Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

α-C–C Agostic interactions and C–H bond activation in scandium cyclopropyl complexes

Cheng Xu,^a Guangyu Li,^a Michel Etienne,^{*b} Xuebing Leng^a and Yaofeng Chen^{*a}

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China ^b LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.

Table of Contents

1. Crystallographic data and refinement parameters for 1-3	·····S2
2. NMR spectra of 1-3······	·····S3
3. NMR spectra of D-labelling experiments	······S17
4. Computational data	S30

	1	2	3
formula	C ₃₂ H ₄₆ ClN ₂ Sc	C ₃₅ H ₅₁ N ₂ Sc	C ₃₆ H ₅₃ N ₂ OSc
fw	539.12	544.73	574.76
cryst syst.	Monoclinic	monoclinic	Monoclinic
space group	C2/c	$P2_{1}/c$	$P \overline{1}$
<i>a</i> , Å	21.8616(4)	9.1042(3)	9.7178(2)
b, Å	14.2799(2)	13.1594(4)	21.5807(4)
<i>c</i> , Å	22.0903(4)	27.6815(8)	15.8692(3)
a, deg	90	90	90
β , deg	117.5520(10)	92.220(2)	92.7390(10)
γ, deg	90	90	90
V, Å ³	6114.09(19)	3313.92(18)	3324.24(11)
Z	8	4	4
$D_{\text{calcd}}, (g/\text{cm}^3)$	1.171	1.092	1.148
F(000)	2320	1184	1248
<i>T</i> (K)	170(2)	170(2)	170(2)
θ range(deg)	3.382 to 54.941	3.236 to 54.946	3.009 to 54.958
no. of refns collected	31861	27008	35931
no. of unique refns	5721	6246	12198
no. of obsd refns $(I > 2\sigma(I))$	5457	5535	10803
No. of params	335	353	748
Final R, R_w (I > 2 σ (I))	0.0460, 0.1169	0.0393,0.1065	0.0420, 0.0941
Goodness-of-fit on F^2	1.029	1.064	1.024
$\Delta \rho_{max, min}, e Å^{-3}$	0.483, -0.355	0.284, -0.393	0.208, -0.322

 Table S1. Crystallographic data and refinement parameters for complexes 1-3

Fig. S1 ¹H NMR spectrum of 1 (400 MHz, THF- d_8 , 25 °C).

Fig. S3 ¹H NMR spectrum of 2 (400 MHz, C_6D_6 , 25 °C).

Fig. S7 gHSQC spectrum of **3** (400 MHz, C₆D₆, 25 °C).

Fig. S8 1 H- 1 H COSY spectrum of 3 (400 MHz, C₆D₆, 25 $^{\circ}$ C).

Fig. S9 ¹H-¹H EXSY & NOESY spectrum of **3** (400 MHz, C₆D₆, 25 °C).

Fig. S10 Variable-Temperature ¹H NMR spectra of 3 (400 MHz, C_6D_6) (313 ~ 343 K).

Fig. S13 Expansion plots of the ¹³C INADEQUATE spectrum (126 MHz, C₆D₆, 25 °C) for **3**, optimized for J = 3 Hz.

Fig. S14 Expansion plots of the ¹³C INADEQUATE spectrum (126 MHz, C_6D_6 , 25 °C) for **3**, optimized for J = 15 Hz.

Fig. S15 ¹H NMR spectrum of 2,2,3,3-tetradeuteriocyclopropanecarboxylic acid (400 MHz, CDCl₃, 25 °C).

-1.03-0.90

Fig. S16 ²H NMR spectrum of 2,2,3,3-tetradeuteriocyclopropanecarboxylic acid (60 MHz, CHCl₃, 25 °C). CDCl₃ as the reference.

Fig. S17 ²H NMR spectrum of 2,2,3,3-tetradeuteriocyclopropyl lithium (60 MHz, THF, 25 °C). THF-*d*₈ as the reference.

Fig. S18 ¹H NMR spectrum of 2- d_8 (400 MHz, C₆D₆, 25 °C).

Fig. S19 ²H NMR spectrum of 2- d_8 (60 MHz, C₆H₆, 25 °C). C₆D₆ as the reference.

Fig. S20 ¹H NMR spectral monitoring of the thermolysis of $2-d_8$ into $3-d_4$ in THF- d_8/C_6D_6 at 65 °C in 24 h (400 MHz, 25 °C).

Fig. S21 ²H NMR spectrum of the thermolysis product of 2-*d*₈ in THF/C₆H₆ (60 MHz, C₆H₆, 25 °C). C₆D₆ as the reference.

Fig. S22 ¹H NMR spectrum of 1-monodeuteriocyclopropyl lithium (400 MHz, THF-*d*₈, 25 °C).

Fig. S23 ²H NMR spectrum of 1-monodeuteriocyclopropyl lithium (60 MHz, THF, 25 °C). THF-*d*₈ as the reference.

Fig. S24 ¹H NMR spectrum of **2**- d_2 (400 MHz, C₆D₆, 25 °C).

Fig. S25 ²H NMR spectrum of 2- d_2 (60 MHz, C₆H₆, 25 °C). C₆D₆ as the reference.

Fig. S26 ¹H NMR spectral monitoring of the thermolysis of $2-d_2$ into $3-d_1$ in THF- d_8/C_6D_6 at 65 °C in 24 h (400 MHz, 25 °C).

Fig. S27 ²H NMR spectral monitoring of the thermolysis of $2-d_2$ into $3-d_1$ in THF /C₆H₆ at 65 °C in 24 h (400 MHz, 25 °C).

Computational data.

1- Cartesian coordinates and SCF energies of optimized structures.

- Complex **3** (E(RPBE1PBE) = -1632.74893187 au)

6	5.124310000	7.423778000	6.129670000
6	5.225165000	7.275359000	10.171382000
6	5.454081000	5.826909000	10.551931000
6	4.972896000	5.092417000	9.306916000
6	3.760936000	5.908865000	8.901444000
1	3.348888000	8.480625000	5.481723000
1	5.823045000	9.254349000	7.172841000
1	5.609514000	9.465493000	5.389013000
1	5.495285000	6.777113000	6.921146000
1	5.248780000	6.995070000	5.139018000
1	4.314561000	10.145033000	10.644155000
1	5.590602000	10.032594000	9.444307000
1	6.480182000	12.339576000	10.013897000
1	5.369089000	13.735696000	10.040210000
1	5.237640000	12.450965000	11.268700000
1	3.444665000	12.176533000	9.635070000
1	6.491540000	13.152257000	7.939485000
1	6.649603000	13.478654000	5.490452000
1	4.872364000	12.619851000	4.000950000
1	3.918334000	9.778053000	3.795522000
1	2.387894000	10.020355000	2.916748000
1	3.684412000	11.219525000	2.778862000
1	2.163663000	13.142078000	3.639231000
1	0.859978000	11.933692000	3.533255000
1	1.107535000	12.846808000	5.037076000
1	2.012760000	10.545890000	5.267875000
1	1.979072000	13.523413000	6.969746000
1	0.257873000	13.453353000	7.469182000
1	1.540746000	13.612977000	8.682772000
1	-0.659349000	11.636976000	8.530338000
1	-1.314966000	8.581434000	10.071421000
1	-1.960751000	10.093852000	9.364466000
1	-1.738458000	8.645105000	8.361158000
1	-1.505712000	5.330658000	6.549079000
1	-2.141836000	6.852507000	7.204059000
1	-1.577630000	6.770177000	5.516708000
1	2.095034000	6.540457000	6.288475000
1	1.074546000	5.078051000	6.165905000
1	0.878161000	6.411834000	5.003609000
1	0.133842000	7.914723000	6.843807000
1	-0.309869000	4.454031000	8.233377000
1	0.134691000	3.878308000	10.600827000
1	1.054349000	5.582806000	12.139563000
1	1.091491000	9.822880000	12.905958000
1	0.124223000	9.712422000	11.426093000
1	-0.131276000	8.537196000	12.742801000

1	3.093792000	8.379217000	13.243664000
1	1.920473000	7.073499000	13.469506000
1	3.268416000	6.859708000	12.331100000
1	2.358920000	8.831778000	10.995524000
1	6.065238000	7.682502000	9.586247000
1	5.037354000	7.946076000	11.019062000
1	6.504550000	5.625752000	10.804311000
1	4.836751000	5.553346000	11.422446000
1	5.744134000	5.121469000	8.521250000
1	4.715595000	4.040099000	9.491023000
1	3.581781000	5.939492000	7.819130000
1	2.848726000	5.575657000	9.415975000

- Complex **2** (E(RPBE1PBE) = -1518.48876008 au)

0.068441000 -1.482656000 1.469424000	-1.053038000 -0.112970000	-0.586067000 0.553331000
-1.482656000 1.469424000	-0.112970000	0.553331000
1.469424000	0.00000000	
	0.033236000	0.580822000
-2.459755000	-0.383070000	2.775371000
-1.279665000	-0.287008000	1.853014000
-0.003858000	-0.396770000	2.433056000
1.261004000	-0.125420000	1.880553000
2.415684000	-0.024009000	2.833085000
-2.765894000	0.281988000	0.082045000
-3.650831000	-0.677591000	-0.454078000
-4.886975000	-0.250121000	-0.946293000
-5.253885000	1.089440000	-0.909250000
-4.368958000	2.026460000	-0.388880000
-3.116009000	1.650266000	0.102773000
-2.170227000	2.717178000	0.622894000
-1.902896000	3.784193000	-0.438246000
-2.681186000	3.361710000	1.912051000
-3.278918000	-2.142976000	-0.529578000
-4.336871000	-3.055496000	0.086285000
-2.959583000	-2.554925000	-1.967362000
2.729207000	0.492514000	0.100363000
2.881299000	1.867177000	-0.187684000
4.120843000	2.312991000	-0.654152000
	-1.279665000 -0.003858000 1.261004000 2.415684000 -2.765894000 -3.650831000 -4.886975000 -5.253885000 -4.368958000 -3.116009000 -2.170227000 -1.902896000 -2.681186000 -3.278918000 -4.336871000 -2.959583000 2.729207000 2.881299000 4.120843000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

6	5.174268000	1.429073000	-0.862419000
6	4.990131000	0.072532000	-0.629992000
6	3.772201000	-0.421886000	-0.153986000
6	3.574866000	-1.915294000	0.001788000
6	3.351416000	-2.562943000	-1.367090000
6	4.710574000	-2.599932000	0.757557000
6	1.721487000	2.831875000	-0.019021000
6	1.597813000	3.338174000	1.419072000
6	1.779878000	3.998563000	-1.000142000
6	0.245713000	-0.679606000	-2.701594000
6	-0.491188000	0.661416000	-2.699596000
6	0.917096000	0.575376000	-3.182539000
6	0.110887000	-3.174144000	-0.010138000
6	0.814513000	-3.748561000	1.203278000
6	-0.664478000	-3.849152000	1.102431000
1	-3.978937000	-4.096401000	0.100881000
1	-4.568848000	-2.761798000	1.121519000
1	-5.279061000	-3.037489000	-0.484173000
1	-3.851167000	-2.477887000	-2.610115000
1	-2.184332000	-1.911398000	-2.412709000
1	-2.598315000	-3.594093000	-2.001712000
1	-5.576871000	-0.987437000	-1.364131000
1	-6.227273000	1.405033000	-1.291837000
1	-4.654397000	3.081386000	-0.370102000
1	-2.360962000	-2.287954000	0.057980000
1	-1.212717000	2.225462000	0.851803000
1	-1.490920000	3.345894000	-1.359200000
1	-2.823413000	4.324584000	-0.708025000
1	-1.186211000	4.529748000	-0.062042000
1	-3.641184000	3.876555000	1.747233000
1	-2.834007000	2.620824000	2.709787000
1	-1.961199000	4.107761000	2.283691000
1	-0.069890000	-1.343230000	-3.505764000
1	1.080093000	0.694667000	-4.249597000
1	1.700006000	1.022679000	-2.574532000
1	-1.290668000	0.846770000	-3.409392000
1	-0.661718000	1.161879000	-1.741622000
1	-3.104926000	-1.219828000	2.466773000
1	-2.148191000	-0.533053000	3.814414000
1	-3.081015000	0.520345000	2.712884000
1	2.960653000	0.918326000	2.680748000
1	2.083558000	-0.085565000	3.874927000
1	3.136486000	-0.832345000	2.638669000
1	-0.001386000	-0.607803000	3.493381000
1	2.656057000	-2.076654000	0.582344000
1	5.655947000	-2.573339000	0.193095000

1	4.894562000	-2.126820000	1.734690000
1	4.465188000	-3.658526000	0.933715000
1	4.251948000	-2.472815000	-1.995727000
1	3.110107000	-3.630936000	-1.255841000
1	2.522743000	-2.084087000	-1.914251000
1	5.807478000	-0.624716000	-0.828175000
1	6.134873000	1.798697000	-1.228683000
1	4.262735000	3.372220000	-0.873952000
1	0.763959000	4.051962000	1.508820000
1	1.406178000	2.519574000	2.126507000
1	2.519451000	3.853702000	1.733140000
1	1.898467000	3.647448000	-2.036117000
1	0.853288000	4.586763000	-0.947039000
1	2.610078000	4.685952000	-0.774537000
1	0.806690000	2.257486000	-0.239403000
1	0.215372000	-3.830468000	-0.880720000
1	-1.095983000	-4.829793000	0.924402000
1	-1.254869000	-3.231534000	1.776023000
1	1.395886000	-4.659627000	1.094922000
1	1.215810000	-3.060330000	1.943928000

2- Main NBO delocalizations (second order perturbation of the Fock matrix in NBO basis) for complex **2**.

As an assessment of the energies involved, the delocalization of σ -C-C and σ -C-H are compared to the delocalization of the σ -C-C into the σ -C-C* that are observed in any cyclopropyl derivative.

