Electronic Supporting Information (ESI)

Co-CeO_x Nanoparticles Anchored on Nitrogen-Doped Carbon Nanosheet: Synergistic Effect for Highly Efficient Hydrolysis of Sodium Borohydride

Longhua Yao,^a Xiugang Li,^a Wenfan, Peng,^a Qilu Yao,^a Jianhui Xia,^{*b} Zhang-Hui Lu^{*a}

^aInstitute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China

^bNational Engineering Research Centre for Carbohydrate Synthesis, Jiangxi Normal

University, Nanchang 330022, China

*Corresponding author: E-mail: <u>luzh@jxnu.edu.cn</u>

Table of Contents

Experimental section

Figure S1 HRTEM and SAED pattern of Co-CeO_x/NCNS.

Figure S2 X-ray diffraction patterns for the as-synthesized catalysts.

Figure S3 EDX pattern of Co-CeO_{*x*}/NCNS.

Figure S4 the survey XPS spectrum and XPS spectrum of N 1s of Co-CeO_x/NCNS.

Figure S5 NaBH₄ hydrolysis over Co-CeO_x immobilized on different supports.

Figure S6 NaBH₄ hydrolysis over Co-CeO_x immobilized on NCNS synthesized by varying different temperatures and precursor mass ratios.

Figure S7 NaBH₄ hydrolysis over $Co-CeO_x/NCNS$ with different NaOH concentration

Figure S8 NaBH₄ hydrolysis over Co-CeO_x/NCNS with di \Box erent Ce/(Co+Ce) ratio and Co loadings.

Figure S9 NaBH₄ hydrolysis over different catalysts.

Figure S10 NaBH₄ hydrolysis over Co-CeO_x/NCNS with different concentration of catalyst and NaBH₄.

Figure S11 Stability test of NaBH₄ hydrolysis over Co-CeO_x/NCNS.

Table S1 ICP-AES results for the as-synthesized catalysts.

Table S2 Comparison of HGR and E_a with previous studies.

References

Experimental section

Materials and Reagents

Cerium nitrate hexahydrate (Ce(NO₃)₃·6H₂O, Aladdin, 99.95%), *cobalt* chloride hexahydrate (CoCl₂·6H₂O, Aladdin, AR), potassium citrate monohydrate (C₆H₅K₃O₇·H₂O, Aladdin,99%), 2-Methylimidazole (C₄H₆N₂, Aladdin,98%), zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O, Macklin, 99%), sodium hydroxide (NaOH, Tianjin Fuchen Chemical Reagent, >96%), sodium borohydride (NaBH₄, Acros organics,98%), nickel chloride hexahydrate (NiCl₂·6H₂O, Aladdin, 99.9%), iron(II) sulfate heptahydrate (FeSO₄·7H₂O, Sinopharm Chemical Reagent Co., Ltd., 99%), copric chloride dehydrate (CuCl₂·2H₂O, Aladdin, 99.99%), lanthanum(III) nitrate hexahydrate (La(NO)₃·6H₂O Aladdin, 99%), neodymium(III) nitrate hexahydrate (Nd(NO)₃·6H₂O Aladdin, 99.9%), yttrium(III) nitrate hexahydrate (Y(NO)₃·6H₂O), and praseodymium(III) nitrate hexahydrate (Pr(NO)₃·6H₂O) were used as received.

Characterization

Powder X-ray diffraction (XRD) patterns were carried out with X-ray diffractometer of Rigaku RINT-2200, using graphite monochromatized Cu K α radiation (λ = 1.54 Å) at a scanning rate of 4°/min. An inductively coupled plasma (ICP) spectrophotometer (Varian, 725-ES) was used to determine the chemical components of the assynthesized catalysts after the sample digested by microwave. Organic element analysis (OEA) was carried out on an EA3000 elemental analyzer (Euro EA3000, Euro Vector, Milano, Italy). The Brunauer-Emmett-Teller (BET) equation method was used to analyze the specific surface areas, on the basis of nitrogen adsorptiondesorption isotherms which was recorded on a BELSORP-mini II at 77 K. X-ray photoelectron spectroscopy (XPS) analyses were carried out on an ESCALAB 250XI X-ray photoelectron spectrometer using an Al K α source. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) images and energy-dispersive X-ray spectroscopy (EDS) mapping analyses were recorded on SU-8020 and JEM-2100 with Super-X EDS system under operating voltages of 300 kV.

Synthesis of ZIF-8

ZIF-8 is synthesized according to previous literature.⁴⁷ Typically, 10 mmol $Zn(NO_3)_2 \cdot 6H_2O$ and 80mmol 2-methylimidazole is dispersed in 40ml methanol respectively. The zinc nitrate solution was added dropwise to the 2-methylimidazole solution, standing for 24 hours at room temperature, The white precipitate was separated by centrifugation and washed with methanol several times. After drying in a vacuum oven at 333 K overnight, the resulting white solid powder is the ZIF-8. As shown in SEM, the as-synthesized ZIF-8 shows a uniform rhombic dodecahedron structure.

SEM image of the as-synthesized ZIF-8.

Calculation methods

The Hydrogen generation rate (HGR) is based on the mass of Co, which was calculated from the equation below:

$$HGR = \frac{V_{H2}}{m_{Co}t_{min}}$$

In the equation, V_{H2} is the total volume of generated H_2 , m_{C0} is the mass of Co atoms in catalyst, and t_{min} is the completion time of the reaction in minute.

Figure S1 HRTEM and corresponding SAED pattern of Co-CeO_{*x*}/NCNS.

Figure S2 X-ray diffraction patterns for the NCNS, Co, Co-CeO_x, Co/NCNS, Co-CeO_x/NCNS, and Co-CeO_x/NCNS annealed at 773 K for 4 h under Ar in tube furnace.

Figure S3 EDX pattern of Co-CeO_{*x*}/NCNS.

Figure S4 (a) the survey XPS spectrum and (b) XPS spectrum of N 1s of Co-CeO_x/NCNS.

Figure S5 Time plots for hydrogen release from NaBH₄ (200mM, 5mL) catalyzed by Co-CeO_x/NCNS, Co-CeO_x/NCP, and Co-CeO_x/CNS respectively.

Figure S6 Time plots for hydrogen release from NaBH₄ (200mM, 5mL) catalyzed by Co-CeO_x/NCNS (a) synthesized by varying different temperatures and (b) different precursors of ratio (ZIF-8/potassium citrate) at 303 K (c_{NaOH} =0.4 M, n_{Co} =0.05 mmol).

Figure S7 (a) Volume of the generated hydrogen versus time and (b) corresponding HGR for NaBH₄ dehydrogenation over Co-CeO_x/NCNS catalysts with different NaOH concentration at 303 K.

Figure S8 Time plots for hydrogen release from NaBH₄ (200mM, 5mL) catalyzed by Co-CeO_x/NCNS with (a) different molar ratio of n_{Ce}/n_{Co+Ce} , (b) different Co loadings at 303 K (c_{NaOH} =0.4 M, n_{Co} =0.05 mmol).

Figure S9 Time plots for hydrogen release from NaBH₄ (200mM, 5mL) catalyzed by (a) Co-RO_x/NCNS (R = Ce, La, Nd, Y, Pr) and (b) M-CeO_x/NCNS (M = Co, Ni, Fe, Cu) at 303 K (c_{NaOH} =0.4 M, n_{Co} =0.05 mmol).

Figure S10 Time plots for hydrogen release from NaBH₄ catalyzed by Co-CeO_x/NCNS with (a) different catalyst concentration, and (c) different NaBH₄ concentration. Plot of the hydrogen generation rate versus (b) metal concentration and (d) NaBH₄ concentration, respectively, both in logarithmic scale.

Figure S11 Stability test for H_2 release from NaBH₄ over the Co-CeO_x/NCNS catalyst with NaOH ($c_{NaOH}=0.4$ M, $n_{Co}=0.05$ mmol) at 303 K.

_					
	Ca	talysts loading	Co (wt %) : Ce (wt %)	Co : Ce (atomic ratio)	
	10%	Co-CeO _x /NCNS	9.21 : 7.51	0.0467 : 0.0160	
	20%	Co-CeO _x /NCNS	20.42 : 16.29	0.0493 : 0.0165	
	30%	Co-CeO _x /NCNS	27.84 : 22.12	0.0497 : 0.0166	
	40%	Co-CeO _x /NCNS	36.29 : 28.85	0.0498 : 0.0166	

 Table S1 ICP-AES results for the as-synthesized Co-CeO_x/NCNS catalysts.

catalyst	reation temperature (K)	$HGR (mL_{H2} \cdot min^{-1})$	E_a (kJ·mol ⁻ 1))	Ref.
Co@ZIF-8	303	14000	62.9	42
Co@C ₂ N-h2D	303	31238 ^b	66.174	13
Co-Mo/3DGO	298	7023	35.6	26
Porous Co ₃ O ₄	298	19520 ^b	a	S2
Porous Co-B	303	6284 ^b	30	S3
Co/PGO	298	5955	55.22	S4
Co-B/C	298	1127 ^b	57.8	S5
Co@C-700	303	a	56.9	S6
dandelion-like Co-Mo-B	303	20298 ^b	51	S7
Co–Zn/Ni	298	576 ^b	50.2	S 8
Со-Р	303	3300	60.2	S9
Ni-B–silica	298	1916 ^b	60.7	S10
NiB/NiFe ₂ O ₄	298	2999 ^b	72.52	S11
Cu–B	303	6500 ^b	23.79	S12
Co-CeO _x /NCNS	303	28410	44.16	This work

Table S2 Comparison of HGR and activation energy (E_a) in this study with those reported in previous studies.

a. Not reported or no detailed data are available.

b. HGR value is calculated according to the active component.

Reference

(S1) Chen, Y. Z.; Wang, C.; Wu, Z. Y.; Xiong, Y.; Xu, Q.; Yu, S. H.; Jiang, H. L. From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. *Adv. Mater.* **2015**, 27 (34), 5010-6

(S2) Ma, M.; Wei, L.; Jin, F. Porous Co_3O_4 nanoplatelets as efficient catalyst precursor for hydrogen generation from the hydrolysis of alkaline sodium borohydride solution. *Funct. Mater. Lett.* **2019**, 12 (01), 1850109.

(S3) Wang, X.; Liao, J.; Li, H.; Wang, H.; Wang, R.; Pollet, B. G.; Ji, S. Highly active porous Co–B nanoalloy synthesized on liquid-gas interface for hydrolysis of sodium borohydride. *Int. J. Hydrogen Energy*, **2018**, 43 (37), 17543-17555.

(S4) Zhang, H.; Feng, X.; Cheng, L.; Hou, X.; Li, Y.; Han, S. Non-noble Co anchored on nanoporous graphene oxide, as an efficient and long-life catalyst for hydrogen generation from sodium borohydride, *Colloid. Surface A.* **2019**, 563, 112-119.

(S5) Zhao, J.; Ma, H.; Chen, J. Improved hydrogen generation from alkaline NaBH₄ solution using carbon-supported Co–B as catalysts. *Int. J. Hydrogen Energy*. 2007, 32 (18), 4711-4716.

(S6) Zhang, X.; Sun, X.; Xu, D.; Tao, X.; Dai, P.; Guo, Q.; Liu, X. Synthesis of MOF-derived Co@C composites and application for efficient hydrolysis of sodium borohydride, *Appl. Surf. Sci.*, **2019**, 469, 764-769.

(S7) Wei, Y.; Wang, R.; Meng, L.; Wang, Y.; Li, G.; Xin, S.; Zhao, X.; Zhang, K. *Int. J. Hydrogen Energy.* **2017**, 42 (15), 9945-9951.

(S8) Wei, L.; Ma, M.; Lu, Y.; Zhang, S.; Gao, J.; Dong, X. Electrodeposited Co–Zn on Ni foam as efficient catalysts for hydrogen generation from hydrolysis of sodium borohydride, *Funct. Mater. Lett.*, **2017**, 10 (05), 1750065.

(S9) Eom, K.; Cho, K.; Kwon, H. Effects of electroless deposition conditions on microstructures of cobalt–phosphorous catalysts and their hydrogen generation properties in alkaline sodium borohydride solution. *J. Power Sources*, **2008**, 180 (1), 484-490.

(S10) Chen, Y.; Kim, H. Use of a nickel-boride–silica nanocomposite catalyst prepared by in-situ reduction for hydrogen production from hydrolysis of sodium borohydride. *Fuel Process. Technol.* **2008**, *89* (10), 966-972.

(S11) Liang, Z.; Li, Q.; Li, F.; Zhao, S.; Xia, X. Hydrogen generation from hydrolysis of NaBH₄ based on high stable NiB/NiFe₂O₄ catalyst. *Int. J. Hydrogen Energy.* **2017**,

42 (7), 3971-3980.

(S12) Bekirogullari, M. Catalytic activities of non-noble metal catalysts (Cu-B, Fe-B, and Ni-B) with C.Vulgaris microalgal strain support modified by using phosphoric acid for hydrogen generation from sodium borohydride methanolysis. *Int. J. Hydrogen Energy.* **2019**, *44* (29), 14981-14991.