Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Co/Co₉S₈@Carbon Nanotubes on Carbon Sheet: Facile Controlled Synthesis, Electrocatalysis on Oxygen Reduction Reaction/Oxygen Evolution Reaction, and Application on Rechargeable Zn-air Battery

Han-Ming Zhang, † a,b Chunyan Hu, † b, Muwei Ji,*b Minjie Wang,b Jiali Yu,b Huichao Liu,b Caizhen Zhu,*b and Jian Xub

- a. Hebei Key Laboratory of Material Near-Net Forming Technology, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China.
- b. Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.
- † The authors contributed equally in this work.

Corresponding Author:

jimuwei@163.com (Muwei Ji)

czzhu@szu.edu.cn (Caizhen Zhu).

Experiment:

ORR test: The ORR polarization curves were measured at predefined rotation rates and a scan rate of 10 mV s^{-1} in O_2 and N_2 -saturated 0.1 M KOH electrolyte for deduction background. The 5000 potential cycles of the optimal catalyst were tested in O_2 -saturated 0.1 M KOH electrolyte at a scan rate of 50 mV s^{-1} (0.2-1.0 V vs. RHE) for ORR long term durability test.

Based on the RRDE measurement, the change of n values per oxygen molecule in oxygen reduction can also be calculated according to Equation (1), and the corresponding generation rates of H_2O_2 can be calculated according to Equation (2):

$$n=4\times\frac{|I_d|}{|I_d|+I_r/N}$$
 Equation (1)
$$H_2O_2\%=200\times\frac{I_r/N}{|I_d|+I_r/N}$$
 Equation (2)

where I_d is the disk current, Ir is the ring current, and N is the current collection efficiency of Pt ring. N was calculated to be 0.37 for the reduction of $K_3Fe(CN)_6$.

OER test: The OER polarization curves were measured with a scan rate of 5.0 mV s⁻¹ at room temperature in N₂ and O₂-saturated 1.0 M KOH, respectively. Before OER polarization curve tests, the cyclic voltammetry was tested with a scan rate of 50 mV s⁻¹ for OER (1.0-1.9 V vs. RHE), respectively.

All potentials were auto iR-compensated. The diameter of the rotating disk electrode (RDE) with a glassy carbon disk was 5 mm, which was used as the substrate for the

working electrode. In the whole measurement, the Ag/AgCl-saturated KCl electrode was used as the reference electrode. The counter electrode was a Pt wire in the ORR and OER measurement.

The measured potentials were converted to the reversible hydrogen electrode (RHE) using the following Equation (3):

$$V_{RHE} = V_{Ag/AgCl} + V_{Ag/AgCl}^{o} + 0.059 pH$$
 Equation (3)

where $V^0_{Ag/AgCl}$ was 0.197 V at room temperature and pH is 13 of 0.1 M KOH, and 14 of 1.0 M KOH.

Aqueous Zn-air Battery Measurements: The homemade air cathode consisted of Co/Co₉S₈@CNTs-900 catalyst layer on the gas diffusion layer. The loading of catalyst is 2 mg cm⁻². For comparison, air cathode equipped with the same loading of 20 wt% Pt/C and RuO₂ (mass ratio 1:1) catalyst was also tested. A polished Zn plate with a thickness of 0.05 mm was used as the anode.

Figure S1. FTIR spectrum of the original L-cysteine (gray line); the mixture of L-cysteine and $Co(NO_3)_2$ (green line); the mixture of L-cysteine, melamine and $Co(NO_3)_2$ after grinding for 20 min. The FTIR spectrum shows that vibration of L-cysteine change obviously. The peaks around 1300 cm⁻¹ become weaker and a new peak at 1384 cm⁻¹ produces, which illustrate the coordination of Co^{2+} and L-cysteine.

Figure S2. FTIR spectrum of the original melamine, melamine+ $Co(NO_3)_2$ and L-cysteine+melamine+ $Co(NO_3)_2$. The FTIR spectrum shows that after grinding with $Co(NO_3)_2$, the vibration of melamine remain well, which reveal that the melamine is inert to $Co(NO_3)_2$ and no coordination occurs.

Figure S3. FE-SEM images of Co/Co₉S₈@CNTs-900.

Figure S4. SEM image of Co/Co₉S₈@CNTs-800.

Figure S5. SEM image of Co/Co_9S_8 @CNTs-1000.

Figure S6. TEM images of Co/Co₉S₈@CNTs-900.

Figure S7. TEM images of Co/Co₉S₈@CNTs-800.

Figure S8. TEM images of Co/Co₉S₈@CNTs-1000.

Table S1. Surface area and pore volume of various samples.

Sample	Surface area (m² g-1)	Pore volume (cm ³ g ⁻¹)
Co/Co ₉ S ₈ @CNTs-800	103.3	0.13
Co/Co ₉ S ₈ @CNTs-900	228.8	0.35
Co/Co ₉ S ₈ @CNTs-1000	265.3	0.39

Figure S9. XPS survey spectrum of Co/Co₉S₈@CNTs-900.

Figure S10. (a) XPS survey spectrum of Co/Co₉S₈@CNTs-800. High-resolution

spectrum of (b) C 1s, (c) N 1s, (d) Co 2p, and (e) S 2p for Co/Co₉S₈@CNTs-800.

Figure S11. (a) XPS survey spectrum of Co/Co₉S₈@CNTs-1000. High-resolution spectrum of (b) C 1s, (c) N 1s, (d) Co 2p and (e) S 2p for Co/Co₉S₈@CNTs-1000.

Table S2. Surface elemental contents in various samples from XPS survey spectrum.

	С	N	О	S	Со
Co/Co ₉ S ₈ @CNTs-800	92.56	1.39	5.53	0.19	0.32
Co/Co ₉ S ₈ @CNTs-900	80.94	5.25	11.38	1.15	1.27
Co/Co ₉ S ₈ @CNTs-1000	86.26	3.26	8.98	0.79	0.71

Figure S12. CV curves of $\text{Co/Co}_9\text{S}_8$ @CNTs-900 in O_2 - and N_2 -saturated 0.1 M KOH solution with a sweep rate of 50 mV s⁻¹.

Figure S13. Methanol crossover tests for $\text{Co/Co}_9\text{S}_8$ @CNTs-900 and 20 wt% Pt/C catalyst by adding 3 M methanol into the electrolyte at 100 s.

Figure S14. RRDE curves of Co/Co₉S₈@CNTs-900 and 20 wt% Pt/C.

Figure S15. The number of transfer electrons (n) and H_2O_2 yield plots of Co/Co_9S_8 @CNTs-900 and 20 wt% Pt/C from 0.2 V to 0.9 V (vs. RHE).

Table S3. The comparison of catalytic performances for ORR in 0.1 M KOH between Co/Co₉S₈@CNTs-900 and other Co-based materials reported in the literature.

Catalysts	Catalyst	$E_{1/2}$	limiting	Tafel slope	Ref.
	loading	(V vs.	current	(mV dec-1	
	(mg cm ⁻²)	RHE)	density)	
Co/Co ₉ S ₈ @CNTs-900	0.40	0.925	5.106	48	This work
Co/Co ₉ S ₈ @CNTs-800	0.40	0.895	4.24	123	This work

Co/Co ₉ S ₈ @CNTs-1000	0.40	0.907	5.25	85	This work
Co/CNFs (1000)		0.896		73	Ref. 1
Co-Co ₉ S ₈ @SN-CNTs-900	0.40	0.810			Ref. 2
Co ₂ P/CoN-in-NCNTs	0.10	0.850	5.01	49	Ref. 3
Co@N-CNTF-2	0.28	0.810		47.6	Ref. 4
CF-NG-Co	0.28	0.88	5.5	44	Ref. 5
Co/CoP-HNC	0.19	0.83		59.4	Ref. 6
NS/rGO-Co2	0.485	0.84	5.964	52	Ref. 7
Co ₃ O ₄ /NCMTs	0.28	0.778	4.5	42.9	Ref. 8
Co ₃ O ₄ -PPy/GN	0.20	0.77	4.471		Ref. 9
Co ₉ S ₈ -NSHPCNF	0.30	0.82	4.81	65	Ref. 10
Co9S8/CD@NSC	0.249	0.84		76.2	Ref. 11
OSHs-NSC-Co ₉ S ₈	0.194	0.82	5.35		Ref. 12

 $\begin{tabular}{lll} \textbf{Figure} & \textbf{S16.} & The & electrochemical & impedance & spectroscopy & of & as-prepared $Co/Co_9S_8@CNTs. \end{tabular}$

Figure S17. Cyclic voltammograms curves for **a)** Co/Co₉S₈@CNTs-800, **b)** Co/Co₉S₈@CNTs-900, **c)** Co/Co₉S₈@CNTs-1000 in the region of 1.233 \sim 1.283 V vs. RHE at various scan rates. **d)** The electrochemical double-layer capacitances (C_{dll}) of various samples.

Figure S18. (A) The discharging LSV curve tests of Zn-air batteries with $Co/Co_9S_8@CNTs-900$. (B) The peak power density of Zn-air batteries with $Co/Co_9S_8@CNTs-900$.

Reference:

- 1. Yang, Z.; Zhao, C.; Qu, Y.; Zhou, H.; Zhou, F.; Wang, J.; Wu, Y.; Li, Y., Trifunctional Self-Supporting Cobalt-Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. *Adv. Mater.* **2019,** *31* (12), 1808043.
- 2. Han, H.; Bai, Z.; Zhang, T.; Wang, X.; Yang, X.; Ma, X.; Zhang, Y.; Yang, L.; Lu, J., Hierarchical design and development of nanostructured trifunctional catalysts for electrochemical oxygen and hydrogen reactions. *Nano Energy* **2019**, *56*, 724-732.
- 3. Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.; Qiao, Y.; Mu, S.; Xu, Q., Co2P–CoN Double Active Centers Confined in N-Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting. *Adv. Funct. Mater.* **2018**, *28* (51), 1805641.
- 4. Guo, H.; Feng, Q.; Zhu, J.; Xu, J.; Li, Q.; Liu, S.; Xu, K.; Zhang, C.; Liu, T., Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. *J Mater. Chem. A* **2019**, *7* (8), 3664-3672.
- 5. Pei, Z.; Tang, Z.; Liu, Z.; Huang, Y.; Wang, Y.; Li, H.; Xue, Q.; Zhu, M.; Tang, D.; Zhi, C., Construction of a hierarchical 3D Co/N-carbon electrocatalyst for efficient oxygen reduction and overall water splitting. *J Mater. Chem. A* **2018**, *6* (2), 489-497.
- 6. Hao, Y.; Xu, Y.; Liu, W.; Sun, X., Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. *Materials Horizons*

2018, *5* (1), 108-115.

- 7. Wang, N.; Li, L.; Zhao, D.; Kang, X.; Tang, Z.; Chen, S., Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte. *Small* **2017**, *13* (33), 1701025.
- 8. Wang, B.; Xu, L.; Liu, G.; Zhang, P.; Zhu, W.; Xia, J.; Li, H., Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst. *J Mater. Chem. A* **2017**, *5* (38), 20170-20179.
- 9. Ren, G.; Li, Y.; Guo, Z.; Xiao, G.; Zhu, Y.; Dai, L.; Jiang, L., A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. *Nano Research* **2015**, *8* (11), 3461-3471.
- 10. Peng, W.; Wang, Y.; Yang, X.; Mao, L.; Jin, J.; Yang, S.; Fu, K.; Li, G., Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery. *Applied Catalysis B: Environmental* **2020**, *268*, 118437.
- 11. Zhang, P.; Bin, D.; Wei, J.-S.; Niu, X.-Q.; Chen, X.-B.; Xia, Y.-Y.; Xiong, H.-M., Efficient Oxygen Electrocatalyst for Zn–Air Batteries: Carbon Dots and Co9S8 Nanoparticles in a N,S-Codoped Carbon Matrix. *ACS Appl. Mater. Inter.* **2019**, *11* (15), 14085-14094.
- 12. Tang, K.; Yuan, C.; Xiong, Y.; Hu, H.; Wu, M., Inverse-opal-structured hybrids of N, S-codoped-carbon-confined Co9S8 nanoparticles as bifunctional oxygen electrocatalyst for on-chip all-solid-state rechargeable Zn-air batteries. *Applied*

Catalysis B: Environmental **2020**, 260, 118209.