Supporting Information

Growth of Macroporous TiO₂ on B doped g-C₃N₄ Nanosheet: A Z-Scheme Photocatalystfor H₂O₂ Production and Phenol Oxidation under Visible Light

Arjun Behera, Pradeepta Babu, and Kulamani Parida*

Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan, Bhubaneswar 751030, India

Photocatalyst	Synthesis method	Activity	Reference
TiO ₂ /C ₃ N ₄	Hydrothermal	H_2 and O_2 generation	1
		of 50.2 and	
		24.3µmol/ h	
TiO ₂ /C ₃ N ₄	Mechanical mixing	chanical mixing $57 \% N_2O$	
		conversion in 16h	
TiO ₂ –C ₃ N ₄	Hydrothermal	94.6 % RhB	3
		degradation in 60	
		min	
C/X-TiO ₂ @C ₃ N ₄ (X	Sol-gel-pyrolysis	74.7% p-	4
= N, F, Cl)		chlorophenol	
		degradation in 6h	
N,S-TiO ₂ /g-C ₃ N ₄	Thermal process	125 µmol/h H ₂	5
		evolution	
TiO_2/B doped g-C ₃ N ₄	Sonication followed	87% of 20 ppm	Present work
	by calcination	phenol in 2h, H_2O_2	
	methods	production 22	
		µmol/h	

Table S1: Literature survey on various TiO₂/g-C₃N₄ systems

Table S2: Crystallite size of different photocatalyst based on Williamson- Hull and Scherer

 method.

Photocatalyst	Crystallite size (D) (nm) W-H analysis	Crystallite size (D) (nm) Scherer analysis	
P25	28.81	28.74	
TiO ₂	57.27	59.16	
E-BCN	1.38	2.1	
TBCN-4	24.31	23.24	
TBCN-8	69.30	64.97	
TBCN-12	49.5	48.41	

Figure S1: W-H plot of different photocatalyst.

Figure S2: SEM images of neat TiO₂ and BCN.

Figure S4: (a, b) Direct band gap plot of BCN and pure TiO_2 (c) Indirect band gap plot of TBCN-8 nanocomposites.

Figure S5: (a) Mott-Schkotty plot of TBCN-8 composites (b) MS plot of TiO_2 with different frequencies (500, 1000 and 1500 Hz).

Figure S6: (a) Stability plot of H_2O_2 concentration for consecutive four cycle (b) Reusability plot of phenol oxidation up to 4 cycles.

Catalysts	R ²	k _{obs} (min ⁻¹)	$t_{1/2}$ (min)	% of phenol
				oxidation
TiO ₂	0.86	7.4*10-3	93.6	62
BCN	0.93	8.4*10-3	82.5	65
TBCN-4	0.94	9.4*10 ⁻³	73.7	70
TBCN-8	0.92	15.7*10 ⁻³	44.1	87
TBCN-12	0.95	10.9*10-3	63.5	75

Table S3: 1st order kinetics results of phenol over as synthesized photocatalyst.

Figure S7: (a) Rate of phenol oxidation in the presence of different active species, which is responsible for photocatalytic degradation, processes (b) Scavenger test for photocatalytic H_2O_2 generation (c) Terepthalic acid tests for the generation of •OH radicals.

Reference

(1) J. Yan, H. Wu, H. Chen, Y. Zhang, F. Zhang, S. F. Liu, Fabrication of TiO_2/C_3N_4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. *Appl. Catal. B: Envirol.*, 2016, **191**, 130-137.

(2) M. Reli, P. Huo, M. Šihor, N. Ambrozova, I. Troppová, L. Matejova, P. Praus, Novel TiO_2/C_3N_4 photocatalysts for photocatalytic reduction of CO_2 and for photocatalytic decomposition of N_2O . *J Phys Chem A*, 2016, **120**, 8564-8573.

(3) W. Wang, Y. Liu, J. Qu, Y. Chen, M. O. Tadé, Z. Shao, Synthesis of hierarchical TiO_2 – C_3N_4 hybrid microspheres with enhanced photocatalytic and photovoltaic activities by maximizing the synergistic effect. *ChemPhotoChem*, 2017, 1, 35-45.

(4) K. Li, Z. Zeng, L. Yan, M. Huo, Y. Guo, S. Luo, X. Luo, Fabrication of C/X-TiO2@ C3N4 NTs (X= N, F, Cl) composites by using phenolic organic pollutants as raw materials and their visible-light photocatalytic performance in different photocatalytic systems. *Appl. Catal. B: Envirol.*, 2016, **187**, 269-280.

(5) S. Pany, K. M. Parida, A facile in situ approach to fabricate N, S-TiO₂/g-C₃N₄ nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution. *Phys. Chem. Chem. Phys.*, 2015, **17**, 8070-8077.