Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

> Structural, Spectroscopic, and Computational Evaluations of Cation-Cation and Halogen Bonding Interactions in Heterometallic Uranyl Hybrid Materials

> Korey P. Carter^{ab}, Mark Kalaj^{ac}, Sapphire McNeil^d, Andrew Kerridge^d, Mark H. Schofield^a, J. August Ridenour^a, and Christopher L. Cahill^{*a}

^a Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, United States

^b Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

^c Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States

^d Department of Chemistry, Lancaster University, Bailrigg, Lancaster LA1 4YB, United Kingdom

E-mail: cahill@gwu.edu

Supporting Info Section

I. Additional Figures and Tables	2
II. Powder X-ray Diffraction data	13
III. Thermal Ellipsoid Plots	15
IV. Tables of Bond Distances	17
V. DFT Computed Structure Coordinates	19
VI. References	30

I. Additional Figures and Tables

Table S1 Crystallographic Data for 1-4

	1	2	3	4
chem formula	$C_{28}H_{16}I_4N_2O_{18}Ag_2U_2$	$C_{21}H_{12}I_3O_8AgU$	C ₂₁ H ₁₂ I ₃ O ₈ AgU	$C_{21}H_9I_6O_8AgU$
formula weight	1867.83	1118.91	1118.91	1496.58
crystal system	triclinic	triclinic	monoclinic	triclinic
space group	P-1	P-1	P2 ₁ /n	P-1
<i>a</i> (Å)	8.8109(4)	8.677(7)	9.1545(5)	11.210(7)
<i>b</i> (Å)	11.4713(6)	9.815(8)	14.2946(7)	12.407(8)
<i>c</i> (Å)	11.4852(6)	15.0560(11)	19.4243(10)	23.0870(11)
α (deg)	117.072(4)	97.859(6)	90	77.655(6)
β (deg)	106.043(3)	98.971(7)	93.878(11)	82.316(6)
$\gamma(\text{deg})$	91.445(3)	101.625(7)	90	74.954(7)
$V(Å^3)$	977.81(9)	1221.7(14)	2536.0(2)	3019.0(3)
Ζ	1	2	4	4
<i>T</i> (K)	293(2)	293(2)	293(2)	293(2)
λ (Mo K α)	0.71073	0.71073	0.71073	0.71073
$D_{\rm calc} ({ m g \ cm^{-3}})$	3.172	3.042	2.931	3.293
μ (mm ⁻¹)	12.476	11.256	10.845	12.183
R _{int}	0.0297	0.0662	0.0421	0.0332
R1 [<i>I</i> >2σ(<i>I</i>)]	0.0384	0.0419	0.0297	0.0387
wR2 [<i>I</i> >2σ(<i>I</i>)]	0.0879	0.0821	0.0720	0.0849
CCDC Number	2038396	2038397	2038398	2038399

Figure S1 Deconvolution of Raman spectra of **1-4** for peak identification using Lorentzian curves.^{1, 2} From these peak deconvolutions, we were able to extract Raman frequencies and vibrational peak modes, which are highlighted in Figure 9.

Figure S2 Room temperature, solid-state emission spectra of 1-4.

Compound	Peak Positions from	Vibronic Gaps	Average Vibronic
	Emission Spectra	between Emission	Gap
	(nm)	Spectra Peaks (cm ⁻¹)	(cm ⁻¹)
1	n/a	n/a	n/a
2	466, 484, 504, 526,	792, 842, 830, 811,	816
	550, 575	805	
3	472, 489, 509, 532,	761, 813, 827, 805,	804
	556, 582, 610	819, 798	
4	474, 490, 510, 559,	830, 865, 837, 840,	856
	587, 620	906	

Table S2 Summary of peak positions and vibronic gaps of solid-state emission spectra of 1-4.

Figure S3 IR spectra of 1-4. Asymmetric stretch (v_3) of the uranyl cation is highlighted for each complex.

Table S3 U-O Axial Bond Lengths in 1-4.

Compound	d _{U1-O1}	d _{U1-O2}	d _{U2-O3}	d _{U2-O4}
	[Å]	[Å]	[Å]	[Å]
1	1.746(7)	1.743(7)		
2	1.746(6)	1.768(6)		
3	1.772(4)	1.793(4)		
4	1.747(6)	1.777(5)	1.776(5)	1.750(6)

Figure S4 Model structures of **1-4**. Ball and stick representation is indicative of those atoms whose positions were optimized or partially optimized.

Table	S4	Com	parison	ofex	perimental	and DFT	calculated	values	of (v_1)) for 1	1-4.
									· · · ·		

Compound	v (cm ⁻¹)	Expt.	Notes
1	853	0215	Uranyl 1 has greater amplitude
1	857	034.3	Uranyl 2 has greater amplitude
2	843	017 5	Localized on uranyl 1
2	855	842.3	Localized on uranyl 2 (I coordination, Ag in 2 nd sphere)
3	765	000 5	Localized on uranyl 1 (Ag coordinating uranyl O)
3	796	808.5	Localized on uranyl 2
4	837	0215	Localized on uranyl 1 (2 x I coordination)
4	850	834.3	Localized on uranyl 2 (Ag in 2 nd coordination sphere)

Table S5 Comparison of experimental and DFT calculated values of (v_3) for 1-4.

Compound	v (cm ⁻¹)	Expt.	Notes
1	916	012	Uranyl 2 has greater amplitude
1	920	912	Uranyl 1 has greater amplitude
2	899	012	Localized on uranyl 1
2	909	912	Localized on uranyl 2 (I coordination, Ag in 2 nd sphere)
3	826		Localized on uranyl 1 (Ag coordinating uranyl O)
3	860	898	Localized on uranyl 2 (coupled to equatorial vibrations)
3	866		Localized on uranyl 2 (coupled to equatorial vibrations)

4	892	014	Localized on uranyl 1 (2 x I coordination)
4	905	914	Localized on uranyl 2 (Ag in 2 nd coordination sphere)

Table S6 Natural Energy Decomposition Analysis for monomeric version of 1, $[UO_2Ag(C_7H_4IO_2)_2(NO_3)]$.

Ligand	Bond Length (Å)	Electrical (kcal/mol)	Charge Transfer (kcal/mol)	Core (kcal/mol)	Total Energy (kcal/mol)
Ag^+	n/a	-185.25	-94.51	134.11	-145.66
o-IBA, aver.	2.726984	-66.47	-141.79	227.08	18.82
O ²⁻	1.733555	-337.19	-746.89	939.15	-144.94

 Table S7 Wiberg bond index for selected bonds in 1.

Group	Bond	Bond Index
UO ₂	U1-O1	2.0791
UO_2	U1-O2	1.9961
U-benzoate	U1-O3	0.3839
U-benzoate	U1-O4	0.4075
U-benzoate	U1-O7	0.4051
U-benzoate	U1-O8	0.3782
U-nitrate	U1-O5	0.3834
U-nitrate	U1-O6	0.3793
Ag	Ag1-O2	0.0517
Ag	Ag1-I1	0.2224
Ag	Ag1-I2	0.2383
Ag	Ag1-O3	0.0316
Ag	Ag1-08	0.0402

Table S8 Wiberg bond index for selected bonds in 2.

Group	Bond	Bond Index
UO ₂	U1-O1	2.0470
UO ₂	U1-O2	2.0499
U-benzoate	U1-O3	0.4202
U-benzoate	U1-O4	0.3424
U-benzoate	U1-O5	0.3599
U-benzoate	U1-O6	0.3876
U-benzoate	U1-07	0.4007
U-benzoate	U1-08	0.4067
Ag	Ag1-I1	0.2272
Ag	Ag1-I3	0.1546
Ag	Ag1-O4	0.0554
Ag	Ag1-O5	0.0580

Subunit	Group	Bond	Bond Index
	UO ₂	U1-01	2.0465
	UO ₂	U1-O2	2.0447
	U-benzoate	U1-O3	0.4328
	U-benzoate	U1-O4	0.4141
	U-benzoate	U1-05	0.4006
	U-benzoate	U1-O6	0.3728
U(benzoate) ₂ -Ag	U-benzoate	U1-07	0.3928
	U-benzoate	U1-08	0.3963
	Ag	Ag1-O2	0.0766
	Ag	Ag1-06	0.0502
	Ag	Ag1-O7	0.0443
	Ag	Ag1-I1	0.2428
	UO ₂	U1-01	2.0645
	UO ₂	U1-O2	1.9087
	U-benzoate	U1-O3	0.4133
	U-benzoate	U1-O4	0.4105
U(benzoate) ₃ -	U-benzoate	U1-05	0.4080
	U-benzoate	U1-O6	0.4354
	U-benzoate	U1-07	0.4330
	U-benzoate	U1-08	0.4156

 Table S9 Wiberg bond index for selected bonds in 3.

Subunit	Group	Bond	Bond Index
	UO ₂	U1-01	2.067
	UO ₂	U1-O2	2.057
	U-benzoate	U1-05	0.4133
	U-benzoate	U1-O6	0.3934
U(benzoate) ₂ -Ag	U-benzoate	U1-07	0.3825
	U-benzoate	U1-O8	0.3967
	U-benzoate	U1-09	0.3417
	U-benzoate	U1-O10	0.3816
	Ag	Ag1-08	0.0306
	Ag	Ag1-09	0.0515
AgO ₂ I ₃ center	Ag	Ag1-I1	0.2182
	Ag	Ag1-I3	0.1620
	Ag	Ag1-I5	0.1604
	UO ₂	U1-01	2.0671
	UO ₂	U1-O2	1.9824
	U-benzoate	U1-05	0.3909
	U-benzoate	U1-O6	0.3871
UO ₂ -Ag	U-benzoate	U1-07	0.4291
	U-benzoate	U1-08	0.4131
	U-benzoate	U1-09	0.3794
	U-benzoate	U1-O10	0.3839

 Table S10 Wiberg bond index for selected bonds in 4.

Table S11 Topological parameters of 1. ρ_{BCP} = magnitude of electron density at the bond critical point; $\nabla^2 \rho$ = Laplacian of electron density at the bond critical point; ε = deviation from cylindrical symmetry of electron cloud; $G(\mathbf{r}_b)$ = kinetic energy density of bond or non-covalent interaction; $V(\mathbf{r}_b)$ = potential energy density of bond or non-covalent interaction; δ_{AB} = delocalization index of bond or non-covalent interaction.

Atoma	_	∇^2 -	_	$C(\mathbf{r})$	$\mathbf{V}(\mathbf{r})$	V/C	2
Atoms	$\rho_{\rm BCP}$	$V^2\rho$	3	$G(\mathbf{r}_b)$	$\mathbf{v}(\mathbf{r}_{b})$	- V/G	0 _{AB}
U1-01	0.3250	0.2944	0.0021	0.3834	-0.6932	1.8081	1.9056
U1-O2	0.3242	0.3302	0.0054	0.3915	-0.7006	1.7893	1.8346
U1-O3	0.0613	0.1907	0.1451	0.0564	-0.0651	1.1548	0.3377
U1-O4	0.0630	0.1936	0.1420	0.0578	-0.0672	1.1627	0.3534
U1-O5	0.0572	0.1813	0.1896	0.0525	-0.0596	1.1362	0.3064
U1-O6	0.0565	0.1807	0.1883	0.0520	-0.0588	1.1311	0.2992
U1-07	0.0644	0.1969	0.1460	0.0591	-0.0690	1.1672	0.3591
U1-08	0.0602	0.1883	0.1474	0.0554	-0.0637	1.1500	0.3324
Ag1-O2	0.0340	0.1497	0.0220	0.0381	-0.0389	1.0188	0.2143
Ag1-O3	0.0319	0.1396	0.0509	0.0358	-0.0366	1.0243	0.1837
Ag1-08	0.0395	0.1800	0.0291	0.0469	-0.0488	1.0404	0.2248
Ag1-I1	0.0520	0.1283	0.0332	0.0403	-0.0510	1.2661	0.5593
Ag1-I2	0.0557	0.1361	0.0179	0.0435	-0.0558	1.2838	0.5941

Table S12 Topological parameters of **2**. ρ_{BCP} = magnitude of electron density at the bond critical point; $\nabla^2 \rho$ = Laplacian of electron density at the bond critical point; ε = deviation from cylindrical symmetry of electron cloud; $G(\mathbf{r}_b)$ = kinetic energy density of bond or non-covalent interaction; $V(\mathbf{r}_b)$ = potential energy density of bond or non-covalent interaction; δ_{AB} = delocalization index of bond or non-covalent interaction.

Atoms	$ ho_{ m BCP}$	$ abla^2 ho$	3	$G(\mathbf{r}_{b})$	$V(\mathbf{r}_b)$	-V/G	δ_{AB}
U1-01	0.3090	0.3156	0.0028	0.3588	-0.6388	1.7802	1.8689
U1-O2	0.3249	0.3007	0.0022	0.3846	-0.6941	1.8046	1.8961
U1-O3	0.0633	0.1902	0.1494	0.0572	-0.0669	1.1691	0.3646
U1-O4	0.0521	0.1720	0.1109	0.0484	-0.0538	1.1115	0.2834
U1-O5	0.0551	0.1762	0.1341	0.0505	-0.0570	1.1278	0.3077
U1-O6	0.0583	0.1813	0.1408	0.0530	-0.0607	1.1451	0.3280
U1-07	0.0612	0.1885	0.1416	0.0559	-0.0647	1.1571	0.3482
U1-08	0.0611	0.1887	0.1402	0.0559	-0.0646	1.1556	0.3379
Ag1-I1	0.0449	0.0999	0.0368	0.0312	-0.0392	1.2562	0.5237
Ag1-I3	0.0331	0.0763	0.0773	0.0219	-0.0257	1.1766	0.3809
Ag1-O4	0.0380	0.1689	0.0254	0.0438	-0.0453	1.0352	0.2370
Ag1-05	0.0454	0.2104	0.0197	0.0551	-0.0577	1.0459	0.2830
I3-O2	0.0081	0.0284	0.0921	0.0056	-0.0042	0.7507	0.0711
O1-H5	0.0066	0.0259	0.3004	0.0051	-0.0037	0.731	0.0222
O1-H20	0.0063	0.0239	0.0796	0.0047	-0.0035	0.7331	0.0268
O2-H12	0.0073	0.0301	1.0094	0.006	-0.0044	0.7341	0.0192
O2-H13	0.0065	0.0249	0.0781	0.0049	-0.0036	0.7263	0.029

Table S13 Topological parameters of **3**. ρ_{BCP} = magnitude of electron density at the bond critical point; $\nabla^2 \rho$ = Laplacian of electron density at the bond critical point; ε = deviation from cylindrical symmetry of electron cloud; $G(\mathbf{r}_b)$ = kinetic energy density of bond or non-covalent interaction; $V(\mathbf{r}_b)$ = potential energy density of bond or non-covalent interaction; δ_{AB} = delocalization index of bond or non-covalent interaction.

Atoms	$ ho_{ m BCP}$	$ abla^2 ho$	3	$G(\mathbf{r}_{b})$	$V(\mathbf{r}_b)$	-V/G	δ_{AB}
U1-01	0.3055	0.3181	0.0009	0.3526	-0.6257	1.7745	1.8682
U1-O2	0.2910	0.3252	0.0038	0.3287	-0.5760	1.7526	1.8590
U1-O3	0.0659	0.1996	0.1545	0.0605	-0.0711	1.1748	0.3746
U1-O4	0.0631	0.1940	0.1476	0.0580	-0.0674	1.1632	0.3587
U1-O5	0.0600	0.1873	0.1366	0.0551	-0.0633	1.1496	0.3325
U1-O6	0.0569	0.1819	0.1340	0.0525	-0.0595	1.1333	0.3100
U1-07	0.0617	0.1933	0.1399	0.0570	-0.0657	1.1520	0.3367
U1-08	0.0595	0.1843	0.1360	0.0542	-0.0623	1.1500	0.3334
Ag1-O2	0.0448	0.2013	0.0147	0.0529	-0.0554	1.0482	0.2906
Ag1-06	0.0420	0.1912	0.0279	0.0500	-0.0521	1.0434	0.2614
Ag1-07	0.0398	0.1817	0.0164	0.0472	-0.0489	1.0370	0.2426
Ag1-I1	0.0551	0.1214	0.0641	0.0399	-0.0523	1.3105	0.6212
U1-O1	0.3061	0.3049	0.0008	0.3499	-0.6235	1.7822	1.8890
U1-O2	0.2848	0.3652	0.0050	0.3296	-0.5678	1.7230	1.7336
U1-O3	0.0583	0.1750	0.1329	0.0516	-0.0594	1.1521	0.3421
U1-O4	0.0604	0.1847	0.1390	0.0547	-0.0631	1.1553	0.3454
U1-O5	0.0597	0.1831	0.1330	0.0540	-0.0622	1.1520	0.3401
U1-06	0.0628	0.1874	0.1384	0.0563	-0.0657	1.1671	0.3618
U1-07	0.0660	0.1991	0.1559	0.0604	-0.0710	1.758	0.3763
U1-08	0.0632	0.1936	0.1505	0.0579	-0.0674	1.1639	0.3598
O1-H20	0.0048	0.0181	0.0967	0.0035	-0.0025	0.7099	0.0216
02-H14	0.0044	0.0166	0.0495	0.0032	-0.0023	0.7071	0.0193

Table S14 Topological parameters of 4. ρ_{BCP} = magnitude of electron density at the bond critical point; $\nabla^2 \rho$ = Laplacian of electron density at the bond critical point; ε = deviation from cylindrical symmetry of electron cloud; $G(\mathbf{r}_b)$ = kinetic energy density of bond or non-covalent interaction; $V(\mathbf{r}_b)$ = potential energy density of bond or non-covalent interaction; δ_{AB} = delocalization index of bond or non-covalent interaction.

Atoms	$ ho_{ m BCP}$	$\nabla^2 ho$	3	$G(\mathbf{r}_{b})$	V(r _b)	-V/G	δ_{AB}
U1-O1	0.3225	0.3002	0.0013	0.3800	-0.6849	1.8026	1.8970
U1-O2	0.3025	0.3193	0.0001	0.3479	-0.6160	1.7706	1.8686
U1-O5	0.0634	0.1942	0.1477	0.0581	-0.0677	1.1646	0.3577
U1-O6	0.0596	0.1829	0.1385	0.0541	-0.0624	1.1538	0.3397
U1-07	0.0613	0.1901	0.1455	0.0562	-0.0650	1.1551	0.3417
U1-08	0.0609	0.1896	0.1325	0.0560	-0.0645	1.1526	0.3372
U1-09	0.0534	0.1707	0.1233	0.0486	-0.0546	1.1223	0.2962
U1-O10	0.0580	0.1808	0.1255	0.0528	-0.0605	1.1444	0.3256
Ag1-08	0.0257	0.1109	0.0235	0.0278	-0.0278	1.0014	0.1510
Ag1-09	0.0418	0.1950	0.0155	0.0508	-0.0528	1.0397	0.2526
Ag1-I1	0.0454	0.1089	0.0699	0.0335	-0.0415	1.2403	0.5412
Ag1-I3	0.0386	0.0991	0.0886	0.0289	-0.0343	1.1895	0.4231
Ag1-I5	0.0404	0.1047	0.0936	0.0307	-0.0367	1.1967	0.4213
U1-O1	0.3242	0.2971	0.0016	0.3821	-0.6900	1.8057	1.8992
U1-O2	0.3011	0.3227	0.0062	0.3467	-0.6127	1.7674	1.8100
U1-O5	0.0581	0.1798	0.1388	0.0526	-0.0602	1.1452	0.3327
U1-06	0.0589	0.1825	0.1353	0.0536	-0.0616	1.1488	0.3330
U1-07	0.0662	0.2003	0.1582	0.0607	-0.0713	1.1752	0.3727
U1-08	0.0618	0.1859	0.1346	0.0556	-0.0647	1.1639	0.3540
U1-09	0.0574	0.1802	0.1237	0.0524	-0.0598	1.1406	0.3227
U1-O10	0.0543	0.1649	0.1260	0.0478	-0.0543	1.1372	0.3203
I3-O2	0.0072	0.0277	0.2968	0.0053	-0.0038	0.7253	0.0611
15-02	0.0135	0.0534	0.0853	0.0109	-0.0091	0.8339	0.1084

II. Powder X-ray diffraction data

Figure S5 The observed PXRD pattern of 1 with calculated pattern overlaid in red.

Figure S6 The observed PXRD pattern of 2 with calculated pattern overlaid in red.

Figure S7 The observed PXRD pattern of 3 with calculated pattern overlaid in red. We acknowledge one unidentified impurity at ca. 8.5 degrees 2-theta.

Figure S8 The observed PXRD pattern of 4 with calculated pattern overlaid in red. We acknowledge one unidentified impurity at ca. 10 degrees 2-theta.

III. Thermal Ellipsoid Plots

Figure S9 ORTEP illustration of 1. Ellipsoids are shown at 50% probability level.

Figure S10 ORTEP illustration of 2. Ellipsoids are shown at 50% probability level.

Figure S11 ORTEP illustration of **3**. Ellipsoids are shown at 50% probability level.

Figure S12 ORTEP illustration of 4. Ellipsoids are shown at 50% probability level.

IV. Tables of Bond Distances

Com-	d _{U1-O3}	d _{U1-O4}	d _{U1-O5}	d _{U1-O6}	d _{U1-O7}	d _{U1-O8}	d _{U1-09}	d _{U1-O10}
pound	[Å]							
1	2.458	2.433	2.485	2.482	2.443	2.451		
	(6)	(6)	(6)	(6)	(6)	(6)		
2	2.454	2.514	2.494	2.474	2.455	2.444		
	(6)	(6)	(6)	(6)	(6)	(6)		
3	2.441	2.423	2.466	2.446	2.479	2.460		
	(4)	(4)	(4)	(4)	(4)	(4)		
4			2.422	2.471	2.475	2.511	2.454	2.481
			(5)	(5)	(5)	(5)	(5)	(5)

Table S15 U-O equatorial bond lengths in 1-4.

 Table S16 Additional U-O equatorial bond lengths in 4.

Compound	d _{U2-}					
	011 [Å]	012 [Å]	013 [Å]	014 [Å]	015 [Å]	016 [Å]
4	2.509	2.451	2.477	2.454	2.439	2.467
	(5)	(5)	(5)	(5)	(5)	(5)

Table S17 Ag-O bond lengths in 1-4.

Com-	d _{Ag1-}	d _{Ag2-}	d _{Ag2-}							
pound	02	03	04	05	06	07	08	09	011	014
										A
1	2.464	2.403					2.500			
	(7)	(6)					(6)			
2			2.413	2.339						
			(6)	(6)						
3	2.343				2.397	2.375				
	(4)				(4)	(4)				
4							2.368	2.632	2.375	2.594
							(5)	(6)	(5)	(5)

Com-	d _{Ag1-I1}	d _{Ag1-I2}	d _{Ag1-I3}	d _{Ag1-I5}	d _{Ag2-I7}	d _{Ag2-I9}	d _{Ag2-I11}
pound	[Å]						
1	2.7213	2.6848					
	(10)	(10)					
2	2.9750		2.820				
	(15)		(2)				
3	2.7000						
	(7)						
4	2.7799		2.8754	2.8734	2.8815	2.8540	2.8097
	(14)		(15)	(10)	(12)	(9)	(17)

V. DFT Computed Structure Coordinates

Table S19 Crystallographically-derived Cartesian coordinates for model structure of 1. All units are in Angstroms.

U	9.623979	-3.302818	16.883611
Ι	11.817359	-3.568341	11.71316
Ag	5.636002	-2.861406	15.63745
Ι	11.460284	1.014143	13.799418
0	7.958295	-3.048455	16.439999
0	11.292593	-3.548604	17.337095
0	10.223654	-1.215482	15.74516
0	10.273491	-3.59107	14.529676
0	9.667102	-1.050614	17.82774
0	9.569531	-5.350872	15.571934
0	8.930819	-3.408355	19.263869
0	8.904519	-5.27866	18.208063
С	10.07581	-5.654612	13.290967
С	10.082319	-0.50152	16.778708
С	10.913558	1.705265	15.730644
С	10.759331	-5.352736	12.109354
С	9.975973	-4.833315	14.496773
С	10.39065	0.950114	16.774837
С	11.162536	3.0493	15.874837
Н	11.497407	3.534335	15.155805
С	9.427544	-6.890717	13.33258
Н	8.952284	-7.120277	14.098063
С	10.416888	2.966918	18.111289
Н	10.260188	3.3897	18.92516
С	10.823148	-6.276895	11.068064
Н	11.307132	-6.074412	10.299677
С	10.142373	1.648367	17.972902
Н	9.777472	1.18803	18.692902
С	10.18117	-7.474985	11.165806
Н	10.23132	-8.085408	10.466128
0	8.176927	-5.179031	20.267418
С	9.467062	-7.78143	12.28258
Н	9.006863	-8.58805	12.337741
Ν	8.647755	-4.656969	19.294837
С	10.923127	3.679999	17.062257
Н	11.102525	4.5872	17.156128
U	6.997341	-1.155799	12.148644
Ι	4.803961	-0.890276	17.319095

Ag	10.985318	-1.59721	13.394805
Ι	5.161036	-5.47276	15.232837
0	8.663025	-1.410161	12.592257
0	5.328727	-0.910012	11.69516
0	6.397666	-3.243135	13.287096
0	6.347829	-0.867546	14.502579
0	6.954218	-3.408003	11.204515
0	7.051788	0.892256	13.460321
0	7.6905	-1.050262	9.768386
0	7.716801	0.820044	10.824193
С	6.54551	1.195995	15.741289
С	6.539	-3.957096	12.253547
С	5.707762	-6.163881	13.301612
С	5.861989	0.894119	16.922902
С	6.645346	0.374699	14.535483
С	6.23067	-5.408731	12.257418
С	5.458783	-7.507916	13.157418
Н	5.123913	-7.992951	13.87645
С	7.193776	2.432101	15.699676
Н	7.669036	2.66166	14.934192
С	6.204432	-7.425535	10.920967
Н	6.361132	-7.848316	10.107096
С	5.798172	1.818279	17.964192
Н	5.314188	1.615796	18.732579
С	6.478947	-6.106983	11.059354
Н	6.843847	-5.646646	10.339354
С	6.44015	3.016369	17.86645
Н	6.39	3.626791	18.566127
0	8.444392	0.720415	8.764838
С	7.154258	3.322813	16.749676
Н	7.614457	4.129433	16.694515
Ν	7.973565	0.198352	9.737419
С	5.698193	-8.138616	11.969999
Н	5.518795	-9.045816	11.876128

Table S20 Crystallographically-derived Cartesian coordinates for model structure of 2. All units are in Angstroms.

U	2.112768	2.492553	10.970928
Ι	-2.798809	8.738135	12.285506
Ι	-0.29451	-3.363185	6.076995
Ι	6.553405	6.954114	16.070776

Ag	5.455416	0.167265	11.235278
0	0.858815	4.559711	11.395646
0	1.36192	1.748653	12.387145
0	1.242415	0.703409	9.534206
0	-0.116579	3.049104	10.139064
0	3.368726	3.985409	12.492593
0	3.179256	0.277814	10.442226
0	4.392646	2.135417	11.917025
0	2.846273	3.215615	9.560568
С	7.738809	4.452204	14.875412
Н	8.476379	4.72413	15.371894
С	6.586046	5.202483	14.900309
С	-3.500493	5.443216	9.57082
Н	-4.156511	5.215816	8.952781
С	3.324965	-3.492509	8.46948
Н	4.016694	-4.097286	8.611541
С	1.255482	-1.676288	8.065265
Н	0.571149	-1.065339	7.910023
С	3.2926	-2.274956	9.169534
Н	3.969632	-2.066824	9.771463
С	-1.465337	6.210691	11.312167
Н	-0.778495	6.490472	11.873089
С	5.55439	3.657719	13.37425
С	-1.348329	5.020274	10.594539
С	5.491829	4.819822	14.127028
Н	4.722684	5.341731	14.116776
С	7.808066	3.312399	14.127028
Η	8.583072	2.797106	14.127028
С	4.402241	3.258448	12.564356
С	2.319439	-3.781024	7.565854
Н	2.340514	-4.570239	7.07523
С	1.286114	-2.888064	7.403289
С	2.26503	-1.394688	8.964497
С	-2.616911	6.974207	11.180358
С	-2.368075	4.621179	9.750959
Н	-2.307855	3.810565	9.299878
С	-0.14914	4.166027	10.755639
С	-3.620898	6.589864	10.329456
Н	-4.390265	7.108394	10.262086
С	6.733951	2.937583	13.380109
Н	6.795913	2.171618	12.855801
С	2.235743	-0.066868	9.687984
Ι	7.855966	-0.875534	12.285506

Ι	6.623759	0.778387	8.568483
Ι	-0.821034	-0.875534	12.285506
Ο	11.513589	-5.053958	11.395646
Ο	10.538195	-6.564565	10.139064
С	7.154281	-4.170453	9.57082
Н	6.498264	-4.397853	8.952781
С	9.189438	-3.402978	11.312167
Н	9.876279	-3.123197	11.873089
С	9.306446	-4.593395	10.594539
С	8.037864	-2.639462	11.180358
С	8.2867	-4.99249	9.750959
Н	8.34692	-5.803104	9.299878
С	10.505635	-5.447642	10.755639
С	7.033877	-3.023805	10.329456
Н	6.264509	-2.505275	10.262086
Ι	4.12732	-2.510041	13.22018
0	7.311998	0.458664	16.798363
0	6.288079	2.308656	17.37393
С	2.941916	-0.008131	14.415544
Η	2.204346	-0.280057	13.919062
С	4.094679	-0.75841	14.390647
С	5.126335	0.786354	15.916705
С	5.188896	-0.375749	15.163928
Η	5.95804	-0.897658	15.17418
С	2.872658	1.131674	15.163928
Η	2.097653	1.646967	15.163928
С	6.278484	1.185625	16.7266
С	3.946773	1.50649	15.910847
Η	3.884812	2.272455	16.435155
U	4.090543	-7.121116	10.970928
Ι	1.683265	-12.976854	6.076995
Ι	8.53118	-2.659555	16.070776
0	2.836589	-5.053958	11.395646
Ο	3.339695	-7.865016	12.387145
0	3.22019	-8.91026	9.534206
0	1.861195	-6.564565	10.139064
0	5.346501	-5.62826	12.492593
0	5.157031	-9.335855	10.442226
Ο	6.370421	-7.478252	11.917025
0	4.824048	-6.398054	9.560568
С	9.716583	-5.161465	14.875412
Η	10.454154	-4.889539	15.371894
С	8.563821	-4.411186	14.900309

С	-1.522719	-4.170453	9.57082
Н	-2.178736	-4.397853	8.952781
С	5.302739	-13.106178	8.46948
Н	5.994468	-13.710955	8.611541
С	3.233257	-11.289957	8.065265
Н	2.548924	-10.679008	7.910023
С	5.270374	-11.888625	9.169534
Н	5.947407	-11.680493	9.771463
С	0.512438	-3.402978	11.312167
Н	1.199279	-3.123197	11.873089
С	7.532164	-5.95595	13.37425
С	0.629446	-4.593395	10.594539
С	7.469604	-4.793847	14.127028
Н	6.700459	-4.271938	14.116776
С	9.785841	-6.30127	14.127028
Н	10.560847	-6.816563	14.127028
С	6.380015	-6.355221	12.564356
С	4.297214	-13.394693	7.565854
Н	4.318289	-14.183908	7.07523
С	3.263888	-12.501733	7.403289
С	4.242805	-11.008357	8.964497
С	-0.639136	-2.639462	11.180358
С	-0.3903	-4.99249	9.750959
Н	-0.33008	-5.803104	9.299878
С	1.828635	-5.447642	10.755639
С	-1.643123	-3.023805	10.329456
Н	-2.412491	-2.505275	10.262086
С	8.711726	-6.676086	13.380109
Н	8.773687	-7.442051	12.855801
С	4.213517	-9.680537	9.687984
Ο	5.086835	-3.288207	5.111272
Ο	3.149994	-2.862612	4.203252
С	3.004285	0.907711	6.175998
Η	2.312556	1.512488	6.033937
С	5.073767	-0.90851	6.580213
Η	5.7581	-1.519459	6.735455
С	3.03665	-0.309842	5.475944
Η	2.359618	-0.517974	4.874015
С	4.009811	1.196226	7.079624
Н	3.988736	1.985441	7.570248
С	5.043136	0.303266	7.242189
С	4.06422	-1.19011	5.680981
С	4.093507	-2.51793	4.957494

Table S21 Crystallographically-derived Cartesian coordinates for model structure of **3**. All units are in Angstroms.

U	4.793659	0.980467	16.999788
Ι	11.922144	5.51843	13.468784
Ι	4.618352	-8.230116	16.994362
Ag	1.389135	-1.083674	17.743392
Ι	-2.552632	5.115323	20.554048
0	3.745259	-1.21647	17.47285
0	4.155769	0.942014	15.346883
0	5.722773	-1.257925	16.57944
0	3.440274	2.978995	17.50192
0	2.472824	1.054941	17.769361
0	5.396739	1.012058	18.688159
0	6.020332	2.999007	16.457347
0	7.098285	1.116408	16.207347
С	9.351806	2.4358	15.104635
Н	9.394151	1.510939	15.19572
С	4.719837	-1.892605	16.99223
С	7.06301	2.370045	16.093006
С	1.121687	4.36843	18.403081
Н	1.811129	4.881606	18.050369
С	10.330244	4.478498	14.405024
С	4.60438	-6.139531	16.926339
С	8.176273	4.494222	15.41665
Н	7.429959	4.960226	15.717038
С	8.215863	3.120511	15.534867
С	0.030555	4.993104	18.982538
Н	-0.025427	5.920823	19.011608
С	-0.944014	2.846055	19.436026
Н	-1.652935	2.342885	19.765483
С	1.195987	2.984712	18.34688
С	9.235229	5.190369	14.852698
Н	9.20818	6.116659	14.779054
С	5.646751	-4.095403	16.282929
Н	6.33295	-3.647982	15.843007
С	3.610002	-5.440525	17.577501
Н	2.927859	-5.899381	18.011609
С	-0.974249	4.20976	19.517421
С	0.154573	2.212804	18.854631
Н	0.190682	1.285085	18.80812
С	2.418003	2.327161	17.848818
С	4.66741	-3.356372	16.941843

С	5.620338	-5.464826	16.267425
Н	6.281561	-5.939406	15.817813
С	3.628964	-4.063955	17.581377
Н	2.94983	-3.596521	18.011609
С	10.419916	3.120511	14.540682
Н	11.18048	2.664513	14.259675
Ι	-0.160956	-1.62887	15.600953
0	1.130345	-1.012058	20.071491
U	1.733424	-0.980467	21.759861
Ι	-5.395061	-5.51843	25.290865
Ι	1.908731	8.230116	21.765287
Ι	9.079715	-5.115323	18.205601
0	2.781825	1.21647	21.286799
0	2.371315	-0.942014	23.412766
0	0.80431	1.257925	22.180209
0	3.086809	-2.978995	21.25773
0	4.05426	-1.054941	20.990288
0	0.506752	-2.999007	22.302302
0	-0.571202	-1.116408	22.552302
С	-2.824723	-2.4358	23.655014
Н	-2.867067	-1.510939	23.563929
С	1.807247	1.892605	21.767419
С	-0.535926	-2.370045	22.666643
С	5.405396	-4.36843	20.356568
Н	4.715955	-4.881606	20.709281
С	-3.80316	-4.478498	24.354626
С	1.922704	6.139531	21.83331
С	-1.649189	-4.494222	23.342999
Н	-0.902875	-4.960226	23.042611
С	-1.688779	-3.120511	23.224782
С	6.496528	-4.993104	19.777111
Н	6.55251	-5.920823	19.748041
С	7.471098	-2.846055	19.323623
Н	8.180019	-2.342885	18.994166
С	5.331097	-2.984712	20.412769
С	-2.708145	-5.190369	23.906952
Н	-2.681096	-6.116659	23.980595
С	0.880333	4.095403	22.476721
Н	0.194134	3.647982	22.916643
С	2.917082	5.440525	21.182148
Н	3.599225	5.899381	20.74804
С	7.501333	-4.20976	19.242228
С	6.372511	-2.212804	19.905018

Н	6.336402	-1.285085	19.951529
С	4.109081	-2.327161	20.910831
С	1.859673	3.356372	21.817807
С	0.906745	5.464826	22.492224
Н	0.245522	5.939406	22.941836
С	2.89812	4.063955	21.178272
Н	3.577254	3.596521	20.74804
С	-3.892833	-3.120511	24.218967
Н	-4.653396	-2.664513	24.499974
0	5.740856	-4.148293	12.61239
0	4.662903	-6.030892	12.86239
С	2.409382	-4.7115	13.965102
Н	2.367037	-5.636361	13.874016
С	4.698178	-4.777255	12.976731
С	1.430944	-2.668802	14.664713
С	3.584915	-2.653078	13.653086
Н	4.331229	-2.187074	13.352699
С	3.545325	-4.026789	13.534869
С	2.525959	-1.956931	14.217039
Н	2.553008	-1.030641	14.290683
С	1.341271	-4.026789	14.529054
Н	0.580708	-4.482787	14.810062

Table S22 Crystallographically-derived Cartesian coordinates for model structure of 4. All units are in Angstroms.

U	14.657954	15.199538	17.089507
Ι	11.506884	18.616768	14.127904
Ι	15.110895	15.303711	9.162606
Ι	19.7927	15.010395	15.394626
Ι	11.351438	13.341941	23.955786
Ι	9.886701	17.486724	18.563903
Ι	20.024521	11.422412	21.355815
0	14.959331	15.403174	14.640571
0	16.94032	14.523382	16.42513
0	16.423704	14.389822	18.535583
0	12.427246	15.775185	17.933239
0	15.225514	16.865029	17.333142
0	13.889985	15.180701	19.448091
0	14.085943	13.563694	16.86565
0	13.043895	16.080809	15.380017
С	19.77699	13.974187	17.234249
С	9.735373	15.223506	22.201345

Н	9.103797	15.134308	22.877859
С	19.929205	12.542182	19.591934
С	17.271085	14.235252	17.598353
С	18.618246	13.717336	17.948972
С	10.944071	14.579758	22.300238
С	14.272796	15.905547	12.01318
Н	14.866766	15.217476	12.206469
С	13.553001	16.494718	13.049302
С	11.908046	14.721046	21.324799
Н	12.733573	14.301269	21.416949
С	13.866952	15.971511	14.422558
С	18.733046	12.988454	19.135681
Н	17.965259	12.802615	19.625647
С	11.639884	15.493838	20.198774
С	14.124703	16.319385	10.70735
С	12.683612	17.541201	12.743635
С	21.084094	12.815894	18.883954
Н	21.908906	12.529221	19.203107
С	12.575422	17.981827	11.440053
Н	11.99734	18.683847	11.244516
С	10.428534	16.151449	20.090891
С	13.302337	17.408491	10.424159
Н	13.244301	17.741667	9.556602
С	21.003195	13.520042	17.699493
Н	21.774642	13.690305	17.209526
С	12.731601	15.503833	19.137928
С	9.45449	16.006484	21.091053
Н	8.63115	16.430798	21.010141
U	20.329936	21.394234	16.722481
Ι	25.446183	21.314373	18.353756
Ι	17.136072	18.043484	19.854449
Ι	15.661094	18.952843	15.157509
Ι	21.273569	21.236221	24.496323
Ι	25.826453	25.205238	12.600691
Ag	16.559614	19.873986	17.704887
0	22.120851	22.124516	15.236173
0	22.64562	21.974181	17.346627
0	18.096287	20.856061	15.860993
0	20.663134	21.167992	19.140176
0	20.847719	19.716236	16.456595
0	18.736238	20.481972	18.432196
0	19.573569	21.380883	14.364122
Ο	19.802256	23.044107	16.969038

Ι	17.061455	23.182933	9.827882
С	24.353338	22.691476	15.816042
С	19.306098	20.139611	20.767405
С	19.561425	20.6184	19.387407
С	18.429076	19.146113	21.156232
С	25.474038	22.479561	16.577963
С	22.970347	22.232184	16.159918
С	24.479373	23.463668	14.674285
Н	23.732544	23.62785	14.146109
С	17.351339	21.046175	13.581973
С	20.118967	20.712944	21.751834
Н	20.725135	21.378931	21.518089
С	25.70951	23.996131	14.305686
С	17.598555	21.827697	12.451453
Η	18.396047	22.302848	12.379531
С	18.372719	18.717299	22.477794
Н	17.776264	18.047035	22.72053
С	20.0271	20.295256	23.068901
С	16.159166	20.323515	13.631419
С	26.707821	23.003295	16.213859
Н	27.455112	22.85118	16.748777
С	16.663617	21.895893	11.444548
С	18.4007	21.080343	14.660799
С	26.823267	23.745874	15.067607
Н	27.652159	24.077227	14.80689
С	19.19196	19.277108	23.435253
Н	19.177438	18.967211	24.311799
С	15.246345	20.411735	12.597544
Н	14.447865	19.936667	12.644743
С	15.510301	21.191806	11.509728
Н	14.896504	21.23838	10.810738
Ι	14.236183	21.314373	18.353756
Ι	14.616453	25.205238	12.600691
0	10.910851	22.124516	15.236173
0	11.43562	21.974181	17.346627
С	13.143338	22.691476	15.816042
С	14.264038	22.479561	16.577963
С	11.760347	22.232184	16.159918
С	13.269373	23.463668	14.674285
Н	12.522544	23.62785	14.146109
С	14.49951	23.996131	14.305686
С	15.497821	23.003295	16.213859
Н	16.245112	22.85118	16.748777

С	15.613267	23.745874	15.067607	
Н	16.442159	24.077227	14.80689	

VI. References

- 1. P. K. Khulbe, R. Ttripathi and H. D. Bist, Vibrational dynamics and phase transition in uranyl Nitrate Dihydrate (Dideuterate), UO₂(NO₃)₂·2H₂O (2D₂O) through Raman spectroscopy, *Journal of Physics and Chemistry of Solids*, 1992, **53**, 639-650.
- 2. G. Lu, T. Z. Forbes and A. J. Haes, Evaluating Best Practices in Raman Spectral Analysis for Uranium Speciation and Relative Abundance in Aqueous Solutions, *Analytical Chemistry*, 2016, **88**, 773-780.