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Experiment：

ORR test: The ORR polarization curves were measured at predefined rotation rates 

and a scan rate of 10 mV s–1 in O2 and N2-saturated 0.1 M KOH electrolyte for deduction 

background. The 5000 potential cycles of the optimal catalyst were tested in O2-

saturated 0.1 M KOH electrolyte at a scan rate of 50 mV s-1 (0.2-1.0 V vs. RHE) for 

ORR long term durability test.

Based on the RRDE measurement, the change of n values per oxygen molecule in 

oxygen reduction can also be calculated according to Equation (1), and the 

corresponding generation rates of H2O2 can be calculated according to Equation (2):

   Equation (1)
𝑛 = 4 ×

|𝐼𝑑|

|𝐼𝑑| + 𝐼𝑟 𝑁

      Equation (2)
𝐻2𝑂2% = 200 ×

𝐼𝑟/𝑁

|𝐼𝑑| + 𝐼𝑟 𝑁

where Id is the disk current, Ir is the ring current, and N is the current collection 

efficiency of Pt ring. N was calculated to be 0.37 for the reduction of K3Fe(CN)6.

OER test: The OER polarization curves were measured with a scan rate of 5.0 mV 

s-1 at room temperature in N2 and O2-saturated 1.0 M KOH, respectively. Before OER 

polarization curve tests, the cyclic voltammetry was tested with a scan rate of 50 mV 

s-1 for OER (1.0-1.9 V vs. RHE), respectively. 

All potentials were auto iR-compensated. The diameter of the rotating disk electrode 

(RDE) with a glassy carbon disk was 5 mm, which was used as the substrate for the 
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working electrode. In the whole measurement, the Ag/AgCl-saturated KCl electrode 

was used as the reference electrode. The counter electrode was a Pt wire in the ORR 

and OER measurement. 

The measured potentials were converted to the reversible hydrogen electrode (RHE) 

using the following Equation (3):

      Equation (3)𝑉𝑅𝐻𝐸 =  𝑉𝐴𝑔/𝐴𝑔𝐶𝑙 +  𝑉 𝑜
𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.059 𝑝𝐻

where V0
Ag/AgCl was 0.197 V at room temperature and pH is 13 of 0.1 M KOH, and 

14 of 1.0 M KOH.

Aqueous Zn-air Battery Measurements: The homemade air cathode consisted of 

Co/Co9S8@CNTs-900 catalyst layer on the gas diffusion layer. The loading of catalyst 

is 2 mg cm-2. For comparison, air cathode equipped with the same loading of 20 wt% 

Pt/C and RuO2 (mass ratio 1:1) catalyst was also tested. A polished Zn plate with a 

thickness of 0.05 mm was used as the anode.
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Figure S1. FTIR spectrum of the original L-cysteine (gray line); the mixture of L-
cysteine and Co(NO3)2 (green line); the mixture of L-cysteine, melamine and Co(NO3)2 
after grinding for 20 min. The FTIR spectrum shows that vibration of L-cysteine change 
obviously. The peaks around 1300 cm-1 become weaker and a new peak at 1384 cm-1 
produces, which illustrate the coordination of Co2+ and L-cysteine.

Figure S2. FTIR spectrum of the original melamine, melamine+ Co(NO3)2 and L-
cysteine+melamine+Co(NO3)2. The FTIR spectrum shows that after grinding with 
Co(NO3)2, the vibration of melamine remain well, which reveal that the melamine is 
inert to Co(NO3)2 and no coordination occurs.
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Figure S3. FE-SEM images of Co/Co9S8@CNTs-900.

Figure S4. SEM image of Co/Co9S8@CNTs-800.
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Figure S5. SEM image of Co/Co9S8@CNTs-1000.

Figure S6. TEM images of Co/Co9S8@CNTs-900.
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Figure S7. TEM images of Co/Co9S8@CNTs-800.

Figure S8. TEM images of Co/Co9S8@CNTs-1000.
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Table S1. Surface area and pore volume of various samples.

Sample Surface area
(m2 g-1)

Pore volume
(cm3 g-1)

Co/Co9S8@CNTs-800 103.3 0.13

Co/Co9S8@CNTs-900 228.8 0.35

Co/Co9S8@CNTs-1000 265.3 0.39

Figure S9. XPS survey spectrum of Co/Co9S8@CNTs-900. 

Figure S10. (a) XPS survey spectrum of Co/Co9S8@CNTs-800. High-resolution 



9

spectrum of (b) C 1s, (c) N 1s, (d) Co 2p, and (e) S 2p for Co/Co9S8@CNTs-800.

Figure S11. (a) XPS survey spectrum of Co/Co9S8@CNTs-1000. High-resolution 

spectrum of (b) C 1s, (c) N 1s, (d) Co 2p and (e) S 2p for Co/Co9S8@CNTs-1000.

Table S2. Surface elemental contents in various samples from XPS survey spectrum.

C N O S Co

Co/Co9S8@CNTs-800 92.56 1.39 5.53 0.19 0.32

Co/Co9S8@CNTs-900 80.94 5.25 11.38 1.15 1.27

Co/Co9S8@CNTs-1000 86.26 3.26 8.98 0.79 0.71
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Figure S12. CV curves of Co/Co9S8@CNTs-900 in O2- and N2-saturated 0.1 M KOH 
solution with a sweep rate of 50 mV s-1.

Figure S13.  Methanol crossover tests for Co/Co9S8@CNTs-900 and 20 wt% Pt/C 
catalyst by adding 3 M methanol into the electrolyte at 100 s. 
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Figure S14.  RRDE curves of Co/Co9S8@CNTs-900 and 20 wt% Pt/C.

Figure S15.  The number of transfer electrons (n) and H2O2 yield plots of 
Co/Co9S8@CNTs-900 and 20 wt% Pt/C from 0.2 V to 0.9 V (vs. RHE). 

Table S3. The comparison of catalytic performances for ORR in 0.1 M KOH between 
Co/Co9S8@CNTs-900 and other Co-based materials reported in the literature.

Catalysts Catalyst 
loading
 (mg cm-2)

E1/2 
(V vs. 
RHE)

limiting 
current 
density

Tafel slope
 (mV dec-1 

)

Ref.

Co/Co9S8@CNTs-900 0.40 0.925 5.106 48 This work

Co/Co9S8@CNTs-800 0.40 0.895 4.24 123 This work
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Co/Co9S8@CNTs-1000 0.40 0.907 5.25 85 This work

Co/CNFs (1000) -- 0.896 -- 73 Ref. 1
Co-Co9S8@SN-CNTs-900 0.40 0.810 ---- -- Ref. 2

Co2P/CoN-in-NCNTs 0.10 0.850 5.01 49 Ref. 3

Co@N-CNTF-2 0.28 0.810 -- 47.6 Ref. 4
CF-NG-Co 0.28 0.88 5.5 44 Ref. 5

Co/CoP-HNC 0.19 0.83 -- 59.4 Ref. 6
NS/rGO-Co2 0.485 0.84 5.964 52 Ref. 7

Co3O4/NCMTs 0.28 0.778 4.5 42.9 Ref. 8

Co3O4-PPy/GN 0.20 0.77 4.471 -- Ref. 9

Co9S8-NSHPCNF 0.30 0.82 4.81 65 Ref. 10

Co9S8/CD@NSC 0.249 0.84 -- 76.2 Ref. 11

OSHs-NSC-Co9S8 0.194 0.82 5.35 -- Ref. 12

Figure S16. The electrochemical impedance spectroscopy of as-prepared 
Co/Co9S8@CNTs.
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Figure S17. Cyclic voltammograms curves for a) Co/Co9S8@CNTs-800, b) 
Co/Co9S8@CNTs-900, c) Co/Co9S8@CNTs-1000 in the region of 1.233 ~1.283 V vs. 
RHE at various scan rates. d) The electrochemical double-layer capacitances (Cdll) of 
various samples.
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Figure S18. (A) The discharging LSV curve tests of Zn-air batteries with 
Co/Co9S8@CNTs-900. (B) The peak power density of Zn-air batteries with 
Co/Co9S8@CNTs-900.
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