Supporting Information

Bismuth Dots Imbedded in Nitrogen-Doped Carbon Nanotubes for Highly Efficient Lithium Ion Storage

Xiaoling Qiu,^a Boya Wang,^a Peng Jing,^a Yin Zhang,^a Mi Zhang,^b Qian Wang,^a Xianchun Chen,^{*,a} Yun Zhang,^a Hao Wu^{*,a}

^a College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan,

610064, P. R. China.

- ^b College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
- * Corresponding author (email: chenxianchun@scu.edu.cn; hao.wu@scu.edu.cn)

Supporting Figures and Tables

Fig. S1 XRD patterns of MnO₂.

Fig. S2 XRD patterns of MnO₂@Bi₂O₂CO₃ (sample-2).

Fig. S3 SEM images of $MnO_2@Bi_2O_2CO_3$ with different amount of $Bi(NO_3)_3 \cdot 5H_2O$: (a1 and a2)

0.25 mmol and (b1 and b2) 1.0 mmol.

Fig. S4 XRD patterns of MnO/Bi@NC.

Fig. S5 SEM images of (a1 and a2) MnO/Bi@0.5NC and (b1 and b2) Bi@0.5NC.

Fig. S6 Particle size distribution of Bi@NC.

Fig. S7 TGA curve of the Bi@NC.

The Bi content is determined by the following equation:

$$Bi (wt\%) = 100 \times \frac{2 \times molecular \ weight \ of \ Bi_2O_3}{molecular \ weight \ of \ Bi_2O_3} \times \frac{final \ weight \ of \ Bi_2O_3}{initial \ weight \ of \ Bi@NC}$$

Fig. S8 XPS survey spectrum of Bi@NC.

Fig. S9 The initial three charge/discharge profiles of CNT@Bi.

Fig. S10 SEM images of CNT@Bi.

Fig. S11 (a) Rate capacity performance of NC and the corresponding capacity contribution of Bi in Bi@NC hybrid. (b) Cycling performance of the NC at 1.0 A g^{-1} .

The capacity contribution of Bi in Bi@NC was calculated based on the following formula:

 $C_{Bi}(mAh g^{-1}) = \frac{C_{Bi@NC} \times m_{Bi@NC} - C_{NC} \times m_{NC} \times w_{NC}}{w_{Bi@NC}}$

Fig. S12 SEM images of Bi@NC electrode after 2000 cycles at 1.0 A g^{-1} .

Fig. S13 Charge/discharge curves of the Bi@NC at selected cycles.

Fig. S14 TEM images of (a and b) Bi@NC electrode after 180 cycles at 1.0 A g^{-1} .

Fig. S15 Typical structure model of the optimized (001) crystal plane of Bi.

Electrode	Cyclability (capacity retention (mA h g ⁻¹) @ cycle number) at current density	Rate performance (mAh g ⁻¹) at (Y) current density (mA g ⁻¹)	References
Bi@NC	285 @ 100 at 100 mA g ⁻¹	100 (3840)	1
Bi@C microsphere	280 @ 100 at 100 mA g ⁻¹	90 (2000)	2
Bi/Al ₂ O ₃ /C nanocomposite	310 @ 100 at 100 mA g ⁻¹		3
Bi/C nanofibers	316 @ 500 at 100 mA g ⁻¹	159 (3200)	4
Yolk–shell Bi@C–N	300 @ 500 at 1000 mA g ⁻¹	289 (2000)	5
Bi/CNFs	483 @ 200 at 100 mA g ⁻¹	170 (2000)	6
Bi@C core–shell (nanowires)	408 @ 100 at 100 mA g ⁻¹	240 (1000)	7
Rose-like Bi@NC	535 @ 450 at 200 mA g ⁻¹	250 (1000)	8
Bi/C composite sheets	315 @ 1000 at 1000 mA g ⁻¹	99 (10000)	9
Bi@PC	380 @ 500 at 500 mA g ⁻¹	215 (2000)	10
Bi@NC	470 @ 2000 at 1000 mA g ⁻¹	117 (10000)	This work

Table S1 A comparison of Bi-based materials for LIBs.

Surface	Lattice parameters (Å)	Surface energy (J m ⁻²)
(001)	a = 9.92, b = 9.92	0.18
(101)	a = 14.94, b = 9.92	0.26
(110)	a = 11.86, b = 15.74	0.39
(111)	a = 14.94, b= 14.94	0.35
(211)	a = 19.71, b = 14.94	0.31
(221)	a = 15.74, b = 25.41	0.34
(201)	a = 25.40, b = 9.09	0.40
(210)	a = 11.86, b = 24.03	0.33
(212)	a = 14.97, b = 21.72	0.49
(102)	a = 19.71, b = 9.09	0.57

Table S2 Lattice parameters and calculated surface energies of Bi with different orientations.

References

- Y. T. Zhong, B. Li, S. M. Li, S. Y. Xu, Z. H. Pan, Q. M. Huang, L. D. Xing, C. S. Wang and W. S. Li, Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery, *Nano Micro. Lett.*, 2018, **10**, 56–69.
- F. H. Yang, F. Yu, Z. Zhang, K. Zhang, Y. Q. Lai and J. Li, Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries, *Chem. Eup. J.*, 2016, 22, 2333–2338.
- C.-M. Park, S. Yoon, S.-I. Lee and H.-J. Sohn, Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries, *J. Power Sources*, 2009, **186**, 206–210.
- 4. H. Yin, Q. W. Li, M. L. Cao, W. Zhang, H. Zhao, C. Li, K. K. Huo and M. Q. Zhu, Nanosizedbismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries, *Nano Res.*, 2017, **10**, 2156–2167.
- 5. W. W. Hong, P. Ge, Y. L. Jiang, L. Yang, Y. Tian, G. Q. Zou, X. Y. Cao, H. S. Hou and X. B. Ji, Yolk–shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity, *ACS Appl. Mater. Interfaces*, 2019, **11**, 10829–10840.
- Y. Q. Jin, H. C. Yuan, J. L. Lan, Y. H. Yu, Y. H. Lin and X. P. Yang, Bio-inspired spider-weblike membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes, *Nanoscale*, 2017, 9, 13298–13304.

- R. Dai, Y. H. Wang, P. M. Da, H. Wu, M. Xu and G. F. Zheng, Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage, *Nano Scale*, 2014, 6, 13236–13241.
- 8. J. L. Lan, M. Y. Jin, C. J. Qin, Y. H. Yu and X. P. Yang, Bio-inspired rose-like Bi@nitrogenenriched carbon towards high-performance lithium-ion batteries, *Energy Technol. Environ.*, 2017, **2**, 7178–7184.
- H. C. Yuan, Y. Q. Jin, X. N. Chen, J. L. Lan, Y. H. Yu and X. P. Yang, Large-scale fabrication of egg-carton-inspired Bi/C composite toward high volumetric capacity and long-life lithium ion batteries, ACS Sustainable Chem. Eng., 2019, 7, 6033–6042.
- 10. W. W. Hong, A. Wang, L. Li, T. Y. Qiu, J. Y. Li, Y. L. Jiang, G. Q. Zou, H. J. Peng, H. S. Hou and X. B. Ji, Bi Dots Confined by Functional Carbon as High-Performance Anode for Lithium Ion Batteries, *Adv. Func. Mater.*, 2020, **30**, 2000756–2000765.