55860  |                 |                 |
| 10.3    | -0.00000   | 0.41018   | 1 2py -0.26432  | 2 2py 0.40181   | 2 2py 9.42042  | 2 2py -4.60978  | 2 2py 0.62950   |
|         |            |           | 2 2py -4.37706  | 2 3d10.52078    | 3 1s -0.65215  | 3 2pz 0.25786   | 3 2py 0.28474   |
|         |            |           | 3 2pz 0.28913   |                 |                |                 |                 |
| 11.3    | -0.00000   | 0.51794   | 2 2py 0.32896   | 2 2py 5.69361   | 2 2py -2.60823 | 2 2py 0.32639   | 2 2py -2.44092  |
|         |            |           | 2 3d1- 2.02477  | 3 1s -1.47287   | 3 2py 0.58721  |                 |                 |
| 12.3    | -0.00000   | 0.85863   | 1 2py 0.49545   | 1 2py 0.47636   | 1 2py -1.78916 | 2 2py -3.08217  | 2 2py 2.44118   |
|         |            |           | 2 2py -0.38431  | 2 2py 1.31743   | 2 3d10.68572   | 3 1s 0.25939    |                 |
| 1.4     | 2.00000    | -0.61206  | 3 2px 0.91769   |                 |                |                 |                 |
| 2.4     | 1.98268    | -0.79165  | 2 3d20.98426    |                 |                |                 |                 |

| 3.4 | -0.00000 | 0.39549 | 2 3d20.32618   | 2 3d20.27653   | 2 3d2- 1.60095 | 3 2px -0.30488 | 3 2px | -0.38175 |
|-----|----------|---------|----------------|----------------|----------------|----------------|-------|----------|
| 5.4 | -0.00000 | 1.39660 | 2 3d2- 1.07139 | 2 3d2- 2.88783 | 2 3d2- 0.94286 | 2 3d23.18230   | 3 2px | 0.40031  |

#### Table S7.9. ONiF<sub>2</sub> (*C*<sub>2v</sub>, <sup>5</sup>A<sub>2</sub>)

SS-CASSCF (12,9) (SS: State-Specific)

CI vector for state symmetry 2

| 2aa0 | 2a | 2a | 2 | 0.9281837  |
|------|----|----|---|------------|
| 2ba0 | a2 | a2 | 2 | 0.2069617  |
| a2a0 | 2a | a2 | 2 | -0.1996394 |
| a2a0 | a2 | 2a | 2 | 0.1370911  |
| 2a20 | 22 | aa | а | -0.0891214 |
| 2a20 | aa | 22 | а | 0.0575935  |
| 22a0 | aa | 22 | а | -0.0519345 |
|      |    |    |   |            |

Spin population: Individual basis function populations

Symmetry no. 1

1 1s 1 1s 1 1s 1 1s 1 2pz 1 2pz 1 2pz 1 3d0 1 3d2+ 1 3d0 -0.00000 0.00198 -0.00006 0.00042 0.33100 -0.00517 -0.02233 -0.00004 0.00000 -0.00117 1 3d2+ 1 4f0 1 4f2+ 2 1s 0.00003 0.00004 0.00000 0.00000 0.00017 0.01114 0.00375 0.00026 0.00000 0.00399 2 2pz 2 2pz 2 2pz 2 2pz 2 2pz 2 2pz 2 3d0 2 3d2+ 2 3d0 2 3d2+ -0.00000 0.00061 -0.02002 0.03156 -0.00043 0.00138 0.60636 0.89317 0.04956 0.03292 2 3d0 2 3d2+ 2 3d0 2 3d2+ 2 4f0 2 4f2+ 2 4f0 2 4f2+ 2 5g0 2 5g4+ 0.00026 0.00094 0.00631 0.00589 -0.00000 0.00000 0.00005 0.00004 -0.00000 0.00000 2 5g2+ 3 1s 3 1s 3 1s 3 1s 3 2pz 3 2py 3 2pz 3 2py 3 2pz 0.00000 -0.00000 0.00118 -0.00000 0.00021 0.03364 0.01256 0.00011 0.00031 0.00125 3 3d2+ 3 3d0 3 4f0 3 4f1-3 2py 3 3d0 3 3d1-3 3d2+ 3 3d1-3 4f2+ 0.00000 0.00166 0.00000 0.00001 0.00001 -0.00000 0.00001 0.00004 0.00000 0.00001 3 4f3-0.00001 Symmetry no. 2

1 2px 1 2px 1 2px 1 3d1+ 1 3d1+ 1 4f1+ 1 4f3 +2 2px 2 2px 2 2px 0.78946 0.00880 -0.00321 0.00002 -0.00001 0.00000 0.00000 0.00000 0.00001 -0.01088 2 4f1+ 2 4f3+ 2 2px 2 2px 2 2px 2 3d1+ 2 3d1+ 2 3d1+ 2 3d1+ 2 4f1+ 0.01161 0.00082 0.00322 0.16646 0.02928 0.00358 -0.00729 0.00000 -0.00000 0.00033 2 4f3+ 2 5g1+ 2 5g3+ 3 2px 3 2px 3 2px 3 3d1+ 3 3d2-3 3d1+ 3 3d2-0.00000 0.00000 0.00000 0.00325 -0.00003 0.00012 0.00000 0.00000 -0.00000 -0.00000 3 4f1+ 3 4f3+ 3 4f2-0.00000 0.00000 -0.00000 Symmetry no. 3 1 2py 1 3d1-1 3d1-1 4f1-1 4f3-2 2py 2 2py 1 2py 1 2py 2 2py 0.44964 0.00333 0.00037 0.00001 -0.00029 0.00001 0.00000 0.00000 0.00014 0.00006

2 4f3-2 5g1-2 5g3-3 1s 3 1s 3 1s 3 1s 3 2py 3 2pz 3 2py 0.00004 -0.00000 -0.00000 0.00000 0.00071 -0.00000 -0.00005 0.03304 0.00026 0.00055 3 2py 3 2pz 3 3d1-3 3d0 3 3d2+ 3 3d1-3 3d0 3 3d2+ 3 4f1-3 2pz -0.00002 0.00199 -0.00006 0.00000 0.00000 0.00000 -0.00001 0.00003 -0.00003 0.00001 3 4f3-3 4f0 3 4f2+ 0.00000 0.00000 0.00000 Symmetry no. 4 1 3d2-1 3d2-1 4f2-2 3d2-2 3d2-2 3d2-2 3d2-2 4f2-2 4f2-2 5g2-0.00000 0.00000 0.00000 0.01598 0.00040 0.00004 -0.00000 0.00000 0.00000 0.00000 3 3d1+ 2 5g4-3 2px 3 2px 3 2px 3 3d2-3 3d1+ 3 3d2-3 4f2-3 4f1+ 0.00000 0.00036 -0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 4f3+ 0.00000

Population analysis by function type base

| Unique atom | S       | р       | d        | f       | g       | Total   | Charge    |
|-------------|---------|---------|----------|---------|---------|---------|-----------|
| 1 0         | 0.00233 | 1.55188 | -0.00144 | 0.00006 | 0.00000 | 1.55284 | + 6.44716 |
| 2 Ni        | 0.01930 | 0.02070 | 2.31539  | 0.00063 | 0.00000 | 2.35602 | +25.64398 |
| 3 F         | 0.00102 | 0.04450 | 0.00003  | 0.00002 | 0.00000 | 0.04557 | + 8.95443 |
| 4 F         | 0.00102 | 0.04450 | 0.00003  | 0.00002 | 0.00000 | 0.04557 | + 8.95443 |
|             |         |         |          |         |         |         |           |

Spin densities of ONiF<sub>2</sub> ( ${}^{5}A_{2}$ ; iso-surface = 0.05 electron a.u.<sup>-3</sup>)



NPA batch (NBO) ( ${}^{5}A_{2}$ )

|         | Natural Population |              |            |            |          |  |  |  |  |
|---------|--------------------|--------------|------------|------------|----------|--|--|--|--|
|         | Natural -          |              |            |            |          |  |  |  |  |
| Atom No | Charge Co          | ore Vale     | ence       | Rydberg    | Total    |  |  |  |  |
|         |                    |              |            |            |          |  |  |  |  |
| 1 0     | -0.30430           | 2.00000      | 6.29018    | 0.01412    | 8.30430  |  |  |  |  |
| 2 Ni    | 1.98952            | 17.99956     | 7.94849    | 0.06243    | 26.01048 |  |  |  |  |
| 3 F     | -0.84261           | 2.00000      | 7.83390    | 0.00871    | 9.84261  |  |  |  |  |
| 4 F     | -0.84261           | 2.00000      | 7.83390    | 0.00871    | 9.84261  |  |  |  |  |
| ======= |                    |              |            | ====== === |          |  |  |  |  |
| * Total | * 0.00000 23.      | 99956 29.906 | 548 0.0939 | 6 54.00000 |          |  |  |  |  |
AIM Charges  $({}^{5}A_{2})$ Total result: Vol (Bohr  $^3$ ) volume (rho> 0001) #Basin integral (au) 10 8.2969247159 1387,852 125,614 2 Ni 78,374 26.1187140877 263,022 3 F 1114,735 126,863 9.7921372486 4 F 1107,393 9.7921365794 126,863 Sum of above integrals: 53.99991263 Sum of basin volumes (rho> 0001): 457,713 Bohr ^ 3

Normalization factor of the integral of electron density is 0.999998The atomic charges after normalization and atomic volumes: 1 (O) Charge: -0.296938 Volume: 125 614 Bohr  $^3$ 

- 2 (Ni) Charge: 1.881244 Volume: 78374 Bohr ^ 3
- 3 (F) Charge: -0.792152 Volume: 126,863 Bohr ^ 3
- 4 (F) Charge: -0.792153 Volume: 126 863 Bohr ^ 3

# Part 8. CASSCF calculations of OPdF<sub>2</sub> ( ${}^{3}A_{2}$ ; $C_{2v}$ ), OPtF<sub>2</sub> ( ${}^{3}A_{2}$ ; $C_{2v}$ ) and OPtF<sub>3</sub> ( ${}^{4}A_{1}$ , $C_{2v}$ )

#### Table S8.1. OPdF<sub>2</sub> (C<sub>2v</sub>; <sup>3</sup>A<sub>2</sub>)

CASSCF(12,8)/AVTZ(-PP)

#### TOTAL ENERGIES

=

-400.39680758

## CI vector

| 220 | 2a | 2a | 2 | 0.9355843  |
|-----|----|----|---|------------|
| 220 | a2 | a2 | 2 | 0.1755761  |
| 2ba | 2a | a2 | 2 | -0.1266081 |
| 2ab | 2a | a2 | 2 | 0.1240501  |
| 202 | 2a | 2a | 2 | -0.1207369 |
| 2ba | a2 | 2a | 2 | 0.1176422  |
| 2ab | a2 | 2a | 2 | -0.1043761 |
| 202 | a2 | a2 | 2 | -0.0938946 |

#### NATURAL ORBITALS STATE 1.4 (ms = 2)

\_\_\_\_\_

| Orbital | Occupation | Energy   | Coefficients    |                 |                 |                 |                 |
|---------|------------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 8.1     | 2.00000    | -0.59571 | 1 1s -0.12212   | 1 1s 0.04534    | 1 2pz -0.04142  | 1 2pz 0.05748   | 1 3d0 0.06892   |
|         |            |          | 1 3d2+ -0.15426 | 1 3d2+ 0.01018  | 1 4f2+ -0.01168 | 2 1s -0.01599   | 2 1s -0.01584   |
|         |            |          | 2 1s -0.01294   | 2 2pz -0.03063  | 2 2pz 0.01243   | 3 1s 0.01405    | 3 1s 0.03352    |
|         |            |          | 3 2pz 0.84546   | 3 2py 0.33287   | 3 2pz 0.04941   | 3 2py 0.01619   | 3 2pz 0.04423   |
|         |            |          | 3 3d10.02025    |                 |                 |                 |                 |
| 9.1     | 1.99622    | -0.80436 | 1 1s -0.17501   | 1 1s 0.37511    | 1 1s 0.05213    | 1 1s -0.01074   | 1 1s -0.04988   |
|         |            |          | 1 2pz -0.17921  | 1 2pz 0.04398   | 1 2pz 0.02424   | 1 3d0 -0.48530  | 1 3d2+ 0.52769  |
|         |            |          | 1 3d0 0.03358   | 1 3d2+ -0.04030 | 1 4f0 0.01489   | 2 1s 0.33754    | 2 1s -0.01333   |
|         |            |          | 2 1s -0.07142   | 2 2pz 0.01381   | 3 1s -0.04461   | 3 2pz 0.26315   | 3 2py -0.35686  |
|         |            |          | 3 2pz 0.01725   | 3 2py -0.01134  |                 |                 |                 |
| 10.1    | 1.88707    | -0.66553 | 1 1s 0.02474    | 1 1s -0.32734   | 1 1s -0.05288   | 1 1s 0.02711    | 1 2pz 0.08866   |
|         |            |          | 1 2pz -0.04426  | 1 2pz -0.07601  | 1 2pz 0.01016   | 1 3d0 -0.43383  | 1 3d2+ -0.27574 |
|         |            |          | 1 3d2+ 0.02144  | 1 3d0 0.01089   | 1 4f0 -0.01782  | 1 4f0 -0.02631  | 2 1s 0.05178    |
|         |            |          | 2 1s 0.12860    | 2 1s 0.11330    | 2 2pz 0.78664   | 2 2pz -0.08481  | 2 2pz -0.02208  |
|         |            |          | 2 3d0 -0.01756  | 3 1s -0.02151   | 3 1s 0.03241    | 3 2pz -0.01642  | 3 2py 0.02062   |
| 11.1    | 0.12280    | 0.04137  | 1 1s 0.01807    | 1 1s 0.18797    | 1 1s 0.13477    | 1 1s -0.02038   | 1 1s 0.07844    |
|         |            |          | 1 2pz 0.11503   | 1 2pz -0.03437  | 1 2pz 0.06165   | 1 2pz 0.01774   | 1 3d0 0.73841   |
|         |            |          | 1 3d2+ 0.35335  | 1 3d0 -0.11150  | 1 3d2+ -0.06925 | 1 3d0 -0.01732  | 1 3d0 0.01068   |
|         |            |          | 1 3d2+ 0.01685  | 2 1s -0.15468   | 2 1s -0.09464   | 2 1s -0.04769   | 2 2pz 0.79665   |
|         |            |          | 2 2pz -0.01394  | 2 2pz -0.15843  | 2 2pz -0.02091  | 3 1s 0.03980    | 3 2pz 0.16031   |
|         |            |          | 3 2py -0.21423  | 3 2pz 0.01722   | 3 2py -0.01611  | 3 2pz 0.01169   | 3 2py -0.01256  |
| 2.2     | 2.00000    | -0.60074 | 1 2px -0.04429  | 1 2px 0.03200   | 1 3d1+ -0.03976 | 1 4f3+ -0.01331 | 2 2px 0.01298   |
|         |            |          | 3 2px 0.92882   | 3 2px 0.05218   | 3 2px 0.04451   | 3 3d20.01070    | 3 3d20.02308    |
| 3.2     | 1.92886    | -0.65769 | 1 2px -0.04197  | 1 2px -0.01081  | 1 2px 0.02220   | 1 3d1+ 0.77395  | 1 3d1+ -0.03849 |
|         |            |          | 1 3d1+ -0.01201 | 1 3d1+ -0.01232 | 1 4f1+ 0.01039  | 2 2px 0.52655   | 2 3d1+ -0.02159 |
|         |            |          | 2 3d1+ -0.01172 | 3 2px 0.02832   |                 |                 |                 |
| 4.2     | 1.06864    | -0.35820 | 1 2px 0.04119   | 1 2px 0.01130   | 1 2px -0.01696  | 1 2px -0.01072  | 1 3d1+ 0.64099  |
|         |            |          | 1 3d1+ -0.03913 | 1 4f1+ -0.01425 | 2 2px -0.84881  | 2 3d1+ 0.01015  | 3 2px 0.06031   |
| 5.3     | 2.00000    | -0.58236 | 1 2py 0.08957   | 1 2py -0.10804  | 1 2py -0.09692  | 1 2py 0.01308   | 1 2py 0.03834   |
|         |            |          | 1 3d1- 0.05016  | 1 4f1- 0.01593  | 1 4f3- 0.01880  | 1 4f1- 0.02289  | 1 4f3- 0.02252  |
|         |            |          | 2 2py -0.01662  | 3 1s 0.06860    | 3 1s 0.03097    | 3 1s 0.10053    | 3 2py 0.58952   |
|         |            |          | 3 2pz -0.69415  | 3 2pz -0.03182  | 3 2pz -0.02839  | 3 3d1- 0.01038  | 3 3d1- 0.01180  |
| 6.3     | 1.92344    | -0.64748 | 1 2py -0.06017  | 1 2py 0.06197   | 1 3d1- 0.72064  | 1 3d10.05243    | 1 3d10.01321    |
|         |            |          | 1 3d10.02227    | 1 4f1- 0.01149  | 2 2py 0.59234   | 2 3d10.02105    | 2 3d10.01070    |
|         |            |          | 3 1s 0.02100    | 3 1s -0.03131   | 3 2py -0.11292  | 3 2pz -0.14806  | 3 2pz -0.02372  |
|         |            |          | 3 2pz -0.01075  |                 |                 |                 |                 |

| 7.3 | 1.07722 | -0.35331 | 1 2py -0.01604<br>1 4f1- 0.01442<br>3 1s 0.01884<br>3 2pz 0.01973 | 1 2py -0.08982<br>2 2py 0.80877<br>3 2py 0.17528 | 1 2py 0.03556<br>2 2py -0.01015<br>3 2pz 0.09655 | 1 3d10.68268<br>2 2py 0.01092<br>3 2py 0.01725 | 1 3d1- 0.06631<br>3 1s -0.03390<br>3 2pz 0.01780 |
|-----|---------|----------|-------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| 1.4 | 2.00000 | -0.61506 | 1 3d2- 0.10580<br>3 3d20.01880                                    | 3 2px 0.92411                                    | 3 2px 0.04708                                    | 3 2px 0.04629                                  | 3 3d20.01041                                     |
| 2.4 | 1.99575 | -0.60441 | 1 3d2- 1.00681<br>3 2px -0.03372                                  | 1 3d20.06111<br>3 2px -0.02621                   | 1 3d20.01006                                     | 1 3d20.01262                                   | 3 2px -0.20502                                   |

Spin population: Individual basis function populations Symmetry no. 1

1 2pz 1 2pz 1 2pz 1 15 1 1 5 1 1 5 1 15 1 1 5 1 1 5 1 2nz 0.00010 -0.00673 -0.00200 -0.00010 -0.00056 0.00004 0.00076 0.00068 0.00006 0.00001 1 3d0 1 3d2+ 1 3d0 1 3d2+ 1 3d0 1 2pz 1 3d2+ 1 3d0 1 3d2+ 1 2pz -0.00002 -0.00000 -0.00354 -0.01500 0.00063 -0.00043 -0.00013 0.00002 0.00006 -0.00010 1 3d0 1 3d2+ 1 4f0 1 4f2+ 1 4f0 1 4f2+ 1 4f0 1 4f2+ 1 5g0 1 5g4+ 0.00002 -0.00000 0.00001 0.00000 0.00016 0.00000 0.00022 0.00001 -0.00000 0.00000 1 5g2+ 1 5g0 1 5g4+ 1 5g2+ 2 1s 2 1s 2 1s 2 1s 2 1s 2 2pz -0.00000 0.00001 -0.00001 -0.00001 0.00000 0.00163 -0.00004 0.00082 0.00078 0.04247 2 2pz 2 2pz 2 2pz 2 3d0 2 3d2+ 2 3d0 2 3d2+ 2 3d0 2 3d2+ 2 4f0 -0.00039 - 0.00440 - 0.00027 - 0.00001 - 0.00000 - 0.00008 0.00000 0.00003 0.00000 - 0.000002 4f2+ 2 4f0 2 4f2+ 3 1s 3 1s 3 1s 3 1s 3 1s 3 2pz 3 2py -0.00000 0.00001 0.00000 -0.00000 -0.00004 0.00000 -0.00000 0.00015 -0.00218 -0.00408 3 2pz 3 2py 3 2pz 3 2py 3 2pz 3 2py 3 3d0 3 3d2+ 3 3d1-3 3d0 -0.00000 -0.00005 -0.00014 -0.00017 -0.00008 -0.00018 -0.00000 -0.00000 0.00000 -0.00000 3 4f0 3 4f2+ 3 4f1-3 3d2+ 3 3d1-3 3d0 3 3d2+ 3 3d1-3 4f3-3 4f0 -0.00000 0.00000 -0.00000 0.00000 0.00005 -0.00000 -0.00000 -0.00000 0.00000 0.00000 3 4f1-3 4f3-3 4f2+ 0.00000 -0.00000 0.00000 Symmetry no. 2 1 2px 1 2px 1 2px 1 2px 1 2px 1 3d1+ 1 3d1+ 1 3d1+ 1 3d1+ 1 2px 0.00022 -0.00186 0.00271 -0.00009 0.00110 -0.00009 0.34810 0.01047 0.00043 -0.00012 1 3d1+ 1 4f1+ 1 4f3+ 1 4f1+ 1 4f3+ 1 4f1+ 1 4f3+ 1 5g1+ 1 5g3+ 1 5g1+ 0.00030 0.00007 0.00000 0.00175 0.00001 0.00152 0.00008 -0.00003 0.00000 0.00023 1 5g3+ 2 2px 2 2px 2 2px 2 2px 2 3d1+ 2 3d1+ 2 3d1+ 2 4f1+ 24f3+0.00000 0.62915 0.00395 -0.00400 0.00099 0.00001 -0.00022 -0.00130 0.00004 0.00000

2 4f1+ 2 4f3+ 3 2px 3 2px 3 2px 3 2px 3 3d1+ 3 3d2-3 3d1+ 3 3d2--0.00013 0.00000 0.00256 0.00000 0.00004 -0.00051 0.00000 0.00000 0.00001 0.00002 3 3d1+ 3 3d2-3 4f1+ 3 4f3+ 3 4f2-3 4f1+ 3 4f3+ 3 4f2- $-0.00001 - 0.00005 \quad 0.00000 \quad 0.000000 \quad 0.000000 \quad 0.000000 \quad 0.000000 \quad 0.0000000 \quad 0.000000 \quad 0.0000$ 

Symmetry no. 3

1 3d1-1 2pv 1 2py 1 2py 1 2py 1 2py 1 2py 1 3d1-1 3d1-1 3d1-0.00011 -0.00768 0.00114 -0.00017 0.00306 -0.00015 0.37331 0.02223 0.00114 -0.00166 1 4f3- 1 4f1-1 4f3-1 4f1-1 3d1-1 4f1-1 4f3-1 5g1-1 5g3-1 5g1- $-0.00007 \quad 0.00009 \quad 0.00001 \quad 0.00179 \quad 0.00011 \quad 0.00259 \quad 0.00025 \quad -0.00001 \quad -0.00000 \quad 0.00007$ 2 3d1-2 3d1-2 3d1-2 4f1-1 5g3-2 2py 2 2py 2 2py 2 2py 2 4f3-0.00004 0.56593 0.00268 -0.00446 0.00212 0.00001 -0.00005 -0.00124 0.00004 0.00000 2 4f1-2 4f3-3 1s 3 1s 3 1s 3 1s 3 1s 3 2py 3 2pz 3 2pv -0.00012 0.00000 -0.00000 0.00037 -0.00000 -0.00004 0.00092 0.02328 0.00719 0.00009 3 3d1-3 3d0 3 3d2+ 3 3d1-3 3d0 3 2pz 3 2py 3 2pz 3 2py 3 2pz -0.00004 0.00087 0.00025 0.00006 0.00150 0.00001 0.00000 0.00000 0.00012 0.00003 3 3d2+ 3 3d1-3 3d0 3 3d2+ 3 4f1-3 4f3-3 4f0 3 4f2+ 3 4f1-3 4f30.00004 -0.00034 -0.00004 -0.00028 0.00000 0.00000 0.00000 0.00000 0.00006 -0.00002 3 4f0 3 4f2+ -0.00001 0.00002 Symmetry no. 4 1 3d2-1 3d2-1 3d2-1 3d2-1 3d2-1 4f2-1 4f2-1 4f2-1 5g2-1 5g4-0.00153 0.00002 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 2 4f2-3 2px 1 5g2-1 5g4-2 3d2-2 3d2-2 3d2-2 4f2-3 2px 3 2px 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 -0.00000 -0.00000 3 4f2-3 4f3+ 3 2px 3 3d2-3 3d1+ 3 3d2-3 3d1+ 3 3d2-3 3d1+ 3 4f1+ -0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 3 4f2-3 4f1+ 3 4f3+ 0.00000 0.00000 0.00000

Population analysis by basis function type

| Uniqu | ue atom | S        | р        | d        | f        | g       | Total   | Charge    |
|-------|---------|----------|----------|----------|----------|---------|---------|-----------|
| 1     | Pd      | -0.00926 | -0.00022 | 0.73721  | 0.00867  | 0.00027 | 0.73666 | +17.26334 |
| 2     | 0       | 0.00319  | 1.23376  | -0.00284 | -0.00017 | 0.00000 | 1.23394 | + 6.76606 |
| 3     | F       | 0.00068  | 0.01422  | -0.00023 | 0.00003  | 0.00000 | 0.01470 | + 8.98530 |
| 4     | F       | 0.00068  | 0.01422  | -0.00023 | 0.00003  | 0.00000 | 0.01470 | + 8.98530 |

#### NPA batch (NBO) (<sup>3</sup>A<sub>2</sub>)

Summary of Natural Population Analysis:

|              |       | Natural                                |          | Natural P                              | opulation<br>                          |          | Natural<br>Spin |
|--------------|-------|----------------------------------------|----------|----------------------------------------|----------------------------------------|----------|-----------------|
| Ato          | m No  | Charge                                 | Core     | Valence                                | Rydberg                                | Total    | Density         |
| <br>Pd       | 1     | 1.61170                                | 35.99840 | 8.36056                                | 0.02934                                | 44.38830 | 0.70272         |
| 0            | 2     | -0.06701                               | 2.00000  | 6.05073                                | 0.01628                                | 8.06701  | 1.26278         |
| F            | 3     | -0.77235                               | 2.00000  | 7.75721                                | 0.01514                                | 9.77235  | 0.01725         |
| F            | 4     | -0.77235                               | 2.00000  | 7.75721                                | 0.01514                                | 9.77235  | 0.01725         |
| ====<br>* To | tal ' | ====================================== | 41.99839 | ====================================== | ====================================== | 72.00000 | 2.00000         |

#### AIM Charges (<sup>3</sup>A<sub>2</sub>)

| tegral(a.u.) | Vol(Boh                                                                                    | r^3)                                                                                                                                              | Vol(rho>0.0                                                                                                                                                         | 001)                                                                                                                                                                                                                    |
|--------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 94738997     | 1407.84                                                                                    | 3                                                                                                                                                 | 125.509                                                                                                                                                             |                                                                                                                                                                                                                         |
| 433968383    | 545.94                                                                                     | 2                                                                                                                                                 | 127.373                                                                                                                                                             |                                                                                                                                                                                                                         |
| 94723896     | 1393.96                                                                                    | 66                                                                                                                                                | 125.509                                                                                                                                                             |                                                                                                                                                                                                                         |
| 74005460     | 1026.60                                                                                    | 19                                                                                                                                                | 111.966                                                                                                                                                             |                                                                                                                                                                                                                         |
| ntegrals:    | 71.99974                                                                                   | 367                                                                                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                         |
| olumes (rho> | 0.001):                                                                                    | 490.35                                                                                                                                            | 57 Bohr^3                                                                                                                                                           |                                                                                                                                                                                                                         |
|              | tegral(a.u.)<br>94738997<br>433968383<br>94723896<br>74005460<br>ntegrals:<br>olumes (rho> | tegral(a.u.) Vol(Boh<br>94738997 1407.84<br>433968383 545.94<br>94723896 1393.96<br>74005460 1026.60<br>ntegrals: 71.99974<br>olumes (rho>0.001): | tegral(a.u.) Vol(Bohr^3)<br>94738997 1407.843<br>433968383 545.942<br>94723896 1393.966<br>74005460 1026.609<br>ntegrals: 71.99974367<br>olumes (rho>0.001): 490.35 | tegral(a.u.) Vol(Bohr^3) Vol(rho>0.0<br>94738997 1407.843 125.509<br>433968383 545.942 127.373<br>94723896 1393.966 125.509<br>74005460 1026.609 111.966<br>ntegrals: 71.99974367<br>olumes (rho>0.001): 490.357 Bohr^3 |

Normalization factor of the integral of electron density is 0.999996 The atomic charges after normalization and atomic volumes:

| 1 (Pd) | Charge: | 1.656446  | Volume: | 127.373 Bohr^3 |
|--------|---------|-----------|---------|----------------|
| 2 (O)  | Charge: | -0.157429 | Volume: | 111.966 Bohr^3 |
| 3 (F)  | Charge: | -0.749507 | Volume: | 125.509 Bohr^3 |
| 4 (F)  | Charge: | -0.749508 | Volume: | 125.509 Bohr^3 |

#### Table S8.2. OPtF<sub>2</sub> (*C*<sub>2v</sub>; <sup>3</sup>A<sub>2</sub>)

CASSCF(12,8)/AVTZ(-PP)

PtO = 1.72278697PtF = 1.89176963Ang = 101.91519688

TOTAL ENERGIES

-392.35680127

CI vector

| 220 | 2a | 2a | 2 | 0.9519959  |
|-----|----|----|---|------------|
| 220 | a2 | a2 | 2 | -0.1698289 |
| 2ba | a2 | 2a | 2 | 0.1093964  |
| 202 | 2a | 2a | 2 | -0.1093116 |
| 2ba | 2a | a2 | 2 | 0.1085684  |
| 2ab | 2a | a2 | 2 | -0.1012533 |
| 2ab | a2 | 2a | 2 | -0.0935376 |
| 202 | a2 | a2 | 2 | 0.0663323  |

#### NATURAL ORBITALS STATE 1.4 (ms = 2)

| 8.1  | 2.00000 | -0.53032 | 1 1s   | 0.45168  | 1 3d0 | -0.48472 | 13 | d2+ 0.73698  |
|------|---------|----------|--------|----------|-------|----------|----|--------------|
| 9.1  | 1.99865 | -1.48946 | 1 2pz  | 0.37227  | 2 1s  | -0.93007 |    |              |
| 10.1 | 1.92118 | -0.68606 | 1 1s   | -0.35433 | 1 3d0 | -0.49270 | 22 | pz 0.76867   |
| 11.1 | 0.08354 | 0.12917  | 1 1s   | -0.33931 | 1 3d0 | -0.74762 | 13 | d2+ -0.25192 |
|      |         |          | 2 2pz  | -0.88713 |       |          |    |              |
| 2.2  | 2.00000 | -0.62344 | 3 2px  | 0.93384  |       |          |    |              |
| 3.2  | 1.94321 | -0.64159 | 1 3d1+ | -0.72600 | 2 2px | -0.56783 |    |              |
| 4.2  | 1.05521 | -0.31204 | 1 3d1+ | 0.70281  | 2 2px | -0.81029 |    |              |
| 5.3  | 2.00000 | -0.60233 | 1 2py  | -0.26998 | 3 2py | 0.61442  | 32 | pz -0.66986  |
| 6.3  | 1.94259 | -0.63741 | 1 3d1- | -0.62715 | 2 2py | -0.66189 |    |              |
| 7.3  | 1.05760 | -0.29529 | 1 3d1- | 0.78244  | 2 2py | -0.73776 |    |              |
| 1.4  | 2.00000 | -0.63597 | 3 2px  | 0.93208  |       |          |    |              |
| 2.4  | 1.99802 | -0.54776 | 1 3d2- | 1.01525  |       |          |    |              |

Spin population: Individual basis function populations

Symmetry no. 1

| 1 1s      | 1 1s     | 1 1s     | 1 1s       | 1 1s     | 1 1s       | 1 2pz      | 1 2pz    | 1 2pz      | 1 2pz    |
|-----------|----------|----------|------------|----------|------------|------------|----------|------------|----------|
| 0.00004 - | -0.00444 | -0.00030 | -0.00005   | 0.00024  | -0.00001   | 0.00077    | 0.00174  | -0.00052 · | -0.00001 |
| 1 2pz     | 1 2pz    | 1 3d0    | 1 3d2+     | 1 3d0    | 1 3d2+     | 1 3d0      | 1 3d2+   | 1 3d0      | 1 3d2+   |
| -0.00017  | -0.00001 | -0.01058 | -0.00106   | 0.00087  | 0.00000    | -0.00005   | -0.00000 | 0.00001    | -0.00002 |
| 1 3d0     | 1 3d2+   | 1 4f0    | 1 4f2+     | 1 4f0    | 1 4f2+     | 1 4f0      | 1 4f2+   | 1 5g0      | 1 5g4+   |
| -0.00001  | 0.00000  | 0.00003  | 0.00000    | 0.00021  | 0.00000    | 0.00011    | 0.00000  | -0.00001   | 0.00000  |
| 1 5g2+    | 1 5g0    | 1 5g4+   | 1 5g2+     | 2 1s     | 2 1s       | 2 1s       | 2 1s     | 2 1s       | 2 2pz    |
| 0.00000 - | -0.00000 | -0.00000 | -0.00000   | 0.00001  | 0.00416 -  | 0.00008    | 0.00124  | -0.00014   | 0.01383  |
| 2 2pz     | 2 2pz    | 2 2pz    | 2 3d0      | 2 3d2+   | 2 3d0      | 2 3d2+     | 2 3d0    | 2 3d2+     | 2 4f0    |
| -0.00017  | -0.00159 | -0.00002 | -0.00001   | -0.00000 | -0.00007   | -0.00000   | 0.00005  | 0.00000    | -0.00001 |
| 2 4f2+    | 2 4f0    | 2 4f2+   | 3 1s       | 3 1s     | 3 1s       | 3 1s       | 3 1s     | 3 2pz      | 3 2py    |
| -0.00000  | 0.00000  | 0.00000  | -0.00000   | 0.00000  | -0.00000   | -0.00000   | -0.00004 | -0.00014   | -0.00012 |
| 3 2pz     | 3 2py    | 3 2pz    | 3 2py      | 3 2pz    | 3 2py      | 3 3d0      | 3 3d2+   | 3 3d1-     | 3 3d0    |
| 0.00000   | 0.00000  | -0.00001 | -0.00002 - | 0.00003  | -0.00010 - | -0.00000 - | -0.00000 | -0.00000 · | -0.00000 |

3 3d2+ 3 3d1- 3 3d0 3 3d2+ 3 3d1-3 4f0 3 4f2+ 3 4f1-3 4f3-3 4f0 -0.00000 -0.00000 -0.00000 0.00000 0.00001 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 3 4f2+ 3 4f1- 3 4f3--0.00000 -0.00000 -0.00000 Symmetry no. 2 1 2px 1 2px 1 2px 1 2px 1 2px 1 2px 1 3d1+ 1 3d1+ 1 3d1+ 1 3d1+ 0.00028 -0.00009 0.00394 -0.00007 0.00039 -0.00005 0.39521 0.01042 0.00027 -0.00001 1 4f3+ 1 5g1+ 1 3d1+ 1 4f1+ 1 4f3+ 1 4f1+ 1 4f3+ 1 4f1+ 1 5g3+ 1 5g1+ 0.00015 0.00033 0.00000 0.00508 0.00005 -0.00024 0.00002 -0.00006 0.00000 0.00039 1 5g3+ 2 2px 2 2px 2 2px 2 2px 2 3d1+ 2 3d1+ 2 3d1+ 2 4f1+ 2 4f3+ -0.00000 0.57266 0.00350 0.00246 0.00245 0.00001 -0.00019 -0.00147 0.00004 0.00000 3 3d1+ 3 3d2-2 4f1+ 2 4f3+ 3 2px 3 2px 3 2px 3 2px 3 3d1+ 3 3d2-0.00004 0.00000 0.00295 -0.00002 0.00001 -0.00079 0.00000 0.00000 0.00002 0.00004 3 3d2- 3 4f1+ 3 4f3+ 3 4f2-3 4f1+ 3 4f3+ 3 4f2-3 3d1+ 0.00000 -0.00019 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 Symmetry no. 3 1 3d1- 1 3d1-1 2py 1 2py 1 3d1- 1 3d1-1 2py 1 2py 1 2py 1 2py 0.00011 -0.00339 0.00023 -0.00031 0.00148 -0.00012 0.45347 0.02121 0.00063 -0.00063 1 3d1- 1 4f1- 1 4f3- 1 4f1- 1 4f3- 1 4f1- 1 4f3- 1 5g1- 1 5g3-1 5g1- $-0.00023 \quad 0.00034 \quad 0.00003 \quad 0.00459 \quad 0.00038 \ -0.00136 \quad 0.00004 \ -0.00003 \ -0.00001 \quad 0.00002$ 1 5g3-2 2py 2 2py 2 2py 2 2py 2 3d1-2 3d1- 2 3d1-2 4f1-2 4f3-0.00006 0.46856 0.00163 0.00610 0.00387 0.00002 0.00014 -0.00273 0.00005 0.00000 2 4f1- 2 4f3- 3 1s 3 1s 3 1s 3 1s 3 1s 3 2py 3 2pz 3 2py -0.00017 0.00000 0.00000 0.00050 0.00001 -0.00021 -0.00020 0.02853 0.01247 0.00012 3 2py 3 2pz 3 2py 3 2pz 3 3d1- 3 3d0 3 3d2+ 3 3d1- 3 3d0 3 2pz -0.00008 0.00134 0.00014 0.00023 0.00146 0.00001 0.00000 0.00000 0.00020 0.00009 3 4f1-3 3d2+ 3 3d1- 3 3d0 3 3d2+ 3 4f3-3 4f0 3 4f2+ 3 4f1-3 4f3-0.00008 -0.00048 -0.00022 -0.00031 0.00000 0.00000 0.00000 0.00000 0.00005 -0.00002 3 4f0 3 4f2+ -0.00003 0.00000 Symmetry no. 4 1 3d2- 1 3d2- 1 3d2- 1 3d2- 1 3d2- 1 4f2- 1 4f2- 1 4f2- 1 5g2- 1 5g4-0.00116 0.00001 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 1 5g4-2 3d2- 2 3d2-2 3d2-2 4f2-2 4f2-3 2px 1 5g2-3 2px 3 2nx 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 -0.00000 -0.00000 3 2px 3 3d2-3 3d1+ 3 3d2- 3 3d1+ 3 3d2- 3 3d1+ 3 4f2- 3 4f1+ 3 4f3+ -0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 3 4f2-3 4f1+ 3 4f3+ 0.00000 0.00000 0.00000

116

Population analysis by basis function type

| Unic<br>1<br>2<br>3<br>4                        | que<br>Pt<br>O<br>F<br>F | atom s<br>-0.00453<br>0.00519<br>0.00003<br>0.00003 | p<br>0.00422<br>1.07329<br>0.02298<br>0.02298 | d<br>0.87083<br>-0.00425<br>-0.00037<br>-0.00037 | f<br>0.00962<br>-0.00004<br>0.00002<br>0.00002 | g<br>0.00037<br>0.00000<br>0.00000<br>0.00000 | Total<br>0.88051<br>1.07419<br>0.02265<br>0.02265 | Charge<br>+17.11949<br>+ 6.92581<br>+ 8.97735<br>+ 8.97735 |
|-------------------------------------------------|--------------------------|-----------------------------------------------------|-----------------------------------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------------------------|------------------------------------------------------------|
| NPA batch (NBO) ( <sup>3</sup> A <sub>2</sub> ) |                          |                                                     |                                               |                                                  |                                                |                                               |                                                   |                                                            |
|                                                 |                          |                                                     | ,<br>,                                        | Natu                                             | ral Popul                                      | ation                                         |                                                   | Natural                                                    |
|                                                 |                          | Natural                                             |                                               |                                                  |                                                |                                               |                                                   | - Spin                                                     |
| Atom                                            | No                       | Charge                                              | Core                                          | Vale                                             | nce Ry                                         | dberg                                         | Total                                             | Density                                                    |
| Pt                                              | 1                        | 1.62718                                             | 67.99822                                      | 8.33                                             | <br>382 0.                                     | 04079                                         | 76.37282                                          | 0.84265                                                    |
| 0                                               | 2                        | -0.17559                                            | 2.00000                                       | 6.15                                             | 374 0.                                         | 02185                                         | 8.17559                                           | 1.10038                                                    |
| F                                               | 3                        | -0.72580                                            | 2.00000                                       | 7.70                                             | 908 0.                                         | 01671                                         | 9.72580                                           | 0.02849                                                    |
| F                                               | 4                        | -0.72580                                            | 2.00000                                       | 7.70                                             | 908 0.                                         | 01671                                         | 9.72580                                           | 0.02849                                                    |
| * Tota                                          | ====<br>al *             | ······································              | 73.99821                                      | 29.90                                            | 572 0.                                         | ========<br>09606 1                           | .04.00000                                         | 2.00000                                                    |

AIM Charges (<sup>3</sup>A<sub>2</sub>) Total result:

| #Basin    | Integral(a.u.)  | Vol(Bohr^3)  | Vol(rho>0.001)                   |
|-----------|-----------------|--------------|----------------------------------|
| 1         | 9.7229946528    | 1321.462     | 120.975                          |
| 2         | 76.2755283325   | 791.221      | 152.833                          |
| 3         | 9.7229929347    | 1306.951     | 120.975                          |
| 4         | 8.2782042345    | 1208.529     | 112.868                          |
| Sum of al | bove integrals: | 103.99972015 |                                  |
| C £1      |                 | 0.001) 507   | $(50 \text{ D} \cdot 1 \cdot 1)$ |

Sum of basin volumes (rho>0.001): 507.650 Bohr^3

Normalization factor of the integral of electron density is 0.9999997 The atomic charges after normalization and atomic volumes:

| 1 (Pt) | Charge: | 1.724266  | Volume: | 152.833 Bohr^3 |
|--------|---------|-----------|---------|----------------|
| 2 (O)  | Charge: | -0.278227 | Volume: | 112.868 Bohr^3 |
| 3 (F)  | Charge: | -0.723019 | Volume: | 120.975 Bohr^3 |
| 4 (F)  | Charge: | -0.723021 | Volume: | 120.975 Bohr^3 |

#### Table S8.3. OPtF<sub>3</sub> (*C*<sub>2v</sub>; <sup>4</sup>A<sub>1</sub>)

#### CASSCF(11,8)/CASPT2/AVTZ(-PP)

Optimization and normal mode calculation carried out in  $C_1$  point group symmetry (y-axis in the  $C_2$  axis and x-axis perpendicular to the molecular plane). In the main text (Table 3) and in Table S3.7 the z-axis was placed along the  $C_2$  axis.

| OPT2=  | 1.78490998 ANGSTROM |
|--------|---------------------|
| FPT3=  | 1.82576796 ANGSTROM |
| FPTO3= | 92.44618513 DEGREE  |
| FPT4=  | 1.82577139 ANGSTROM |
| FPTO4= | 92.44610803 DEGREE  |
| FPT5=  | 1.87447191 ANGSTROM |
| FPTO5= | 179.99999565 DEGREE |
|        |                     |

TOTAL ENERGIES

-491.78467492

CI vector

| 2222aaa0 | 0.9604760  |
|----------|------------|
| 2aa222a0 | 0.1653963  |
| 22ab2aaa | 0.0962865  |
| 2a2ba2aa | -0.0929145 |
| 22aa2aab | -0.0916928 |
| 2a2aa2ab | 0.0856573  |
| 2220aaa2 | -0.0773071 |

\_\_\_\_\_

NATURAL ORBITALS FOR STATE 1.1 (ms2=3)

| Orbital | Occupation | Energy    | Coeffi | cients   |   |      |          |   |      |          |
|---------|------------|-----------|--------|----------|---|------|----------|---|------|----------|
| 1.1     | 2.00000    | -26.31039 | 3 1s   | -0.81546 | 4 | 1s   | 0.57655  |   |      |          |
| 2.1     | 2.00000    | -26.31038 | 3 1s   | -0.57662 | 4 | 1s   | -0.81551 |   |      |          |
| 3.1     | 2.00000    | -26.26063 | 5 1s   | 0.99873  |   |      |          |   |      |          |
| 4.1     | 2.00000    | -20.76459 | 2 1s   | 0.99885  |   |      |          |   |      |          |
| 5.1     | 2.00000    | -4.70122  | 1 1s   | 0.99941  |   |      |          |   |      |          |
| 6.1     | 2.00000    | -2.84921  | 1 2pz  | 0.99147  |   |      |          |   |      |          |
| 7.1     | 2.00000    | -2.83446  | 1 2px  | -0.99841 |   |      |          |   |      |          |
| 8.1     | 2.00000    | -2.83429  | 1 2py  | -0.97913 |   |      |          |   |      |          |
| 9.1     | 2.00000    | -1.59750  | 3 1s   | -0.65658 | 4 | 1s   | -0.65654 |   |      |          |
| 10.1    | 2.00000    | -1.57003  | 3 1s   | 0.68179  | 4 | 1s   | -0.68183 |   |      |          |
| 11.1    | 2.00000    | -1.51710  | 5 1s   | 0.91866  |   |      |          |   |      |          |
| 12.1    | 2.00000    | -1.30623  | 2 1s   | 0.90437  |   |      |          |   |      |          |
| 13.1    | 2.00000    | -0.79149  | 1 1s   | -0.25042 | 1 | 3d0  | -0.44649 | 1 | 3d2+ | 0.31547  |
|         |            |           | 3 2pz  | 0.48473  | 4 | 2pz  | -0.48472 |   |      |          |
| 14.1    | 2.00000    | -0.72685  | 3 2py  | 0.54155  | 4 | 2ру  | -0.54153 | 5 | 2pz  | 0.40940  |
| 15.1    | 2.00000    | -0.70561  | 1 3d1+ | 0.28880  | 3 | 2px  | 0.61124  | 4 | 2px  | -0.61122 |
| 16.1    | 2.00000    | -0.67598  | 3 2py  | -0.66754 | 4 | 2py  | -0.66755 |   |      |          |
| 17.1    | 2.00000    | -0.66329  | 3 2px  | 0.57822  | 4 | 2px  | 0.57824  | 5 | 2рх  | 0.39818  |
| 18.1    | 2.00000    | -0.65501  | 1 2pz  | 0.38465  | 3 | 2pz  | -0.59668 | 4 | 2pz  | -0.59668 |
| 19.1    | 2.00000    | -0.63760  | 3 2px  | 0.30928  | 4 | 2px  | 0.30929  | 5 | 2px  | -0.81351 |
| 20.1    | 2.00000    | -0.60884  | 3 2py  | -0.30528 | 4 | 2ру  | 0.30528  | 5 | 2pz  | 0.82173  |
| 21.1    | 2.00000    | -0.58831  | 1 1s   | 0.53808  | 1 | 3d0  | -0.41234 | 1 | 3d2+ | 0.64243  |
|         |            |           | 5 2py  | -0.29582 |   |      |          |   |      |          |
| 22.1    | 1.99593    | -0.77427  | 1 2py  | -0.27378 | 1 | 3d2+ | 0.37351  | 2 | 1s   | 0.31607  |
|         |            |           | 5 2py  | 0.71580  |   |      |          |   |      |          |
| 23.1    | 1.95066    | -0.66127  | 1 3d2- | -0.78507 | 2 | 2px  | 0.48793  |   |      |          |
| 24.1    | 1.94903    | -0.64384  | 1 3d1- | -0.80076 | 2 | 2pz  | 0.49251  |   |      |          |
| 25.1    | 1.94478    | -0.74254  | 1 2py  | 0.35595  | 1 | 3d0  | 0.25242  | 1 | 3d2+ | 0.27509  |
|         |            |           | 2 2py  | -0.83143 |   |      |          |   |      |          |
|         |            |           |        |          |   |      |          |   |      |          |

| 26.1<br>27.1<br>28.1<br>29.1<br>30.1 | 1.04993<br>1.04816<br>1.00099<br>0.06053<br>-0.00000 | -0.35902<br>-0.35488<br>-0.35139<br>0.22247<br>0.01681 | 1 3d1-<br>1 3d2-<br>1 3d1+<br>1 1s<br>2 1s<br>1 1s<br>1 2py<br>2 1s<br>5 2000 | 0.59836<br>0.61398<br>-0.96808<br>-0.38958<br>0.27874<br>2.62171<br>0.85257<br>-1.26036 | 2 2pz<br>2 2px<br>3 2px<br>1 3d0<br>2 2py<br>1 1s<br>1 3d0<br>2 2py | 0.87335<br>0.86789<br>0.27951<br>0.62891<br>0.86651<br>-1.94698<br>-0.38828<br>-0.49319 | 4 2px<br>1 3d2+<br>5 2py<br>1 2py<br>1 3d2+<br>5 1s | -0.27951<br>0.58148<br>-0.35933<br>-0.37795<br>-0.49619<br>-0.82879 |
|--------------------------------------|------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|
|                                      |                                                      |                                                        | 5 2py                                                                         | 0.30328                                                                                 |                                                                     |                                                                                         |                                                     |                                                                     |

Spin population: Individual basis function populations 1 1s 1 1s 1 1s 1 1s 1 1s 1 1s 1 2px 1 2py 1 2pz 1 2px 0.00001 -0.00296 -0.00022 -0.00002 -0.00012 -0.00000 0.00014 0.00031 0.00004 -0.00304 1 2pz 1 2px 1 2py 1 2pz 1 2px 1 2py 1 2pz 1 2px 1 2py 1 2pv -0.00066 0.00134 0.00121 -0.00520 -0.00051 -0.00015 0.00005 -0.00020 0.00106 -0.00007 1 3d0 1 3d2-1 3d1+ 1 3d2+ 1 3d1-1 3d0 1 2pz 1 2px 1 2py 1 2pz 0.00005 -0.00008 -0.00000 -0.00008 0.00088 0.28979 0.84280 0.00623 0.26573 0.00008 1 3d1+ 1 3d2+ 1 3d1-1 3d0 1 3d2-1 3d1+ 1 3d2+ 1 3d1-1 3d2-1 3d0 0.01864 0.03275 0.00042 0.02874 -0.00002 0.00055 0.00180 0.00000 0.00113 -0.00022 1 3d1+ 1 3d2+ 1 3d1- 1 3d0 1 3d2- 1 3d1+ 1 3d2+ 1 3d1-1 4f1+ 1 3d2--0.00038 -0.00030 -0.00000 -0.00451 0.00003 0.00020 -0.00003 -0.00000 -0.00021 0.00002 1 4f3+ 1 4f2- 1 4f3- 1 4f2+ 1 4f1+ 1 4f1-1 4f1-1 4f0 1 4f0 1 4f3+-0.00001 0.00010 0.00011 0.00000 -0.00000 0.00008 0.00022 -0.00021 0.00160 0.00203 1 4f2-1 4f3-1 4f2+ 1 4f1+ 1 4f1-1 4f0 1 4f3+ 1 4f2-1 4f3-1 4f2+ 0.00005 -0.00022 0.00146 -0.00050 0.00000 -0.00355 -0.00368 0.00004 0.00006 -0.00364 1 5g2- 1 5g1+ 1 5g4+ 1 5g1- 1 5g2+ 1 5g4- 1 5g3+ 1 5g0 1 5g3-1 5g0 -0.00000 0.00006 -0.00003 -0.00000 0.00006 0.00000 0.00004 0.00000 0.00004 -0.00000 1 5g1+ 1 5g4+ 1 5g1-1 5g2+ 1 5g4-1 5g3+ 1 5g3-1 5g2-2 1s 2 15 0.00025 0.00049 -0.00003 0.00040 -0.00002 0.00144 0.00000 0.00072 0.00000 0.00387 2 2px 2 1s 2 1s 2 2py 2 2pz 2 2px 2 2py 2 1s 2 2pz 2 2px 0.00002 0.00151 0.00195 0.66596 0.02523 0.67684 0.00362 -0.00076 0.00282 0.00192 2 2py 2 2pz 2 2px 2 2py 2 2pz 2 3d0 2 3d2- 2 3d1+ 2 3d2+ 2 3d1--0.00315 0.00244 0.00231 0.00030 0.00391 -0.00000 0.00000 0.00000 -0.00001 0.00000 2 3d0 2 3d0 2 3d2-2 3d1+ 2 3d2+ 2 3d1-2 3d2-2 3d1+ 2 3d2+ 2 3d1--0.00002 -0.00032 0.00010 -0.00004 -0.00028 0.00001 -0.00251 0.00011 0.00004 -0.00276 2 4f0 2 4f2-2 4f3-2 4f2+ 2 4f1+ 2 4f1+ 2 4f1-2 4f3+ 2 4f1-2 4f0 -0.00000 0.00002 0.00005 0.00001 -0.00000 0.00003 -0.00002 0.00001 -0.00007 0.0 2 4f3-2 4f2+ 2 4f3+ 2 4f2-3 1s 3 1s 3 1s 3 1s 3 1s 3 2px 0.00001 0.00012 0.00001 -0.00001 0.00000 0.00003 0.00000 -0.00012 -0.00122 0.05975 3 2py 3 2pz 3 2pv 3 2pz 3 2px 3 2py 3 2pz 3 2px 3 2px 3 2pv 0.00488 -0.00010 0.00009 0.00005 -0.00001 0.00185 0.00018 -0.00019 -0.00011 0.00130 3 3d2- 3 3d1+ 3 3d2+ 3 3d1-3 3d0 3 3d2-3 3d1+ 3 3d2+ 3 2pz 3 3d0 -0.00037 0.00000 0.00000 0.00001 0.00000 0.00001 0.00001 0.00001 0.00033 0.00000 3 3d1-3 3d0 3 3d2-3 3d1+ 3 3d2+ 3 3d1-3 4f1+ 3 4f1-3 4f0 34f3+0.00014 -0.00000 -0.00000 -0.00150 0.00002 0.00021 0.00002 0.00001 0.00000 0.00000 3 4f2+ 3 4f1+ 3 4f1-3 4f0 3 4f3+ 3 4f2-3 4f2-3 4f3-3 4f3-3 4f2+ 0.00000 0.00000 0.00000 0.00002 0.00009 0.00000 0.00000 0.00001 -0.00000 -0.00000 4 1s 4 15 4 1s 4 1s 4 1s 4 2px 4 2py 4 2pz 4 2px 4 2py 0.00000 0.00003 0.00000 -0.00012 -0.00122 0.05975 0.00488 -0.00010 0.00009 0.00005 4 3d1+ 4 2pz 4 3d0 4 3d2-4 2pz 4 2px 4 2py 4 2pz 4 2px 4 2py -0.00001 0.00185 0.00018 -0.00019 -0.00011 0.00130 -0.00037 0.00000 0.00000 0.00001 4 3d2+ 4 3d1-4 3d0 4 3d2- 4 3d1+ 4 3d2+ 4 3d1- 4 3d0 4 3d2-4 3d1+ 0.00000 0.00001 0.00001 0.00001 0.00033 0.00000 0.00014 -0.00000 -0.00000 -0.00150 4 3d2+ 4 3d1-4 4f1+ 4 4f1-4 4f0 4 4f3+ 4 4f2- 4 4f3-4 4f2+ 4 4f1+ 0.00002 0.00021 0.00002 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 120

4 4f1-4 4f3+ 4 4f2- 4 4f3-4 4f0 4 4f2+ 5 1s 5 1s 5 1s 5 1s 0.00009 0.00000 0.00000 0.00001 -0.00000 -0.00000 0.00000 -0.00040 0.00001 -0.00017 5 2px 5 2pz 5 1s 5 2px 5 2py 5 2pz 5 2py 5 2px 5 2py 5 2pz -0.00047 0.01811 -0.01643 0.01204 0.00008 -0.00013 0.00011 0.00036 -0.00022 0.00016 5 2px 5 2py 5 2pz 5 3d0 5 3d2-5 3d1+ 5 3d2+ 5 3d1-5 3d0 5 3d2--0.00023 -0.00014 0.00010 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00013 5 3d1+ 5 3d2+ 5 3d1-5 3d0 5 3d2-5 3d1+ 5 3d2+ 5 3d1-5 4f1+ 5 4f1-0.00001 0.00004 0.00010 0.00001 -0.00005 0.00001 0.00005 0.00036 0.00000 0.00000 5 4f0 5 4f3+ 5 4f2-5 4f3-5 4f2+ 5 4f1+ 5 4f1-5 4f0 5 4f3+ 5 4f2-0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002 0.00005 0.00001 5 4f3-5 4f2+ 0.00001 0.00004

Population analysis by basis function type

| Uniq | ue atom | S        | р        | d        | f        | g       | Total   | Charge    |
|------|---------|----------|----------|----------|----------|---------|---------|-----------|
| 1    | PT      | -0.00331 | -0.00580 | 1.48408  | -0.00602 | 0.00343 | 1.47237 | +16.52763 |
| 2    | 0       | 0.00736  | 1.38143  | -0.00568 | 0.00017  | 0.00000 | 1.38328 | + 6.61672 |
| 3    | F       | -0.00131 | 0.06731  | -0.00078 | 0.00015  | 0.00000 | 0.06537 | + 8.93463 |
| 4    | F       | -0.00131 | 0.06731  | -0.00078 | 0.00015  | 0.00000 | 0.06537 | + 8.93463 |
| 5    | F       | -0.00104 | 0.01382  | 0.00068  | 0.00015  | 0.00000 | 0.01361 | + 8.98639 |

Spin density (BP86/AVTZ(-PP), iso-surface = 0.08 electron a.u.<sup>-3</sup>)



NPA batch (NBO) (<sup>4</sup>A<sub>1</sub>) Summary of Natural Population Analysis:

|          |              |                     |           | Natural     | Population |           |
|----------|--------------|---------------------|-----------|-------------|------------|-----------|
| Atom     | No           | Natural<br>Charge   | Core      | Valence     | Rydberg    | Total     |
| <br>Pt   | 1            | 2.07220             | 67.99889  | 7.86537     | 0.06354    | 75.92780  |
| 0        | 2            | -0.12526            | 2.00000   | 6.10609     | 0.01918    | 8.12526   |
| F        | 3            | -0.62988            | 2.00000   | 7.61152     | 0.01836    | 9.62988   |
| F        | 4            | -0.62988            | 2.00000   | 7.61152     | 0.01836    | 9.62988   |
| F        | 5            | -0.68717            | 2.00000   | 7.66809     | 0.01908    | 9.68717   |
| * Tota   | ====<br>al * | 0.00000             | 75.99889  | 36.86259    | 0.13852    | 113.00000 |
| AIM C    | harg         | ges $({}^{4}A_{1})$ |           |             |            |           |
| Total re | esult        | •                   |           |             |            |           |
| #Basi    | in           | Integral(a.u.)      | Vol(Bol   | hr^3) Vol(r | ho>0.001)  |           |
| 1        |              | 9.6682883151        | 1113.1    | 61 112.     | 576        |           |
| 2        |              | 75.7400296961       | 441.3     | 30 121.     | 373        |           |
| 3        |              | 9.6988587638        | 1202.4    | 39 115.     | 252        |           |
| 4        |              | 8.2242414397        | 1012.0    | 75 110.     | 163        |           |
| 5        |              | 9.6683210564        | 1128.9    | 76 112.     | 573        |           |
| Sum o    | f abo        | ove integrals:      | 112.9997  | 73927       |            |           |
| Sum o    | f bas        | sin volumes (rh     | o>0.001): | 571.938 Bo  | ohr^3      |           |

Normalization factor of the integral of electron density is 0.999998 The atomic charges after normalization and atomic volumes:

| c atomi | c charges | and norman | ization and | atomic volumes. |
|---------|-----------|------------|-------------|-----------------|
| 1 (Pt)  | Charge:   | 2.259796   | Volume:     | 121.373 Bohr^3  |
| 2 (O )  | Charge:   | -0.224260  | Volume:     | 110.163 Bohr^3  |
| 3 (F)   | Charge:   | -0.668343  | Volume:     | 112.573 Bohr^3  |
| 4 (F )  | Charge:   | -0.668311  | Volume:     | 112.576 Bohr^3  |
| 5 (F)   | Charge:   | -0.698881  | Volume:     | 115.252 Bohr^3  |

# Part 9. CASSCF calculations on different spin states of OCuF (<sup>3</sup>Σ<sup>-</sup>; C<sub>∞v</sub>) and OCuF<sub>2</sub> (<sup>2</sup>B<sub>2</sub>, <sup>4</sup>A<sub>2</sub>; C<sub>2v</sub>)

Table S9.1. OCuF ( $C_{2v}/C_{\infty\nu}$ ;  ${}^{3}A_{2}/{}^{3}\Sigma^{-}$ )

#### CASSCF(14,9)/CASPT2/VTZ-DK

Optimization and normal mode calculation carried out in  $C_1$  point group symmetry.

| CuF= | 1.68706376 ANG |
|------|----------------|
| CuO= | 1.63489075 ANG |

A1 = 180.000000 DEGREE

TOTAL ENERGIES

=

-1827.66479990

CI vector

| 0.8850348  |
|------------|
| 0.4404442  |
| -0.0696963 |
| -0.0519433 |
|            |

#### NATURAL ORBITALS FOR STATE 1.4 (ms2=2)

| Orbital | Occupati | ion Energy |   | Coeff | icients  |   |       |          |
|---------|----------|------------|---|-------|----------|---|-------|----------|
| 1.1     | 2.00000  | -332.73456 | 1 | 1s    | 0.97828  |   |       |          |
| 2.1     | 2.00000  | -41.96310  | 1 | 1s    | 0.97824  |   |       |          |
| 3.1     | 2.00000  | -36.10835  | 1 | 2pz   | 0.99997  |   |       |          |
| 4.1     | 2.00000  | -36.10370  | 1 | 2px   | 0.99973  |   |       |          |
| 5.1     | 2.00000  | -36.10370  | 1 | 2py   | 0.99973  |   |       |          |
| 6.1     | 2.00000  | -26.25004  | 2 | 1s    | 0.99916  |   |       |          |
| 7.1     | 2.00000  | -20.63786  | 3 | 1s    | 0.99914  |   |       |          |
| 8.1     | 2.00000  | -5.44392   | 1 | 1s    | 0.99788  |   |       |          |
| 9.1     | 2.00000  | -3.64203   | 1 | 2pz   | 0.99580  |   |       |          |
| 10.1    | 2.00000  | -3.63761   | 1 | 2px   | 0.99986  |   |       |          |
| 11.1    | 2.00000  | -3.63761   | 1 | 2py   | 0.99986  |   |       |          |
| 12.1    | 2.00000  | -1.50725   | 2 | 1s    | 0.94529  |   |       |          |
| 13.1    | 2.00000  | -1.18327   | 3 | 1s    | 0.94264  | 3 | 2pz   | -0.25925 |
| 14.1    | 2.00000  | -0.62768   | 2 | 2pz   | 0.87729  |   |       |          |
| 15.1    | 2.00000  | -0.59791   | 2 | 2py   | 0.91798  |   |       |          |
| 16.1    | 2.00000  | -0.59791   | 2 | 2px   | 0.91798  |   |       |          |
| 17.1    | 1.99923  | -0.75727   | 1 | 3d2+  | 1.00494  |   |       |          |
| 18.1    | 1.99923  | -0.75727   | 1 | 3d2-  | -1.00494 |   |       |          |
| 19.1    | 1.98859  | -0.61823   | 1 | 1s    | 0.32645  | 1 | 3d0   | -0.69610 |
|         |          |            | 3 | 2pz   | 0.50090  |   |       |          |
| 20.1    | 1.97549  | -0.77134   | 1 | 3d0   | 0.66322  | 3 | 2pz   | 0.65818  |
| 21.1    | 1.83175  | -0.59636   | 1 | 3d1-  | 0.73716  | 3 | 2ру   | -0.57480 |
| 22.1    | 1.83175  | -0.59636   | 1 | 3d1+  | 0.73716  | 3 | 2рх   | -0.57480 |
| 23.1    | 1.16833  | -0.33998   | 1 | 3d1+  | -0.68745 | 3 | 2рх   | -0.73276 |
| 24.1    | 1.16833  | -0.33998   | 1 | 3d1-  | 0.68745  | 3 | 2ру   | 0.73276  |
| 25.1    | 0.03729  | 0.35433    | 1 | 1s    | -0.83973 | 1 | 2pz   | 0.40061  |
|         |          |            | 1 | 3d0   | -0.28422 | 1 | 3d0   | 0.27189  |
|         |          |            | 3 | 1s    | 0.35654  | 3 | 3 2pz | 0.77469  |
|         |          |            | 3 | 2pz   | -0.36542 |   |       |          |

Spin population: Individual basis function populations

| 1 1s               | 1 1s              | 1 1s              | 1 1s              | 1 1s              | 1 1s              | 1 1s              | 1 2px             | 1 2py    | 1 2pz    |
|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------|----------|
| 0.00000            | 0.00000 ·         | -0.00000          | -0.01956 ·        | -0.00194 -        | -0.00006          | 0.00049           | 0.00000           | 0.00000  | -0.00000 |
| 1 2px              | 1 2py             | 1 2pz             | 1 2px             | 1 2py             | 1 2pz             | 1 2px             | 1 2py             | 1 2pz    | 1 2px    |
| 0.00006            | 0.00006           | -0.00000          | -0.00379          | -0.00379          | 0.00121           | 0.00927           | 0.00927           | -0.00580 | 0.00044  |
| 1 2py              | 1 2pz             | 1 2px             | 1 2py             | 1 2pz             | 1 3d0             | 1 3d2-            | 1 3d1+            | 1 3d2+   | 1 3d1-   |
| 0.00044            | 0.00012           | 0.00229           | 0.00229           | -0.00001          | 0.00577           | 0.00039           | 0.43644           | 0.00039  | 0.43644  |
| 1 3d0              | 1 3d2-            | 1 3d1+            | 1 3d2+            | 1 3d1-            | 1 3d0             | 1 3d2-            | 1 3d1+            | 1 3d2+   | 1 3d1-   |
| 0.00206            | 0.00000           | 0.01147           | 0.00000           | 0.01147           | 0.00009           | 0.00000           | 0.00276           | 0.00000  | 0.00276  |
| 1 3d0              | 1 3d2-            | 1 3d1+            | 1 3d2+            | 1 3d1-            | 1 4f1+            | 1 4f1-            | 1 4f0             | 1 4f3+   | 1 4f2-   |
| -0.00032           | -0.00000          | 0.00196           | -0.00000          | 0.00196           | 0.00000           | 0.00000           | 0.00000           | 0.00000  | -0.00000 |
| 1 4f3-             | 1 4f2+            | 1 4f1+            | 1 4f1-            | 1 4f0             | 1 4f3+            | 1 4f2-            | 1 4f3-            | 1 4f2+   | 1 5g0    |
| 0.00000 ·          | -0.00000          | 0.00018           | 0.00018           | 0.00003           | 0.00000           | 0.00000           | 0.00000           | 0.00000  | -0.00000 |
| 1 5g2-             | 1 5g1+            | 1 5g4+            | 1 5g1-            | 1 5g2+            | 1 5g4-            | 1 5g3+            | 1 5g3-            | 2 1s     | 2 1s     |
| 0.00000 ·          | -0.00000          | 0.00000           | -0.00000          | 0.00000           | 0.00000           | 0.00000           | 0.00000           | 0.00000  | -0.00001 |
| 2 1s               | 2 1s              | 2 2px             | 2 2py             | 2 2pz             | 2 2px             | 2 2py             | 2 2pz             | 2 2px    | 2 2py    |
| 0.00000 -          | -0.00001          | 0.00835           | 0.00835           | -0.00070 ·        | -0.00010          | -0.00010          | -0.00003          | 0.00021  | 0.00021  |
| 2 2pz              | 2 3d0             | 2 3d2-            | 2 3d1+            | 2 3d2+            | 2 3d1-            | 2 3d0             | 2 3d2-            | 2 3d1+   | 2 3d2+   |
| -0.00001           | -0.00000          | 0.00000           | 0.00000           | 0.00000           | 0.00000           | -0.00000          | 0.00000           | 0.00010  | 0.00000  |
| 2 3d1-             | 2 4f1+            | 2 4f1-            | 2 4f0             | 2 4f3+            | 2 4f2-            | 2 4f3-            | 2 4f2+            | 3 1s     | 3 1s     |
| 0.00010            | 0.00001           | 0.00001           | -0.00000          | 0.00000           | 0.00000           | 0.00000           | 0.00000           | 0.00000  | 0.00332  |
| 3 1s               | 3 1s              | 3 2px             | 3 2py             | 3 2pz             | 3 2px             | 3 2py             | 3 2pz             | 3 2px    | 3 2py    |
| 0.00006 -          | -0.00000          | 0.50879           | 0.50879           | 0.02646           | 0.00383           | 0.00383           | -0.00088          | 0.01667  | 0.01667  |
| 3 2pz              | 3 3d0             | 3 3d2-            | 3 3d1+            | 3 3d2+            | 3 3d1-            | 3 3d0             | 3 3d2-            | 3 3d1+   | 3 3d2+   |
| -0.00863           | 0.00001           | 0.00000           | 0.00002           | 0.00000           | 0.00002           | -0.00006          | 0.00000           | -0.00015 | 0.00000  |
| 3 3d1-<br>-0.00015 | 3 4f1+<br>0.00002 | 3 4f1-<br>0.00002 | 3 4f0<br>-0.00000 | 3 4f3+<br>0.00000 | 3 4f2-<br>0.00000 | 3 4f3-<br>0.00000 | 3 4f2+<br>0.00000 |          |          |

Population analysis by basis function type

| Unique ato | om s     | р       | d        | f       | g        | Total   | Charge    |
|------------|----------|---------|----------|---------|----------|---------|-----------|
| 1 CU       | -0.02107 | 0.01205 | 0.91364  | 0.00039 | -0.00000 | 0.90500 | +28.09500 |
| 2 F        | -0.00002 | 0.01617 | 0.00020  | 0.00001 | 0.00000  | 0.01637 | + 8.98363 |
| 3 0        | 0.00338  | 1.07553 | -0.00031 | 0.00003 | 0.00000  | 1.07863 | + 6.92137 |

Spin density (BP86/AVTZ(-PP), iso-surface = 0.08 electron a.u.<sup>-3</sup>)



#### NPA batch (NBO) (<sup>3</sup>Σ<sup>-</sup>) Summary of Natural Population Analysis:

|            |                                      |           | Natural P           | opulation  |          | Natural |
|------------|--------------------------------------|-----------|---------------------|------------|----------|---------|
| A.t        | Natural                              |           | ·                   |            |          | Spin    |
| ATOM NO    | Charge                               | Core      | valence             | Rydberg    |          | Density |
| Cu 1       | 1.47630                              | 17.99973  | 9.47996             | 0.04402    | 27.52370 | 0.85150 |
| F 2        | -0.83510                             | 2.00000   | 7.82569             | 0.00941    | 9.83510  | 0.01999 |
| 03         | -0.64120                             | 2.00000   | 6.62491             | 0.01629    | 8.64120  | 1.12851 |
| =======    |                                      |           |                     |            |          |         |
| * Total    | * 0.00000                            | 21.99972  | 23.93055            | 0.06972    | 46.00000 | 2.00000 |
| AIM Chai   | $\operatorname{ges}(^{3}\Sigma^{-})$ |           |                     |            |          |         |
| Total resu | lt:                                  |           |                     |            |          |         |
| #Basin     | Integral(a.u.)                       | ) Vol(Boh | r^3) Vol(rh         | o > 0.001) |          |         |
| 1          | 8.5884401254                         | 1373.66   | <sup>59</sup> 137.1 | 13         |          |         |
| 2          | 27.6325391379                        | 859.77    | /8 114.4            | 58         |          |         |
| 3          | 9.7790901595                         | 1270.58   | 125.7               | 66         |          |         |
| Sum of a   | bove integrals:                      | 46.00006  | 5942                |            |          |         |
| Sum of b   | asin volumes (rh                     | o>0.001): | 377.337 Bol         | nr^3       |          |         |

Normalization factor of the integral of electron density is 1.000002 The atomic charges after normalization and atomic volumes:

| 1 (Cu) | Charge: | 1.367503  | Volume: | 114.458 Bohr^3 |
|--------|---------|-----------|---------|----------------|
| 2 (F)  | Charge: | -0.779075 | Volume: | 125.766 Bohr^3 |
| 3 (O ) | Charge: | -0.588427 | Volume: | 137.113 Bohr^3 |

Vibrational Frequencies:

 $OCuF(C_{xv}, {}^{3}\Sigma^{-})$ 

|                                  |                  | CASPT2 <sup>[a]</sup> | CASPT2 <sup>[a]</sup> |
|----------------------------------|------------------|-----------------------|-----------------------|
|                                  |                  | /VTZ-DK               | /AVTZ-DK              |
| d <sub>Cu-F</sub> [Å]            |                  | 1.687                 | 1.692                 |
| d <sub>Cu-0</sub> [Å]            |                  | 1.635                 | 1.636                 |
| $v_1(\pi)$ [cm <sup>-1</sup> ]   |                  | 78.62                 | 85.56                 |
| $v_2 (\sigma^+) [cm^{-1}]$       | $^{16}O^{63}CuF$ | 672.73                | 664.03                |
| $v_3 (\sigma^{-}) [cm^{-1}]$     |                  | 925.55                | 918.15                |
| $v_1(\pi)$ [cm <sup>-1</sup> ]   |                  | 78.13                 | 85.01                 |
| $v_2 (\sigma^+) [cm^{-1}]$       | $^{16}O^{65}CuF$ | 672.70                | 663.99                |
| $v_3 (\sigma^{-}) [cm^{-1}]$     |                  | 920.49                | 913.14                |
| $\nu_1(\pi)$ [cm <sup>-1</sup> ] |                  | 80.57                 | 87.38                 |
| $v_2 (\sigma^+) [cm^{-1}]$       | $^{18}O^{63}CuF$ | 653.30                | 645.14                |
| $v_3 (\sigma^{-}) [cm^{-1}]$     |                  | 907.60                | 899.93                |
| $v_1(\pi)$ [cm <sup>-1</sup> ]   |                  | 80.09                 | 86.85                 |
| $v_2 (\sigma^+) [cm^{-1}]$       | $^{18}O^{65}CuF$ | 653.30                | 645.14                |
| $v_3 (\sigma^{-}) [cm^{-1}]$     |                  | 902.41                | 894.79                |

<sup>[a]</sup> CASSCF(14,9) reference function.

**Table S9.2.** Structural parameters (Å, deg) and relative energies (kJ mol<sup>-1</sup>) of the energetically lowest doublet and quartet states of OCuF<sub>2</sub>.

| Electronic state $(C_{2v})$    | r(Cu–O) | r(Cu–F) | α(O-Cu-F) | $\Delta E_{CCSD(T)}^{a}$ | $\Delta E_{\text{CASPT2}}$ b | $\Delta E_{\text{CASSCF}}^{c}$ |
|--------------------------------|---------|---------|-----------|--------------------------|------------------------------|--------------------------------|
| $^{2}B_{2}$                    | 1.748   | 1.687   | 95.5      | 0                        | 6.6                          | 47.7                           |
| <sup>4</sup> A <sub>2</sub> -2 | 1.945   | 1.727   | 96.9      | 20.4                     | 32.1                         | 0                              |
| ${}^{4}A_{2}-1$                | 1.596   | 1.703   | 120.6     | 45.1                     | 0                            | 134.4                          |

Structures were optimized on CASSCF(13,8)/CASPT2/VTZ-DK level. Values were calculated on the <sup>a</sup> CCSD(T)/VTZ-DK, <sup>b</sup> CASSCF(13,8)/CASPT2/VTZ-DK, and <sup>c</sup> CASSCF(13,9)/VTZ-DK level.

**Table S9.3.** Structural parameters (Å, deg) and vibrational frequencies  $(cm^{-1})$  of the energetically lowest doublet and quartet states of OCuF<sub>2</sub>.

| Electronic<br>States                          | $^{2}\mathbf{B}_{2}$       |                                    | <sup>4</sup> A <sub>2</sub> -2            |                                              |                                              |                        |                        |
|-----------------------------------------------|----------------------------|------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------|------------------------|
|                                               | CASP<br>T2/VT<br>Z-DK<br>a | NEVPT2<br>/VTZ-<br>DK <sup>b</sup> | NEVPT2<br>/cc-<br>pwCVT<br>Z <sup>b</sup> | NEVPT2<br>/cc-<br>pwCVT<br>Z-DK <sup>b</sup> | CASPT2/c<br>c-<br>pwCVTZ-<br>DK <sup>b</sup> | CASPT2/<br>VTZ-DK<br>a | CASPT2/<br>VTZ-DK<br>a |
| r(CuO)                                        | 1.75                       | 1.65                               | 1.67                                      | 1.65                                         | 1.63                                         | 1.60                   | 1.95                   |
| r(CuF)                                        | 1.69                       | 1.71                               | 1.72                                      | 1.71                                         | 1.70                                         | 1.70                   | 1.73                   |
| a(OCuF)                                       | 95.5                       | 112.8                              | 111.0                                     | 113.8                                        | 117.3                                        | 120.6                  | 96.9                   |
| <b>Cu-O str.</b><br>( <b>a</b> <sub>1</sub> ) | -                          | 788                                | 705                                       | 890                                          | 1075                                         | 1031                   | -                      |
| <b>F-Cu-F</b> ( <b>b</b> <sub>2</sub> )       | -                          | 746                                | 745                                       | 765                                          | 750                                          | 713                    | -                      |
| <b>F-Cu-F</b> ( <b>a</b> <sub>1</sub> )       | -                          | 636                                | 584                                       | 652                                          | 684                                          | 500                    | -                      |
| $\mathbf{C}_0^{2 \text{ c}}$                  | 0.749                      | 0.886                              | 0.899                                     | 0.876                                        | 0.867                                        | 0.852                  | 0.991                  |

<sup>a</sup> CASSCF(13,8); <sup>b</sup> CASSCF(9,7); <sup>c</sup> Square of the CI coefficient for the leading electron configuration.

### Table S9.4. OCuF<sub>2</sub> (*C*<sub>2v</sub>, <sup>2</sup>B<sub>2</sub>)

#### CASSCF(13,8)/CASPT2/VTZ-DK

| CuO= | 1.74797088 ANG     |
|------|--------------------|
| CuF= | 1.68745055 ANG     |
| A1=  | 95.54567128 DEGREE |

TOTAL ENERGIES

-1928.331559163

#### CI vector

\_\_\_\_\_

| 22 | 2a                               | 2                                                                                                                                  | 0.8657032                                                                                                                                                                                                      |
|----|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22 | 2a                               | 2                                                                                                                                  | -0.4188549                                                                                                                                                                                                     |
| 22 | 2b                               | 2                                                                                                                                  | 0.2115417                                                                                                                                                                                                      |
| 22 | 2a                               | 2                                                                                                                                  | -0.1097699                                                                                                                                                                                                     |
| 22 | 2a                               | 2                                                                                                                                  | -0.1017718                                                                                                                                                                                                     |
|    | 22<br>22<br>22<br>22<br>22<br>22 | <ul> <li>22</li> <li>2a</li> <li>22</li> <li>2b</li> <li>22</li> <li>2a</li> <li>22</li> <li>2a</li> <li>22</li> <li>2a</li> </ul> | <ul> <li>22</li> <li>2a</li> <li>2</li> <li>2a</li> <li>2</li> <li>2b</li> <li>2</li> <li>2a</li> <li>2</li> <li>2a</li> <li>2</li> <li>2a</li> <li>2</li> <li>2a</li> <li>2</li> <li>2a</li> <li>2</li> </ul> |

NATURAL ORBITALS FOR STATE 1.3 (ms2=1)

| 11.1 | 2.00000 | -0.60144 | 3 2pz -0.87760  | 3 2py -0.25726  |                |
|------|---------|----------|-----------------|-----------------|----------------|
| 12.1 | 1.99734 | -0.75196 | 1 3d0 -0.54498  | 1 3d2+ 0.44511  | 3 2py -0.50811 |
| 13.1 | 1.57702 | -0.52248 | 1 3d0 -0.49035  | 1 3d2+ -0.45030 | 2 2pz 0.66409  |
| 14.1 | 0.42967 | -0.11871 | 1 3d0 0.59768   | 1 3d2+ 0.40772  | 2 2pz 0.75596  |
| 3.2  | 2.00000 | -0.59928 | 3 2px 0.92361   |                 |                |
| 4.2  | 1.99968 | -0.75593 | 1 3d1+ 0.69816  | 2 2px 0.67191   |                |
| 5.2  | 1.99715 | -0.67176 | 1 3d1+ -0.73004 | 2 2px 0.71564   |                |
| 6.3  | 2.00000 | -0.59311 | 3 2py 0.31920   | 3 2pz -0.86836  |                |
| 7.3  | 1.99522 | -0.79562 | 1 3d1- 1.00100  |                 |                |
| 8.3  | 1.00446 | -0.34978 | 2 2py 1.02622   |                 |                |
| 1.4  | 2.00000 | -0.62462 | 3 2px 0.91004   |                 |                |
| 2.4  | 1.99947 | -0.73594 | 1 3d2- 0.99929  |                 |                |

### Table S9.5. OCuF<sub>2</sub> (*C*<sub>2v</sub>, <sup>2</sup>B<sub>2</sub>)

CASSCF(13,9)/VTZ-DK

| CuO= | 1.74797088 ANG     |
|------|--------------------|
| CuF= | 1.68745055 ANG     |
| A1=  | 95.54567128 DEGREE |

TOTAL ENERGIES

\_

-1927.19072291

CI vector

| 2200 | 22 | 2a | 2 | 0.8912460  |
|------|----|----|---|------------|
| 2020 | 22 | 2a | 2 | -0.3787268 |
| 2aa0 | 22 | 2b | 2 | -0.1764282 |
| 2ba0 | 22 | 2a | 2 | 0.0917583  |
| 2ab0 | 22 | 2a | 2 | 0.0846699  |
| 2ba0 | 22 | a2 | 2 | 0.0533127  |

# NATURAL ORBITALS FOR STATE 1.3 (ms2=1)

| Orbital | Occupation | Energy   | Coefficients    |                 |                 |                 |                 |
|---------|------------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 11.1    | 2.00000    | -0.60673 | 1 1s -0.01270   | 1 1s -0.02088   | 1 1s 0.02271    | 1 2pz 0.02996   | 1 2pz -0.08370  |
|         |            |          | 1 2pz 0.01178   | 1 2pz -0.02135  | 1 3d0 0.02453   | 1 3d2+ 0.01474  | 2 1s 0.05027    |
|         |            |          | 2 1s 0.02812    | 2 2pz 0.05295   | 3 1s -0.01149   | 3 1s 0.02009    | 3 2pz -0.90964  |
|         |            |          | 3 2py -0.13227  | 3 2pz -0.05817  | 3 2py -0.01695  | 3 3d1- 0.02146  |                 |
| 12.1    | 1.98958    | -0.77125 | 1 1s 0.07489    | 1 1s 0.10759    | 1 1s 0.03016    | 1 2pz 0.04989   | 1 2pz -0.02748  |
|         |            |          | 1 2pz -0.02007  | 1 3d0 -0.58167  | 1 3d2+ 0.80659  | 1 3d0 0.01696   | 1 3d2+ -0.01077 |
|         |            |          | 2 1s 0.02013    | 2 1s 0.01085    | 2 2pz 0.04689   | 2 2pz -0.01113  | 3 1s 0.01788    |
|         |            |          | 3 2py 0.02596   | 3 2py -0.01317  | •               | ·               |                 |
| 13.1    | 1.65477    | -0.55010 | 1 1s 0.01132    | 1 1s 0.06820    | 1 1s -0.05655   | 1 1s -0.09118   | 1 1s 0.01247    |
|         |            |          | 1 1s -0.08363   | 1 2pz 0.05000   | 1 2pz 0.23547   | 1 2pz -0.18530  | 1 2pz 0.01506   |
|         |            |          | 1 2pz -0.08342  | 1 3d0 -0.52201  | 1 3d2+ -0.40514 | 1 3d0 -0.02101  | 1 3d0 0.04721   |
|         |            |          | 1 3d2+ 0.01114  | 2 1s 0.10758    | 2 1s 0.01772    | 2 2pz 0.66361   | 2 2pz 0.01681   |
|         |            |          | 2 2pz -0.01731  | 2 3d0 -0.02115  | 3 1s -0.01720   | 3 2pz 0.03618   | 3 2py -0.02499  |
| 14.1    | 0.35085    | -0.09222 | 1 1s -0.02186   | 1 1s -0.14832   | 1 1s -0.06253   | 1 2pz -0.05930  | 1 2pz -0.17170  |
|         |            |          | 1 2pz 0.11300   | 1 2pz -0.01429  | 1 2pz 0.07103   | 1 3d0 -0.62213  | 1 3d2+ -0.37865 |
|         |            |          | 1 3d0 0.07993   | 1 3d2+ 0.06287  | 1 3d0 0.02289   | 1 3d2+ 0.01744  | 1 3d0 -0.01663  |
|         |            |          | 2 1s 0.03193    | 2 1s 0.07517    | 2 2pz -0.75899  | 2 2pz -0.01534  | 2 2pz 0.07654   |
|         |            |          | 3 1s -0.04406   | 3 1s -0.01077   | 3 2pz -0.12100  | 3 2py 0.21689   | 3 2pz -0.01659  |
|         |            |          | 3 2py 0.02470   |                 | •               |                 |                 |
| 15.1    | 0.00996    | 1.38601  | 1 1s 0.01638    | 1 1s 0.46127    | 1 1s 0.13895    | 1 1s 0.04298    | 1 1s -0.06955   |
|         |            |          | 1 2pz 0.01266   | 1 2pz 0.23510   | 1 2pz -0.09972  | 1 2pz -0.10371  | 1 3d0 -0.09549  |
|         |            |          | 1 3d2+ 0.03507  | 1 3d0 -0.54256  | 1 3d2+ 0.97142  | 1 3d0 -0.04686  | 1 3d2+ 0.09375  |
|         |            |          | 1 3d0 0.19461   | 1 3d2+ -0.26273 | 1 4f0 -0.01762  | 1 4f2+ 0.01745  | 2 1s -0.01989   |
|         |            |          | 2 1s -0.03414   | 2 2pz 0.06644   | 2 2pz -0.02601  | 2 3d0 -0.01623  | 3 1s -0.05490   |
|         |            |          | 3 1s 0.08274    | 3 2pz -0.01834  | 3 2py 0.14798   | 3 2py -0.04135  |                 |
| 16.1    | -0.00000   | 0.08444  | 1 1s -0.05141   | 1 1s -0.13877   | 1 1s -0.71434   | 1 1s -2.91523   | 1 1s 0.64523    |
|         |            |          | 1 1s -0.16389   | 1 1s 3.56518    | 1 2pz 0.05781   | 1 2pz 0.77396   | 1 2pz -0.44316  |
|         |            |          | 1 2pz 0.04926   | 1 2pz -0.95020  | 1 3d0 -0.04816  | 1 3d2+ -0.02830 | 1 3d0 0.01203   |
|         |            |          | 1 3d2+ -0.03903 | 1 3d0 0.20876   | 1 3d2+ 0.10854  | 2 1s -0.01284   | 2 2pz -0.01972  |
|         |            |          | 2 2pz 0.03203   | 3 1s -0.01447   | 3 1s -0.12992   | 3 1s 0.15396    | 3 2pz 0.12071   |
|         |            |          | 3 2pz -0.01421  | 3 2py 0.02034   | 3 2pz 0.08906   | 3 2py -0.18521  | ·               |
| 3.2     | 2.00000    | -0.60574 | 1 2px -0.03043  | 1 2px 0.07495   | 1 2px 0.02018   | 1 3d1+ -0.01809 | 3 2px 0.92364   |
|         |            |          | 3 2px 0.06076   | 3 3d20.02215    |                 |                 | •               |
| 4.2     | 1.99964    | -0.76130 | 1 2px -0.04990  | 1 2px 0.05403   | 1 2px 0.02259   | 1 3d1+ 0.67467  | 1 3d1+ -0.02133 |
|         |            |          | 2 2px 0.69226   | 2 3d1+ -0.01809 | 3 2px -0.01170  |                 |                 |
| 5.2     | 1.99654    | -0.67869 | 1 2px -0.02829  | 1 2px -0.03646  | 1 2px 0.04524   | 1 2px 0.01876   | 1 3d1+ -0.75148 |
|         |            |          | 1 3d1+ 0.02454  | 1 3d1+ 0.01261  | 2 2px 0.69388   | 2 2px 0.01962   | 3 2px -0.04810  |

| 6.2 | -0.00000 | 0.08683  | 1 2px -0.07876  | 1 2px -1.14925  | 1 2px 0.74976   | 1 2px -0.08987  | 1 2px 1.56665                           |
|-----|----------|----------|-----------------|-----------------|-----------------|-----------------|-----------------------------------------|
|     |          |          | 1 3d1+ 0.02199  | 1 3d1+ -0.01590 | 2 2px -0.14752  | 2 2px 0.01069   | 2 2px -0.06103                          |
|     |          |          | 3 2nx -0.20666  | 3 2nx 0.01836   | 3 2nx -0.10277  |                 | •                                       |
|     |          |          | 5 2px 0.20000   | 5 2px 0101050   | 5 2px 0.102//   |                 |                                         |
| 6.3 | 2.00000  | -0.59898 | 1 2py 0.05741   | 1 2py 0.19658   | 1 2py -0.18511  | 1 2py 0.01692   | 1 2py -0.06293                          |
|     |          |          | 1 3d1- 0.04679  | 1 3d10.01395    | 1 3d10.03101    | 2 2pv -0.03438  | 3 15 0.05670                            |
|     |          |          | 3 1s -0 01258   | 3 2nv 0 34010   | 3 2nz -0 86011  | 3 2  pv 0 02377 | 3 2nz -0 05273                          |
|     |          |          | 2 241 0 01772   | 5 203 0154010   | 5 202 0.00011   | 5 203 0:02577   | 5 262 0:052/5                           |
|     |          |          | 5 5u1- 0.01//2  |                 |                 |                 |                                         |
| 7.3 | 1.99303  | -0.80829 | 1 2py -0.02230  | 1 2py -0.03776  | 1 2py 0.05880   | 1 3d1- 0.99816  | 1 3d10.03256                            |
|     |          |          | 1 3d10.02644    | 2 2py 0.08956   | 2 2py -0.01009  | 3 1s 0.01360    | 3 2py -0.10772                          |
|     |          |          | 3 2pz -0.08195  | 3 2py -0.01155  | 3 2pz -0.02593  |                 |                                         |
| 8.3 | 1,00656  | -0.34626 | 1 2pv -0.06739  | 1 2pv 0.05509   | 1 2pv 0.02687   | 1 3d10.13601    | 1 3d1- 0.02344                          |
|     |          |          | 1 3d10 01081    | 2 2ny 1 02212   | 2 2ny 0.01185   | 2 2ny = 0.05037 | 2 3d10 01427                            |
|     |          |          |                 | 2 2 2 9 1.02212 |                 | 2 2py 0.05057   | 2 201 0.01427                           |
|     |          |          | 3 15 -0.02131   | 3 15 -0.018/9   | 3 2py 0.06550   | 3 2pz -0.06664  | 3 2py 0.01409                           |
| 9.3 | -0.00000 | 0.14402  | 1 2py -0.01140  | 1 2py -0.19269  | 1 2py -2.98615  | 1 2py 1.45209   | 1 2py -0.15336                          |
|     |          |          | 1 2py 2.65476   | 2 2py -0.10228  | 2 2py -0.02106  | 3 1s -0.15114   | 3 1s -0.10389                           |
|     |          |          | 3 2py -0.08244  | 3 2pv 0.05328   | 3 2pv -0.25152  | 3 2pz 0.01562   |                                         |
|     |          |          |                 |                 |                 |                 |                                         |
| 1.4 | 2.00000  | -0.61900 | 1 3d2- 0.10543  | 1 3d2- 0.01251  | 1 3d2- 0.02424  | 3 2px 0.92438   | 3 2px 0.05246                           |
|     |          |          | 3 3d20.01824    |                 |                 |                 | •                                       |
| 2 / | 1 99999  | -0 75877 | 1 3d2 - 1 00839 | 1 342 - 0 02030 | 1 342 _ 0 02007 | 3.2nv = 0.17869 | 3 2nv -0 03222                          |
| 2.4 | 1.00000  | -0.75077 | 1 242 0 40447   | 1 242 0 22000   | 1 242 0 14051   | 1 242 1 64500   | 2 2 d 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 5.4 | -0.00000 | 0.04242  | 1 Juz0.48447    | 1 Suz0.32098    | 1 JUZ0.14951    | 1 502- 1.64588  | 2 3uz- 0.04/90                          |
|     |          |          | 3 2px -0.38359  | 3 2px -0.05874  | 3 2px -0.20934  | 3 3d20.01156    | 3 3d2- 0.01773                          |
|     |          |          |                 |                 |                 |                 |                                         |

Spin population: Individual basis function populations

Symmetry no. 1 1 1s 1 2pz 1 2pz 1 2pz -0.00000 -0.00000 0.00002 -0.00724 -0.00242 0.00013 -0.00060 -0.00000 0.00010 -0.00908 1 3d2+ 1 3d0 1 3d2+ 1 3d0 1 2pz 1 2pz 1 2pz 1 3d0 1 3d2+ 1 3d0 0.01301 -0.00056 -0.00145 -0.11468 -0.06098 0.00314 -0.00033 -0.00008 -0.00008 -0.00140 1 3d2+ 1 4f0 1 4f2+ 1 4f0 1 4f2+ 1 5g0 1 5g4+ 1 5g2+ 2 1s 2 1s -0.00043 0.00000 0.00000 0.00012 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00011 2 2pz 2 3d0 2 3d2+ 2 3d0 2 1s 2 2pz 2 2pz 2 3d2+ 2 4f0 2 1s 0.00004 -0.00037 0.24788 0.00534 -0.01223 -0.00001 0.00000 -0.00022 0.00001 0.00002 2 4f2+ 3 1s 3 1s 3 1s 3 1s 3 2pz 3 2py 3 2pz 3 2py 3 2pz 0.00000 0.00000 -0.00018 0.00000 -0.00006 0.00208 0.00392 0.00001 0.00009 0.00004 3 2py 3 3d0 3 3d2+ 3 3d1-3 3d0 3 3d2+ 3 3d1-3 4f0 3 4f2+ 3 4f1--0.00033 -0.00000 -0.00000 -0.00000 -0.00001 -0.00001 -0.00002 -0.00000 -0.00000 -0.00000 3 4f3--0.00000 Symmetry no. 2 1 2px 1 2px 1 2px 1 2px 1 2px 1 2px 1 3d1+ 1 3d1+ 1 3d1+ 1 3d1+ 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 -0.00017 0.00000 0.00000 0.00000 1 4f1+1 4f3+ 1 4f1+ 1 4f3+ 1 5g1+ 1 5g3+ 2 2px 2 2px 2 2px 2 3d1+ -0.00000 0.00000 0.00000 0.00000 -0.00000 0.00028 0.00000 0.00000 -0.00000 2 4f1+ 2 4f3+ 3 2px 3 3d1+ 3 3d2-2 3d1+ 3 2px 3 2px 3 3d1+ 3 3d2--0.00000 -0.00000 0.00000 0.00000 -0.00000 -0.00000 0.00000 -0.00000 -0.00000 3 4f1+ 3 4f3+ 3 4f2--0.00000 -0.00000 -0.00000 Symmetry no. 3 1 2py 1 2py 1 2py 1 2py 1 3d1- 1 3d1-1 3d1- 1 3d1-1 2pv 1 2pv 0.00000 -0.00000 -0.00953 0.00604 0.00082 0.00354 0.01620 0.00434 0.00143 -0.00253 1 4f1-1 4f3-1 4f1-1 4f3-1 5g1-1 5g3-2 2py 2 2py 2 2py 2 3d1-0.00000 0.00000 0.00023 0.00001 0.00000 0.00000 0.93255 0.01027 -0.03172 0.00000 2 3d1-2 4f1-2 4f3-3 1s 3 1s 3 1s 3 1s 3 2py 3 2pz 3 2py -0.00001 -0.00000 0.00004 0.00000 0.00012 0.00000 -0.00032 0.00295 0.00246 0.00017 3 3d0 3 3d2+ 3 3d1-3 3d0 3 4f1-3 2pz 3 2py 3 2pz 3 3d1-3 3d2+ 0.00001 -0.00005 -0.00025 -0.00000 0.00000 -0.00000 -0.00000 0.00002 -0.00002 0.00000 3 4f3-3 4f0 3 4f2+ -0.00000 0.00000 0.00000 Symmetry no. 4 1 3d2-1 3d2-1 3d2- 1 3d2-1 4f2-1 4f2-1 5g2-1 5g4-2 3d2-2 3d2-0.00003 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 4f2-3 3d2-3 3d1+ 3 3d2-3 3d1+ 3 4f2-3 4f1+ 3 2px 3 2px 3 2px 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

3 4f3+ 0.00000

Population analysis by basis function type

| Uniq | ue atom | S        | р       | d        | f        | g       | Total    | Charge    |
|------|---------|----------|---------|----------|----------|---------|----------|-----------|
| 1    | CU      | -0.01010 | 0.00290 | -0.15553 | 0.00036  | 0.00000 | -0.16238 | +29.16238 |
| 2    | 0       | -0.00044 | 1.15237 | -0.00023 | 0.00005  | 0.00000 | 1.15175  | + 6.84825 |
| 3    | F1      | -0.00022 | 0.00556 | -0.00002 | -0.00000 | 0.00000 | 0.00531  | + 8.99469 |

#### NPA batch (NBO) ( $^{2}B_{2}$ )

| Natural |            |          |          | Natural Population |         |          |  |  |  |  |
|---------|------------|----------|----------|--------------------|---------|----------|--|--|--|--|
| Atom No |            | Charge   | Core     | Valence            | Rydberg | Total    |  |  |  |  |
| Cu      | 1          | 1.68216  | 17.99962 | 9.27094            | 0.04728 | 27.31784 |  |  |  |  |
| 0       | 2          | -0.05801 | 2.00000  | 6.04989            | 0.00813 | 8.05801  |  |  |  |  |
| F       | 3          | -0.81207 | 2.00000  | 7.80391            | 0.00816 | 9.81207  |  |  |  |  |
| F       | 4          | -0.81207 | 2.00000  | 7.80391            | 0.00816 | 9.81207  |  |  |  |  |
| * Tot   | ==<br>al * | .00000   | 23.99962 | 30.92864           | 0.07173 | 55.00000 |  |  |  |  |

AIM Charges (<sup>2</sup>B<sub>2</sub>) Total result: #Basin Integral(a u ) Vol(Bohr^3) Vol(rho>0.001)

| #Basın   | Integral(a.u.)     | Vol(Bohr^3)   | Vol(rho>0.001) |
|----------|--------------------|---------------|----------------|
| 1        | 9.7629373919       | 1107.963      | 121.716        |
| 2        | 27.4065135687      | 433.902       | 82.499         |
| 3        | 9.7629375290       | 1107.973      | 121.716        |
| 4        | 8.0672110811       | 1154.297      | 115.161        |
| Sum of a | bove integrals:    | 54.99959957   |                |
| Sum of b | asin volumes (rho> | 0.001): 441.0 | )92 Bohr^3     |

Normalization factor of the integral of electron density is 0.999993 The atomic charges after normalization and atomic volumes:

| 1 (Cu) | Charge: | 1.593287  | Volume: | 82.499 Bohr^3  |
|--------|---------|-----------|---------|----------------|
| 2 (O ) | Charge: | -0.067270 | Volume: | 115.161 Bohr^3 |
| 3 (F)  | Charge: | -0.763008 | Volume: | 121.716 Bohr^3 |
| 4 (F)  | Charge: | -0.763008 | Volume: | 121.716 Bohr^3 |

### Table S9.6. OCuF<sub>2</sub> (*C*<sub>2v</sub>, <sup>4</sup>A<sub>2</sub>-1)

#### CASSCF(13,8)/CASPT2/VTZ-DK

| CuO= | 1.59555342 ANG      |
|------|---------------------|
| CuF= | 1.70290557 ANG      |
| A1=  | 120.63916148 DEGREE |

TOTAL ENERGIES -1928.334057309137

#### CI vector

=

|   | _ | _ | _ | _ | _ | _ | _ | _ |  |
|---|---|---|---|---|---|---|---|---|--|
| _ | = | = | = | = | = | = | = | = |  |
|   |   |   |   |   |   |   |   |   |  |

| 22222aaa | 0.9232968  |
|----------|------------|
| 222aa22a | -0.2893757 |
| 22a2a2a2 | 0.1841784  |
| 22aa2a22 | 0.1343200  |
| 22aaa222 | -0.0843995 |
|          |            |

#### NATURAL ORBITALS FOR STATE 1.4 (ms2=3)

| Orbital | Occupation | Energy Coef | ficients        |                |                |
|---------|------------|-------------|-----------------|----------------|----------------|
| 11.1    | 2.00000    | -0.61317    | 3 2py 0.85301   |                |                |
| 12.1    | 1.99968    | -1.09545    | 1 3d2+ -0.28058 | 2 1s -0.73211  | 3 2pz 0.54787  |
| 13.1    | 1.87430    | -0.75844    | 1 3d0 0.51756   | 1 3d2+ 0.26986 | 2 2pz -0.75235 |
| 14.1    | 1.12710    | -0.37571    | 1 3d0 0.75411   | 1 3d2+ 0.32451 | 2 2pz 0.59882  |
| 3.2     | 2.00000    | -0.59245    | 3 2px 0.91174   |                |                |
| 4.2     | 1.93837    | -0.76286    | 1 3d1+ 0.91835  | 2 2px 0.32587  |                |
| 5.2     | 1.06106    | -0.42199    | 1 3d1+ -0.41499 | 2 2px 0.94519  |                |
| 6.3     | 2.00000    | -0.57638    | 3 2py 0.37873   | 3 2pz 0.85131  |                |
| 7.3     | 1.88959    | -0.71646    | 1 3d1- 0.81030  | 2 2py 0.50298  |                |
| 8.3     | 1.11107    | -0.41733    | 1 3d10.57610    | 2 2py 0.85480  |                |
| 1.4     | 2.00000    | -0.60312    | 3 2px 0.91517   |                |                |
| 2.4     | 1.99882    | -0.76589    | 1 3d2- 0.99887  |                |                |

\_

### Table S9.7. OCuF<sub>2</sub> (*C*<sub>2v</sub>, <sup>4</sup>A<sub>2</sub>-1)

CASSCF(13,9)/VTZ-DK

| CuO= | 1.59555342 ANG      |
|------|---------------------|
| CuF= | 1.70290557 ANG      |
| A1=  | 120.63916148 DEGREE |

#### CI vector

\_\_\_\_\_

| 22a0 | 2a | 2a | 2 | 0.9280886  |
|------|----|----|---|------------|
| 2a20 | 2a | a2 | 2 | -0.2580225 |
| 2a20 | a2 | 2a | 2 | -0.1657932 |
| 22a0 | a2 | a2 | 2 | -0.1514666 |
| 2a20 | a2 | a2 | 2 | -0.0689251 |
| 02a2 | 2a | 2a | 2 | -0.0521667 |

TOTAL ENERGIES -1927.15768893

#### NATURAL ORBITALS FOR STATE 1.4 (ms2=3)

==

Orbital Occupation Energy Coefficients

=

| 11.1 | 2.00000  | -0.60831 | 1 1s 0.02369    | 1 1s -0.01051   | 1 1s -0.01706   | 1 2pz -0.04621  | 1 2pz -0.09717  |
|------|----------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
|      |          |          | 1 2pz 0.10587   | 1 2pz 0.06428   | 1 3d0 -0.07931  | 1 3d2+ -0.02170 | 1 3d0 -0.01369  |
|      |          |          | 1 3d0 -0.03065  | 1 3d2+ -0.02597 | 2 1s -0.01952   | 2 1s 0.01760    | 2 2pz -0.10070  |
|      |          |          | 2 2pz -0.02139  | 3 1s -0.01427   | 3 2pz 0.73292   | 3 2py 0.52596   | 3 2pz 0.03219   |
|      |          |          | 3 2py 0.03494   | 3 3d0 0.01527   |                 |                 |                 |
| 12.1 | 1.98480  | -0.82453 | 1 1s 0.07575    | 1 1s 0.12960    | 1 1s 0.04551    | 1 2pz 0.04240   | 1 2pz 0.07594   |
|      |          |          | 1 2pz -0.02478  | 1 2pz -0.03421  | 1 3d0 -0.42690  | 1 3d2+ 0.89033  | 1 3d2+ -0.01766 |
|      |          |          | 1 3d0 0.01860   | 2 1s -0.04596   | 2 1s -0.01448   | 2 2pz 0.03471   | 3 1s 0.01753    |
|      |          |          | 3 1s 0.03115    | 3 2pz -0.01527  | 3 2py 0.01091   | 3 2pz 0.01222   | 3 2py -0.01509  |
| 13.1 | 1.89554  | -0.76720 | 1 1s 0.01469    | 1 1s 0.08230    | 1 1s 0.02928    | 1 1s -0.06117   | 1 1s -0.08635   |
|      |          |          | 1 2pz 0.07526   | 1 2pz 0.22800   | 1 2pz -0.19319  | 1 2pz 0.01435   | 1 2pz -0.08152  |
|      |          |          | 1 3d0 -0.52140  | 1 3d2+ -0.26290 | 1 3d0 0.03427   | 2 1s 0.11585    | 2 1s 0.03023    |
|      |          |          | 2 2pz 0.74642   | 2 2pz 0.01340   | 2 2pz -0.02794  | 2 3d0 -0.02416  | 3 1s -0.01312   |
|      |          |          | 3 2pz 0.05395   | 3 2py -0.04548  |                 |                 |                 |
| 14.1 | 1.10558  | -0.38572 | 1 1s 0.01027    | 1 1s 0.05784    | 1 1s 0.04431    | 1 1s -0.02432   | 1 1s -0.05236   |
|      |          |          | 1 2pz 0.07705   | 1 2pz 0.17244   | 1 2pz -0.18329  | 1 2pz 0.01441   | 1 2pz -0.04674  |
|      |          |          | 1 3d0 0.74078   | 1 3d2+ 0.34617  | 1 3d0 -0.07509  | 1 3d2+ -0.03583 | 1 3d0 -0.02138  |
|      |          |          | 2 1s -0.04653   | 2 1s -0.02693   | 2 2pz 0.59117   | 2 2pz 0.01020   | 3 1s 0.02973    |
|      |          |          | 3 2pz 0.25454   | 3 2py -0.04282  | 3 2pz 0.02698   |                 |                 |
| 15.1 | 0.01595  | 0.96704  | 1 1s 0.02283    | 1 1s 0.53582    | 1 1s 0.23241    | 1 1s 0.01446    | 1 1s 0.02592    |
|      |          |          | 1 2pz 0.04507   | 1 2pz 0.19655   | 1 2pz 0.13791   | 1 2pz -0.11459  | 1 3d0 0.01808   |
|      |          |          | 1 3d2+ 0.03052  | 1 3d0 -0.37825  | 1 3d2+ 0.88016  | 1 3d0 -0.04845  | 1 3d2+ 0.12946  |
|      |          |          | 1 3d0 0.17026   | 1 3d2+ -0.19626 | 1 4f0 -0.01805  | 1 4f2+ 0.02617  | 2 1s -0.11200   |
|      |          |          | 2 1s -0.15755   | 2 2pz 0.30748   | 2 2pz -0.09884  | 2 3d0 -0.01258  | 2 3d2+ 0.01682  |
|      |          |          | 3 1s -0.07834   | 3 1s 0.12587    | 3 2pz -0.09436  | 3 2py 0.13589   | 3 2pz 0.04182   |
|      |          |          | 3 2py -0.03890  |                 |                 |                 |                 |
| 16.1 | -0.00000 | 0.08051  | 1 1s -0.05934   | 1 1s -0.16008   | 1 1s -0.81514   | 1 1s -3.29350   | 1 1s 0.68310    |
|      |          |          | 1 1s -0.18196   | 1 1s 3.91344    | 1 2pz -0.13626  | 1 2pz -1.96548  | 1 2pz 0.89696   |
|      |          |          | 1 2pz -0.09219  | 1 2pz 1.56948   | 1 3d2+ -0.02185 | 1 3d0 -0.08720  | 1 3d2+ -0.07562 |
|      |          |          | 2 1s -0.01707   | 2 1s -0.17209   | 2 1s 0.17809    | 2 2pz -0.10009  | 2 2pz 0.02293   |
|      |          |          | 2 2pz -0.25276  | 3 1s -0.02833   | 3 1s -0.04846   | 3 2pz -0.04935  | 3 2py -0.06606  |
|      |          |          | 3 2py 0.01365   | 3 2pz -0.02561  | 3 2py -0.05251  |                 |                 |
| 3.2  | 2.00000  | -0.59929 | 1 2px -0.02866  | 1 2px 0.01964   | 1 2px 0.07317   | 1 2px 0.01565   | 1 3d1+ -0.06362 |
|      |          |          | 2 2px 0.02941   | 3 2px 0.91267   | 3 2px 0.05730   | 3 3d1+ 0.01195  | 3 3d20.01791    |
| 4.2  | 1.93733  | -0.77739 | 1 2px -0.01977  | 1 2px -0.06065  | 1 2px 0.08292   | 1 2px 0.02516   | 1 3d1+ 0.89860  |
|      |          |          | 1 3d1+ -0.01172 | 1 3d1+ -0.02708 | 2 2px 0.36525   | 2 2px 0.01074   | 2 3d1+ -0.02407 |
|      |          |          | 3 2px 0.05591   | 3 2px 0.01111   |                 |                 |                 |
| 5.2  | 1.06159  | -0.42172 | 1 2px -0.02714  | 1 2px -0.06731  | 1 2px 0.05853   | 1 2px 0.02442   | 1 3d1+ -0.45403 |

|     |          |          | 1 3d1+ 0.04971<br>2 3d1+ -0.01926 | 1 3d1+ 0.01382<br>3 2px -0.08516 | 2 2px 0.92098  | 2 2px 0.01332  | 2 2px -0.02352 |
|-----|----------|----------|-----------------------------------|----------------------------------|----------------|----------------|----------------|
| 6.2 | -0.00000 | 0.08589  | 1 2px -0.07670                    | 1 2px -1.18471                   | 1 2px 0.76899  | 1 2px -0.09189 | 1 2px 1.58758  |
|     |          |          | 1 3d1+ -0.02571                   | 1 3d1+ -0.01402                  | 1 3d1+ 0.04615 | 2 2px -0.15087 | 2 2px -0.06558 |
|     |          |          | 3 2px -0.21164                    | 3 2px 0.01883                    | 3 2px -0.09873 |                |                |
| 6.3 | 2.00000  | -0.58297 | 1 2py -0.02758                    | 1 2py -0.03428                   | 1 2py 0.06644  | 1 2py 0.02946  | 1 3d1- 0.02246 |
|     |          |          | 1 3d1- 0.03723                    | 2 2py -0.01980                   | 3 1s -0.03063  | 3 1s 0.01646   | 3 2py 0.38566  |
|     |          |          | 3 2pz 0.84944                     | 3 2py 0.01488                    | 3 2pz 0.06455  | 3 3d10.01254   | 3 3d0 0.01650  |
| 7.3 | 1.89929  | -0.73067 | 1 2py -0.04910                    | 1 2py -0.09213                   | 1 2py 0.13082  | 1 2py -0.01092 | 1 2py 0.02786  |
|     |          |          | 1 3d1- 0.78970                    | 1 3d10.01563                     | 1 3d10.01638   | 2 2py 0.53067  | 2 2py 0.01303  |
|     |          |          | 2 3d10.02741                      | 3 1s 0.03797                     | 3 1s 0.03247   | 3 2py -0.10641 | 3 2pz -0.03394 |
|     |          |          | 3 2py -0.03211                    |                                  |                |                |                |
| 8.3 | 1.10216  | -0.41867 | 1 2py -0.02167                    | 1 2py -0.03422                   | 1 2py 0.02410  | 1 3d10.60258   | 1 3d1- 0.07026 |
|     |          |          | 1 3d1- 0.02029                    | 2 2py 0.82800                    | 2 2py 0.01027  | 2 2py -0.01919 | 2 3d10.01210   |
|     |          |          | 3 1s -0.04227                     | 3 1s -0.01394                    | 3 2py 0.20152  | 3 2pz -0.07666 | 3 2py 0.02278  |
| 9.3 | -0.00000 | 0.12782  | 1 2py -0.01107                    | 1 2py -0.18949                   | 1 2py -2.94468 | 1 2py 1.42723  | 1 2py -0.14724 |
|     |          |          | 1 2py 2.59191                     | 1 3d10.03290                     | 1 3d1- 0.22392 | 2 2py -0.13736 | 2 2py -0.05842 |
|     |          |          | 3 1s -0.15016                     | 3 1s 0.05684                     | 3 2py -0.08751 | 3 2pz -0.06118 | 3 2py 0.04063  |
|     |          |          | 3 2pz -0.01637                    | 3 2py -0.26692                   | 3 2pz 0.09393  |                |                |
| 1.4 | 2.00000  | -0.60267 | 1 3d2- 0.11353                    | 1 3d2- 0.01099                   | 1 3d2- 0.01954 | 3 2px 0.92433  | 3 2px 0.06164  |
|     |          |          | 3 3d20.01681                      | 3 3d1+ 0.01072                   |                |                |                |
| 2.4 | 1.99776  | -0.80351 | 1 3d2- 1.00369                    | 1 3d20.03720                     | 1 3d20.02428   | 3 2px -0.17245 | 3 2px -0.03093 |
| 3.4 | -0.00000 | 0.57570  | 1 3d20.48179                      | 1 3d20.31268                     | 1 3d20.14659   | 1 3d2- 1.60110 | 2 3d2- 0.05554 |
|     |          |          | 3 2px -0.28074                    | 3 2px -0.01513                   | 3 2px -0.27210 | 3 3d2- 0.02724 |                |

Symmetry no. 1 1 1s 1 1s 1 1s 1 1s 1 2pz 1 2pz 1 2pz 1 15 1 1 5 1 1s -0.00000 -0.00000 0.00001 -0.00565 0.00255 0.00010 0.00151 0.00000 0.00046 -0.01921 1 2pz 1 3d0 1 3d2+ 1 3d0 1 3d2+ 1 3d0 1 3d2+ 1 2pz 1 2pz 1 3d0 0.04031 -0.00186 -0.00218 0.45859 0.10502 0.01559 0.00604 0.00131 0.00068 -0.00103 1 3d2+ 1 4f0 1 4f2+ 1 4f0 1 4f2+ 1 5g0 1 5g4+ 1 5g2+ 2 1s 2 1s 0.00116 0.00000 -0.00000 0.00009 0.00003 -0.00000 -0.00000 -0.00000 0.00000 0.00126 2 1s 2 1s 2 2pz 2 2pz 2 2pz 2 3d0 2 3d2+ 2 3d0 2 3d2+ 2 4f0  $-0.00001 \quad 0.00015 \quad 0.34208 \quad 0.00540 \ -0.00486 \quad 0.00003 \ -0.00000 \ -0.00011 \ -0.00001 \quad 0.00009$ 2 4f2+ 3 1s 3 1s 3 1s 3 1s 3 2pz 3 2py 3 2pz 3 2py 3 2pz -0.00000 0.00000 0.00041 -0.00001 -0.00009 0.04694 0.00177 0.00011 0.00008 0.00175 3 3d0 3 3d2+ 3 3d1-3 3d0 3 3d2+ 3 3d1-3 4f0 3 4f2+ 3 4f1-3 2py 0.00008 0.00000 -0.00000 0.00000 0.00002 0.00001 -0.00002 0.00000 0.00000 0.00000 3 4f3-0.00000 Symmetry no. 2 1 2px 1 3d1+ 1 3d1+ 1 3d1+ 1 2px 1 2nx 1 2nx 1 2px 1 3d1+ 1 2nx -0.00000 0.00004 -0.01266 0.01082 0.00047 0.00337 0.20435 0.01346 0.00330 -0.00135 1 4f3+ 1 4f1+ 1 4f3+ 1 5g1+ 1 5g3+ 2 2px 2 2px 1 4f1+ 2 2px 2 3d1+ -0.00000 0.00000 0.00025 0.00000 -0.00000 0.00000 0.77622 0.01079 -0.01370 0.00001 2 3d1+ 2 4f1+ 2 4f3+ 3 2px 3 2px 3 2px 3 3d1+ 3 3d2-3 3d1+ 3 3d2--0.00036 0.00001 0.00000 0.00570 -0.00004 0.00023 0.00000 0.00000 -0.00001 0.00001 3 4f3+ 3 4f2-3 4f1+ 0.00000 0.00000 -0.00000 Symmetry no. 3 1 3d1-1 2py 1 2py 1 2py 1 2py 1 2py 1 2py 1 3d1-1 3d1-1 3d1-0.00000 0.00009 -0.00385 0.00180 -0.00008 0.00291 0.32970 0.02098 0.00455 -0.00168 1 4f1-1 4f3-1 4f1-1 4f3-1 5g1-1 5g3-2 2py 2 2py 2 2py 2 3d1-0.00000 -0.00000 0.00013 0.00002 -0.00000 -0.00000 0.60619 0.00755 -0.00902 0.00001 2 4f1-2 4f3-3 1s 2 3d1-3 1s 3 1s 3 1s 3 2py 3 2pz 3 2py -0.00035 0.00002 0.00000 -0.00000 0.00077 -0.00001 -0.00001 0.03117 0.00483 0.00045 3 3d0 3 3d2+ 3 3d1-3 3d0 3 4f1-3 2pz 3 2pv 3 2pz 3 3d1-3 3d2+ 0.00010 0.00188 0.00029 0.00000 0.00000 0.00000 -0.00007 0.00003 -0.00004 0.00000 3 4f3-3 4f0 3 4f2+ 0.00000 0.00000 -0.00000 Symmetry no. 4 1 3d2-1 3d2-1 4f2-1 4f2-1 3d2-1 3d2-1 5g2-1 5g4-2 3d2-2 3d2-0.00212 0.00001 0.00000 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 3d2-2 4f2-3 2px 3 2px 3 2px 3 3d1+ 3 3d2-3 3d1+ 3 4f2-3 4f1+ 0.00000 0.00005 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3 4f3+

Spin population: Individual basis function populations

0.00000

Population analysis by basis function type

Unique atom d f Total Charge s р g -0.00148 0.02042 1.16278 0.00053 -0.00000 1.18224 +27.81776 1 CU 0.00140 1.72064 -0.00078 0.00011 0.00000 1.72136 + 6.27864 2 0 0.00053 0.04769 -0.00002 0.00000 0.00000 0.04820 + 8.95180 3 F1 AIM Charges (<sup>4</sup>A<sub>2</sub>) Total result: #Basin Integral(a.u.) Vol(Bohr^3) Vol(rho > 0.001)1 9.7752299840 1010.878 124.430 2 27.3091889995 302.024 78.889 3 9.7752300670 1010.885 124.430 4 8.1401691375 1307.501 115.896 54.99981819 Sum of above integrals: Sum of basin volumes (rho > 0.001): 443.646 Bohr^3

Normalization factor of the integral of electron density is 0.999997 The atomic charges after normalization and atomic volumes:

| 1 (Cu) | Charge: | 1.690721  | Volume: | 78.889 Bohr^3  |
|--------|---------|-----------|---------|----------------|
| 2 (O ) | Charge: | -0.140196 | Volume: | 115.896 Bohr^3 |
| 3 (F)  | Charge: | -0.775262 | Volume: | 124.430 Bohr^3 |
| 4 (F)  | Charge: | -0.775262 | Volume: | 124.430 Bohr^3 |

Summary of Natural Population Analysis:

#### Natural Population

|   |      |            | Natural  |          |              |         |          |   |  |
|---|------|------------|----------|----------|--------------|---------|----------|---|--|
|   | Atom | No         | Charge   | Core     | Valence      | Rydberg | Total    |   |  |
| - | Cu   | 1          | 1.79330  | 17.99960 | 9.14439      | 0.06271 | 27.20670 | - |  |
|   | 0    | 2          | -0.12877 | 2.00000  | 6.11736      | 0.01141 | 8.12877  |   |  |
|   | F    | 3          | -0.83227 | 2.00000  | 7.82242      | 0.00985 | 9.83227  |   |  |
| _ | F    | 4          | -0.83227 | 2.00000  | 7.82242      | 0.00985 | 9.83227  | _ |  |
| * | Tota | ==<br>al * | 0.00000  | 23.99960 | <br>30.90659 | 0.09380 | 55.00000 | - |  |

#### Table S9.8. OCuF<sub>2</sub> (*C*<sub>2v</sub>, <sup>4</sup>A<sub>2</sub>-2)

#### CASSCF(13,8)/CASPT2/VTZ-DK

| CuO= | 1.94526412 ANG     |
|------|--------------------|
| CuF= | 1.72682449 ANG     |
| A1=  | 96.94402658 DEGREE |

TOTAL ENERGIES

-1928.321850634891

#### CI vector

\_\_\_\_\_

| 22a | 2a | 2a | 2 | 0.9955934  |
|-----|----|----|---|------------|
| 2a2 | a2 | 2a | 2 | -0.0692200 |
| 2a2 | 2a | a2 | 2 | 0.0630527  |

#### NATURAL ORBITALS FOR STATE 1.4 (ms2=3)

| 12.1 | 2.00000 | -1.31234 | 2 | 1s   | 0.98181  |   |      |         |
|------|---------|----------|---|------|----------|---|------|---------|
| 13.1 | 1.99122 | -0.68513 | 2 | 2pz  | 0.93512  |   |      |         |
| 14.1 | 1.00879 | -0.24787 | 1 | 3d0  | 0.66456  | 1 | 3d2+ | 0.71366 |
| 3.2  | 2.00000 | -0.57684 | 3 | 2px  | 0.91813  |   |      |         |
| 4.2  | 1.99518 | -0.72565 | 1 | 3d1+ | 1.00261  |   |      |         |
| 5.2  | 1.00481 | -0.36815 | 2 | 2рх  | 1.02595  |   |      |         |
| 6.3  | 2.00000 | -0.58042 | 3 | 2ру  | -0.28433 | 3 | 2pz  | 0.87961 |
| 7.3  | 1.99601 | -0.75314 | 1 | 3d1- | -1.00468 |   |      |         |
| 8.3  | 1.00400 | -0.36230 | 2 | 2ру  | 1.03321  |   |      |         |
| 1.4  | 2.00000 | -0.59380 | 3 | 2px  | 0.91437  |   |      |         |
| 2.4  | 1.99999 | -0.72667 | 1 | 3d2- | 1.00471  |   |      |         |
|      |         |          |   |      |          |   |      |         |

Vibrational frequency:

#### OCuF<sub>2</sub> (<sup>4</sup>A<sub>2</sub>, C<sub>2v</sub>), CASSCF(13,8)/CASPT2/VTZ-DK

| 16O/63Cu    | 160/65Cu | 180/63Cu | 180/65Cu | Sym.           |
|-------------|----------|----------|----------|----------------|
| <br>1031.44 | 1027.28  | 990.57   | 986.21   | $A_1$          |
| 712.66      | 709.41   | 712.64   | 709.39   | $\mathbf{B}_2$ |
| 500.18      | 499.99   | 497.18   | 497.04   | $A_1$          |
| 237.47      | 236.82   | 230.23   | 229.56   | $\mathbf{B}_2$ |
| 220.52      | 218.97   | 217.74   | 216.17   | $B_1$          |
| <br>159.57  | 159.09   | 158.87   | 158.41   | $A_1$          |

### Table S9.9 OCuF<sub>2</sub> (*C*<sub>2v</sub>, <sup>4</sup>A<sub>2</sub>-2)

CASSCF(13,9)/VTZ-DK

| CuO= | 1.94526412 ANG     |
|------|--------------------|
| CuF= | 1.72682449 ANG     |
| A1=  | 96.94402658 DEGREE |

CI vector \_\_\_\_\_

| 22a0 | 2a | 2a | 2 | 0.9908901  |
|------|----|----|---|------------|
| 2a20 | a2 | 2a | 2 | 0.0868568  |
| 2a20 | 2a | a2 | 2 | -0.0809841 |
| 02a2 | 2a | 2a | 2 | -0.0534279 |

TOTAL ENERGIES -1927.20887665

# NATURAL ORBITALS FOR STATE 1.4 (ms2=3)

Orbital Occupation Energy Coefficients

| 10.1 | 2.00000 | -0.65599 | 1 1s -0.01850   | 1 1s -0.10561   | 1 1s 0.09487    | 1 1s 0.11253    | 1 1s -0.02246   |
|------|---------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
|      |         |          | 1 1s 0.08766    | 1 2pz 0.01555   | 1 3d0 -0.14012  | 1 3d2+ -0.09118 | 1 3d0 -0.01842  |
|      |         |          | 1 3d2+ -0.04711 | 1 3d2+ -0.01591 | 1 3d0 0.02564   | 1 3d2+ 0.05695  | 2 1s -0.06194   |
|      |         |          | 2 2pz -0.28250  | 3 1s -0.14909   | 3 1s -0.01256   | 3 2pz 0.22688   | 3 2py -0.76265  |
|      |         |          | 3 2pz 0.01306   | 3 2py -0.04002  | 3 3d2+ -0.01638 | ·               |                 |
| 11.1 | 2.00000 | -0.58177 | 1 1s 0.02801    | 1 1s 0.02573    | 1 1s -0.03011   | 1 1s -0.04653   | 1 2pz -0.02899  |
|      |         |          | 1 2pz 0.03011   | 1 2pz 0.05403   | 1 2pz 0.01638   | 1 3d0 -0.01184  | 1 3d2+ -0.02929 |
|      |         |          | 2 1s -0.02946   | 2 1s -0.02306   | 2 2pz -0.04321  | 3 1s 0.02804    | 3 1s -0.02186   |
|      |         |          | 3 2pz 0.87854   | 3 2py 0.25960   | 3 2pz 0.06087   | 3 2py 0.02785   | 3 3d10.01817    |
| 12.1 | 1.99328 | -0.78963 | 1 1s 0.12360    | 1 1s 0.07845    | 1 1s 0.02443    | 1 2pz 0.04374   | 1 2pz -0.01843  |
|      |         |          | 1 2pz -0.01813  | 1 3d0 -0.67312  | 1 3d2+ 0.73142  | 1 3d0 0.01796   | 1 3d2+ -0.01029 |
|      |         |          | 2 1s 0.02142    | 2 2pz 0.02911   | 3 1s 0.01388    | 3 2pz -0.01307  | 3 2py 0.03240   |
| 13.1 | 1.98535 | -0.69789 | 1 1s 0.03907    | 1 1s 0.06092    | 1 1s -0.02866   | 1 1s -0.06582   | 1 2pz 0.05752   |
|      |         |          | 1 2pz 0.21628   | 1 2pz -0.18418  | 1 2pz 0.02014   | 1 2pz -0.07178  | 1 3d0 -0.11458  |
|      |         |          | 1 3d2+ -0.14752 | 1 3d0 -0.03736  | 1 3d2+ -0.01596 | 1 3d0 -0.01299  | 1 3d0 0.03648   |
|      |         |          | 2 1s -0.02402   | 2 2pz 0.90111   | 2 2pz 0.01094   | 2 2pz 0.01234   | 2 3d0 -0.01986  |
|      |         |          | 3 1s -0.01114   | 3 2pz 0.14842   | 3 2py -0.25844  | 3 2pz 0.01476   | 3 2py -0.01286  |
| 14.1 | 1.01451 | -0.25004 | 1 1s -0.01942   | 1 1s 0.14507    | 1 1s 0.06701    | 1 1s 0.01506    | 1 2pz 0.01797   |
|      |         |          | 1 2pz 0.05093   | 1 2pz -0.05816  | 1 2pz -0.01382  | 1 3d0 0.72837   | 1 3d2+ 0.64481  |
|      |         |          | 1 3d0 -0.04663  | 1 3d2+ -0.04505 | 1 3d0 -0.01460  | 1 3d2+ -0.01347 | 2 1s -0.07353   |
|      |         |          | 2 1s -0.03102   | 2 2pz 0.18885   | 2 2pz 0.02030   | 3 1s 0.05152    | 3 1s 0.02723    |
|      |         |          | 3 2pz 0.09105   | 3 2py -0.17769  | 3 2pz 0.01490   | 3 2py -0.03324  |                 |
| 15.1 | 0.00702 | 1.64810  | 1 1s 0.02821    | 1 1s 0.47570    | 1 1s 0.13855    | 1 1s 0.10461    | 1 1s -0.14366   |
|      |         |          | 1 2pz 0.15146   | 1 2pz -0.06111  | 1 2pz -0.06387  | 1 3d0 -0.08912  | 1 3d2+ 0.05468  |
|      |         |          | 1 3d0 -0.62661  | 1 3d2+ 0.94303  | 1 3d0 -0.02059  | 1 3d2+ 0.05284  | 1 3d0 0.18647   |
|      |         |          | 1 3d2+ -0.27293 | 1 5g4+ -0.01149 | 2 2pz 0.04159   | 2 2pz -0.02425  | 3 1s -0.04064   |
|      |         |          | 3 1s 0.05057    | 3 2pz -0.02522  | 3 2py 0.12679   | 3 2py -0.02574  |                 |
| 3.2  | 2.00000 | -0.57802 | 1 2px -0.02755  | 1 2px 0.03860   | 1 2px 0.05174   | 1 2px 0.01176   | 1 3d1+ -0.02536 |
|      |         |          | 2 2px 0.01225   | 3 2px 0.91801   | 3 2px 0.06759   | 3 3d20.02061    |                 |
| 4.2  | 1.99203 | -0.73067 | 1 2px 0.01399   | 1 3d1+ 0.99887  | 1 3d1+ -0.01773 | 2 2px 0.07568   | 3 2px 0.02551   |
| 5.2  | 1.00789 | -0.38018 | 1 2px 0.01077   | 1 2px 0.02660   | 1 2px -0.02725  | 1 3d1+ 0.12232  | 1 3d1+ -0.01168 |
|      |         |          | 2 2px -1.02396  | 2 2px -0.01012  | 2 2px 0.05315   | 2 3d1+ 0.01395  | 3 2px 0.03576   |
| 6.3  | 2.00000 | -0.58095 | 1 2py -0.04474  | 1 2py -0.12768  | 1 2py 0.12764   | 1 2py -0.01187  | 1 2py 0.04272   |
|      |         |          | 1 3d1- 0.03602  | 2 2py 0.02582   | 3 1s -0.04768   | 3 1s 0.01448    | 3 2py -0.23331  |
|      |         |          | 3 2pz 0.89454   | 3 2py -0.02025  | 3 2pz 0.06073   | 3 3d10.01732    |                 |
| 7.3  | 1.99320 | -0.75558 | 1 2py -0.02323  | 1 2py 0.04191   | 1 3d1- 1.00223  | 1 3d10.02815    | 1 3d10.02280    |
|      |         |          | 2 2py 0.05903   | 3 1s 0.01752    | 3 2py -0.09989  | 3 2pz -0.10961  | 3 2py -0.01252  |

|     |         |          | 3 2pz -0.02838 |               |                  |                |                |
|-----|---------|----------|----------------|---------------|------------------|----------------|----------------|
| 8.3 | 1.00680 | -0.37411 | 1 2py -0.02980 | 1 2py 0.0251  | 1 1 2py 0.01141  | 1 3d10.09597   | 1 3d1- 0.01257 |
|     |         |          | 2 2py 1.03253  | 2 2py 0.0104  | 0 2 2py -0.06159 | 2 3d10.01225   | 3 1s -0.01125  |
|     |         |          | 3 1s -0.01203  | 3 2py 0.0441  | 3 3 2pz -0.05008 |                |                |
| 1.4 | 2.00000 | -0.56999 | 1 3d20.02995   | 1 3d2- 0.0110 | 7 1 3d2- 0.03621 | 3 2px 0.93491  | 3 2px 0.06368  |
|     |         |          | 3 3d20.01622   |               |                  |                |                |
| 2.4 | 1.99991 | -0.74991 | 1 3d2- 1.01278 | 1 3d20.0224   | 7 1 3d20.02434   | 3 2px -0.05299 | 3 2px -0.02471 |

Spin population: Individual basis function populations

Symmetry no. 1

1 1s 1 2pz 1 2pz 1 2pz -0.00000 -0.00000 0.00004 0.02396 0.00614 0.00011 0.00188 -0.00000 0.00002 -0.00510 1 3d2+ 1 3d0 1 3d2+ 1 3d0 1 3d2+ 1 3d0 1 3d0 1 2pz 1 2pz 1 2pz 0.00692 0.00006 0.00045 0.48972 0.38566 0.00825 0.00514 0.00146 0.00076 -0.00040 1 3d2+ 1 4f0 1 4f2+ 1 4f0 1 4f2+ 1 5g0 1 5g4+ 1 5g2+ 2 1s 2 1s 0.00070 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00170 2 1s 2 1s 2 2pz 2 2pz 2 2pz 2 3d0 2 3d2+ 2 3d0 2 3d2+ 2 4f0 0.00004 -0.00048 0.03368 0.00036 0.00018 0.00002 0.00012 -0.00000 0.00000 0.00003 2 4f2+ 3 1s 3 1s 3 1s 3 1 5 3 2pz 3 2py 3 2pz 3 2py 3 2pz 0.00000 0.00000 0.00136 -0.00001 0.00032 0.00616 0.02638 -0.00003 0.00032 0.00024 3 4f0 3 4f1-3 3d0 3 3d2+ 3 3d1-3 3d0 3 3d2+ 3 3d1-3 4f2+ 3 2pv 0.00373 0.00000 0.00001 0.00000 0.00002 0.00001 0.00001 0.00000 0.00000 0.00000 3 4f3-0.00001 Symmetry no. 2 1 3d1+ 1 2px 1 2px 1 2px 1 2px 1 3d1+ 1 3d1+ 1 3d1+ 1 2px 1 2px 0.00000 0.00001 -0.00397 0.00332 0.00031 0.00129 0.01651 0.00183 0.00070 -0.00027 1 4f1+ 1 4f3+ 1 4f1+ 1 4f3+ 1 5g1+ 1 5g3+ 2 2px 2 2px 2 2px 2 3d1+ -0.00000 0.00000 0.00005 0.00000 -0.00000 0.00000 1.00641 0.00942 -0.03680 0.00001 2 3d1+ 2 4f1+ 2 4f3+ 3 2px 3 2px 3 2px 3 3d1+ 3 3d2-3 3d1+ 3 3d2-0.00013 0.00003 0.00000 0.00102 -0.00002 0.00003 0.00000 0.00000 -0.00000 -0.00000 3 4f1+ 3 4f3+ 3 4f2-0.00000 -0.00000 0.00000 Symmetry no. 3 1 2py 1 2py 1 2py 1 2py 1 2py 1 2py 1 3d1-1 3d1-1 3d1-1 3d1-0.00000 -0.00376 0.00042 0.00147 0.01140 0.00183 0.00070 -0.00085 0.00000 0.00227 1 4f1-1 4f3-1 4f1-1 4f3-1 5g1-1 5g3-2 2py 2 2py 2 3d1-2 2py 0.00000 0.00000 0.00007 0.00000 0.00000 0.00000 1.01572 0.00971 -0.04214 0.00001 2 3d1-2 4f1-2 4f3-3 1s 3 1s 3 1s 3 1s 3 2py 3 2pz 3 2pv 0.00008 0.00003 0.00000 0.00000 0.00005 0.00000 -0.00012 0.00150 0.00169 0.00003 3 3d1-3 3d0 3 3d2+ 3 3d1-3 3d0 3 3d2+ 3 4f1-3 2pz 3 2pz 3 2py -0.00004 0.00002 -0.00010 -0.00000 0.00000 0.00000 0.00000 0.00001 -0.00001 0.00000 3 4f0 3 4f2+ 3 4f3--0.00000 0.00000 0.00000 Symmetry no. 4 1 3d2-1 3d2-1 4f2-1 4f2-1 3d2-1 3d2-1 5g2-1 5g4-2 3d2-2 3d2-0.00003 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 4f2-3 2px 3 2px 3 3d2-3 3d1+ 3 3d2-3 3d1+ 3 4f2-3 4f1+ 3 2px 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## 3 4f3+ 0.00000

Population analysis by basis function type

| Unique ato  | m s             | р         | d         | f          | g        | Total   | Charge    |
|-------------|-----------------|-----------|-----------|------------|----------|---------|-----------|
| 1 CU        | 0.03212 0       | 0.00369   | 0.92320   | 0.00014    | 0.00000  | 0.95915 | +28.04085 |
| 2 0         | 0.00126 1       | L.99653   | 0.00036   | 0.00009    | 0.00000  | 1.99823 | + 6.00177 |
| 3 F1        | 0.00080 0       | 0.02047   | 0.00003   | 0.00001    | 0.00000  | 0.02131 | + 8.97869 |
| AIM Charge  | $es(^{4}A_{2})$ |           |           |            |          |         |           |
| Total resul | t:              |           |           |            |          |         |           |
| #Basin      | Integral(a.)    | u.) Vo    | l(Bohr^3) | Vol(rho    | > 0.001) |         |           |
| 1           | 9.804878032     | 25 12     | 201.646   | 125.25     | 3        |         |           |
| 2           | 27.44971996     | 76 4      | 193.466   | 86.898     | 3        |         |           |
| 3           | 9.804878105     | 57 12     | 201.650   | 125.25     | 3        |         |           |
| 4           | 7.940364388     | 84 12     | 260.310   | 114.60     | 5        |         |           |
| Sum of ab   | ove integrals:  | 54.       | 99984049  |            |          |         |           |
| Sum of ba   | isin volumes (1 | rho > 0.0 | 01): 452  | 2.010 Boh  | nr^3     |         |           |
|             |                 |           |           |            |          |         |           |
| Manualin.   | tion footon of  | 41        |           | turn druge | A        | 00007   |           |

Normalization factor of the integral of electron density is 0.999997 The atomic charges after normalization and atomic volumes: 1 (Cu) Charge: 1.550201 Volume: 86.898 Bohr^3 2 (O) Charge: 0.059613 Volume: 114.605 Bohr^3

|       | $\mathcal{O}$ |           |         |                |
|-------|---------------|-----------|---------|----------------|
| 3 (F) | Charge:       | -0.804906 | Volume: | 125.253 Bohr^3 |
| 4 (F) | Charge:       | -0.804906 | Volume: | 125.253 Bohr^3 |

Summary of Natural Population Analysis:

## Natural Population Natural -----Core Valence Rydberg Total Atom No Charge \_\_\_\_\_ Cu 1 1.66653 17.99968 9.28501 0.04878 27.33347 7.93729 0 2 0.06271 2.00000 5.93162 0.00567 F 3 -0.86462 2.00000 7.85641 0.00821 9.86462 F 4 -0.86462 2.00000 7.85641 0.00821 9.86462 \* Total \* 0.00001 23.99968 30.92946 0.07086 54.99999