Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

A Dy₆-Clusters Based *fcu*-MOF with Efficient Separation of C₂H₂/C₂H₄ and

Seelective Adsorption of Benzene

Yong-Zhi Li,^a Hai-Hua Wang,^b Gang-Ding Wang,^a Lei Hou,*^a Yao-Yu Wang^a and Zhonghua Zhu^c

^aKey Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University. Xi'an, 710069, P. R. China.

^bCollege of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.

^cSchool of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia.

*To whom correspondence should be addressed. E-mail: lhou2009@nwu.edu.cn (Lei Hou).

Contents

1.	IR spectrum, TGA and PXRD	S2
2.	Gas adsorption isotherms	S3
3.	Pore size distribution	S3
4.	Calculation of sorption heat	S3
5.	Selectivity prediction	S4
6.	Theoretic simulations	S5
7.	Table of crystallographic data	S6

1. IR spectrum, TGA and PXRD

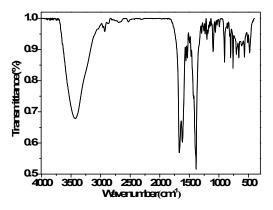


Fig. S1 IR spectrum of as synthesized sample of complex 1.

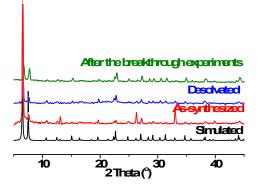


Fig. S2 PXRD patterns of complex 1.

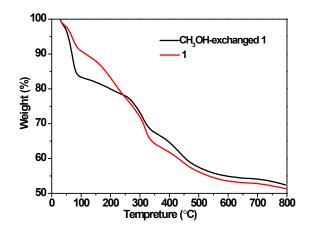


Fig. S3 TGA curves of as-synthesized and CH₃OH-exchanged samples of complex 1.

2. Gas adsorption isotherms

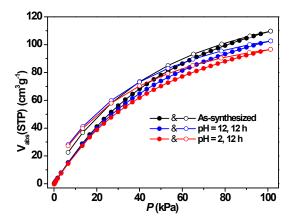


Fig. S4 Sorption isotherms of 1a and the treated samples soaked in acidic (pH = 2) and basic (pH = 12) aqueous solutions for 12 hours.

3. Pore size distribution

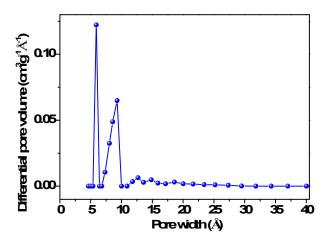


Fig. S5 Differential pore volume as a function of pore width calculated from the N_2 adsorption isotherm at 77 K for 1a using the Horvath-Kawazoe model.

4. Calculation of sorption heat

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i \qquad \qquad Q_{\rm st} = -R \sum_{i=0}^{m} a_i N^i$$

The above virial expression was used to fit the combined isotherm data for **1a** at 273.15 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, a_i and b_i are virial coefficients, and *m* and *N* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

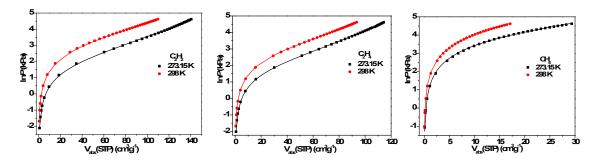


Fig. S6 Fitted adsorption isotherms of C_2H_2 , C_2H_4 and CH_4 . Fitting results: for C_2H_2 , a0 = -3215.24962, a1 = 2.35543, a2 = 0.01674, b0 = 9.88605, b1 = -0.00647, b2 = 0.00057, $Chi^2 = 0.00067$, $R^2 = 0.99981$; for C_2H_4 , a0 = -2544.83477, a1 = -0.0516, a2 = 0.03193, b0 = 7.67194, $Chi^2 = 0.00025$, $R^2 = 0.99993$; for CH_4 , a0 = -1960.72484, a1 = -1.3773, a2 = 0.08892, b0 = 8.31443, $Chi^2 = 0.00237$, $R^2 = 0.99903$.

5. Selectivity prediction

The experimental isotherm data for pure C_2 , CH_4 , C_6H_6 , C_7H_8 and C_6H_{12} were fitted using a dual Langmuir-Freundlich (L-F) model:

$$q = \frac{a_1 * b_1 * P^{c1}}{1 + b_1 * P^{c1}} + \frac{a_2 * b_2 * P^{c2}}{1 + b_2 * P^{c2}}$$

Where q and p are adsorbed amounts and the pressure of component i, respectively.

The adsorption selectivities for binary mixtures of C_2/CH_4 , C_2H_2/C_2H_4 , C_6H_6/C_7H_8 and C_6H_6/C_6H_{12} defined by

$$S_{i/j} = \frac{x_i^* y_j}{x_j^* y_i}$$

were respectively calculated using the Ideal Adsorption Solution Theory (IAST). Where x_i is the mole fraction of component *i* in the adsorbed phase and y_i is the mole fraction of component *i* in the bulk.

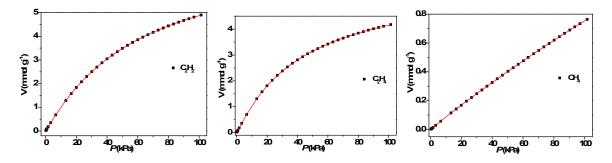
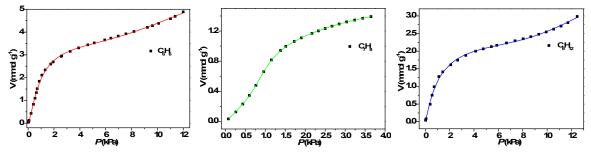



Fig. S7 Fitted adsorption isotherms of C_2H_2 , C_2H_4 and CH_4 . Fitting results: for C_2H_2 , a1 = 6.63211, b1 = 0.01184, c1 = 1.1078, a2 = 2.64638, b2 = 0.01265, c2 = 0.62804, $Chi^2 = 4.6442E-6$, $R^2 = 1$; for C_2H_4 , a1 = 5.82518, b1 = 0.01823, c1 = 1.04157, a2 = 0.14196, b2 = 0.00672, c2 = 1.98292, $Chi^2 = 0.00002$, $R^2 = 0.99999$; for CH_4 , a1 = 4.92093, b1 = 0.00132, c1 = 1.06129, a2 = 0.02295, b2 = 0.05033, c2 = 1.45173, $Chi^2 = 2.1002E-7$, $R^2 = 1$.

Fig. S8 Fitted adsorption isotherms of C_6H_6 , C_7H_8 and C_6H_{12} . Fitting results: for C_6H_6 , a1 = 3.68273, b1 = 1.11744, c1 = 1.41879, a2 = 3.49345, b2 = 0.00018, c2 = 3.23897, Chi² = 0.00208, R² = 0.99923; for C_7H_8 , a1 = 1.48163, b1 = 0.49475, c1 = 1.22674, a2 = 0.34264, b2 = 1.53047, c2 = 5.66832, Chi² = 8.3382E-6, R² = 0.99997; for C_6H_{12} , a1 = 2.44472, b1 = 0.87441, c1 = 1.16341, a2 = 1.72177, b2 = 2.3751E-6, c2 = 4.9358, Chi² = 0.00119, R² = 0.99868.

6. Theoretic simulations

Grand canonical Monte Carlo (GCMC) simulations were performed for the gas adsorption in the framework by the Sorption module of Material Studio (Accelrys. Materials Studio Getting Started, release 5.0). The framework was considered to be rigid, and the optimized gas and epoxide molecules were used. The partial charges for atoms of the framework were derived from QEq method and QEq_neutral 1.0 parameter. One unit cell was used during the simulations. The interaction energies between the gas molecules and framework were computed through the Coulomb and Lennard-Jones 6-12 (LJ) potentials. All parameters for the atoms were modeled with the universal force field (UFF) embedded in the MS modeling package. A cutoff distance of 12.5 Å was used for LJ interactions, and the Coulombic interactions were calculated by using Ewald summation. For each run, the 3×10^6 maximum loading steps, 3×10^6 production steps were employed.

The binding energy was calculated by DFT method using the Dmol³ software. The exchange-correlation functional used in calculations was in the framework of the generalized gradient approximation (GGA) proposed by Perdew and Wang (PBE). DND basis set was used to describe the atomic orbital. The SCF convergence was set to 10⁻⁵. The binding energy of is evaluated by the following equation: $E_{\text{bind}} = E_{\text{framework+gas}} - E_{\text{framework}} - E_{\text{gas}}$, in which $E_{\text{framework+gas}}$ is the total energy of the framework and the adsorbed gas molecule, $E_{\text{framework}}$ and E_{CO2} are the energies of the framework and gas molecule.

Chemical formula	$C_{48}H_{38}Dy_6F_6N_{24}O_{26}\\$				
Formula weight	2456.02				
<i>T</i> (K)	296(2)				
Space group	Fm-3m				
<i>a,b,c</i> (Å)	23.625(5), 23.625(5), 23.625(5)				
α, β, γ (°)	90, 90, 90				
$V(Å^3)$	13186(9)				
Z, $D_{\text{calcd.}}$ (g·cm ⁻³)	4, 1.237				
$\mu (\mathrm{mm}^{-1})$	3.416				
RefIns collected/unique/R _{int}	17839/710/0.0504				
Goof	1.152				
$R_1^{a}, wR_2^{b} (I > 2\sigma)$	$R_1 = 0.0494, wR_2 = 0.1297$				
R_1^{a} , wR_2^{b} (all data)	$R_1 = 0.0542, wR_2 = 0.1356$				
$\overline{{}^{a}R_{1} = \Sigma F_{o} - F_{c})/\Sigma F_{o} ; {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w (F_{o}^{2})^{2}]^{1/2}}.$					

7. Table of crystallographic data

Table S1. Crystallographic data for 1.

Dy(1)-O(1)	2.336(17)	O(2)#4-Dy(1)-O(2)#5	65.0(3)	O(2)#3-Dy(1)-N(1)	69.3(4)
Dy(1)-O(1)#1	2.336(17)	O(1)#1-Dy(1)-O(2)	139.3(3)	O(2)#4-Dy(1)-N(1)	133.3(3)

Dy(1)-O(2)#3	2.339(3)	O(1)#2-Dy(1)-O(2)	77.2(4)	O(2)#5-Dy(1)-N(1)	69.3(4)	
Dy(1)-O(2)#4	2.339(3)	O(1)#3-Dy(1)-O(2)	77.2(4)	O(2)-Dy(1)-N(1)	133.3(3)	
Dy(1)-O(2)#5	2.339(3)	O(1)-Dy(1)-O(2)	139.3(3)	O(3)-Dy(1)-N(1)	75.2(4)	
Dy(1)-O(2)	2.339(3)	O(2)#3-Dy(1)-O(2)	65.0(3)	O(1)#2-Dy(1)-N(1)#1	140.8(6)	
Dy(1)-O(3)	2.458(15)	O(2)#4-Dy(1)-O(2)	65.0(3)	O(1)#3-Dy(1)-N(1)#1	83.9(2)	
Dy(1)-N(1)#1	2.58(2)	O(2)#5-Dy(1)-O(2)	98.9(6)	O(1)-Dy(1)-N(1)#1	83.9(2)	
Dy(1)-N(1)#2	2.58(2)	O(1)#1-Dy(1)-O(3)	65.6(4)	O(2)#3-Dy(1)-N(1)#1	133.3(3)	
O(1)#1-Dy(1)-O(1)#2	131.3(9)	O(1)#2-Dy(1)-O(3)	65.6(4)	O(2)#4-Dy(1)-N(1)#1	69.3(4)	
O(1)#1-Dy(1)-O(1)#3	80.2(3)	O(1)#3-Dy(1)-O(3)	65.6(4)	O(2)#5-Dy(1)-N(1)#1	69.3(4)	
O(1)#2-Dy(1)-O(1)#3	80.2(3)	O(1)-Dy(1)-O(3)	65.6(4)	O(2)-Dy(1)-N(1)#1	133.3(3)	
O(1)#1-Dy(1)-O(1)	80.2(3)	O(2)#3-Dy(1)-O(3)	130.6(3)	O(3)-Dy(1)-N(1)#1	75.2(4)	
O(1)#2-Dy(1)-O(1)	80.2(3)	O(2)#4-Dy(1)-O(3)	130.6(3)	N(1)-Dy(1)-N(1)#1	86.3(2)	
O(1)#3-Dy(1)-O(1)	131.3(9)	O(1)#1-Dy(1)-O(2)#5	77.2(4)	O(1)#1-Dy(1)-N(1)#2	140.8(6)	
O(1)#1-Dy(1)-O(2)#3	139.3(3)	O(1)#2-Dy(1)-O(2)#5	139.3(3)	O(1)#3-Dy(1)-N(1)#2	83.9(2)	
O(1)#2-Dy(1)-O(2)#3	77.2(4)	O(1)#3-Dy(1)-O(2)#5	139.3(3)	O(1)-Dy(1)-N(1)#2	83.9(2)	
O(1)#3-Dy(1)-O(2)#3	139.3(3)	O(1)-Dy(1)-O(2)#5	77.2(4)	O(2)#3-Dy(1)-N(1)#2	69.3(4)	
O(1)-Dy(1)-O(2)#3	77.2(4)	O(2)#3-Dy(1)-O(2)#5	65.0(3)	O(2)#4-Dy(1)-N(1)#2	133.3(3)	
O(1)#1-Dy(1)-O(2)#4	77.2(4)	O(2)#5-Dy(1)-O(3)	130.6(3)	O(2)#5-Dy(1)-N(1)#2	133.3(3)	
O(1)#2-Dy(1)-O(2)#4	139.3(3)	O(2)-Dy(1)-O(3)	130.6(3)	O(2)-Dy(1)-N(1)#2	69.3(4)	
O(1)#3-Dy(1)-O(2)#4	77.2(4)	O(1)#1-Dy(1)-N(1)	83.9(2)	O(3)-Dy(1)-N(1)#2	75.2(4)	
O(1)-Dy(1)-O(2)#4	139.3(3)	O(1)#2-Dy(1)-N(1)	83.9(2)	N(1)-Dy(1)-N(1)#2	86.3(2)	
O(2)#3-Dy(1)-O(2)#4	98.9(6)	O(1)#3-Dy(1)-N(1)	140.8(6)	N(1)#1-Dy(1)-N(1)#2	150.4(9)	
Symmetry codes: #1 x $\frac{1}{2} - \frac{1}{2} - \frac{1}{2} + 1$						

Symmetry codes: #1 x, z+1/2, -y+1/2; #2 x, -z+1/2, -y+1/2; #3 x, y, -z; #4 x, -y+1, z; #5 x, -y+1, -z.