Hierarchical Interlayer-Expanded MoSe₂/N-doped Carbon Nanorods for High-Rate

and Long-Life Sodium and Potassium Ion Batteries

Xueqian Zhang^a, Yali Xiong^a, Lei Zhang^a, Zhiguo Hou^{a*} and Yitai Qian^{b*}

^a School of Chemistry and Environment Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China

^b Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

page 2~3: Experimental section.

page 4~11: Figures and capations.

Experimental section

Preparation of $MoO_3 \bullet EDA$ nanorods and MoO_3 nanorods ^{1,2}: Dissolved 1.24 g (NH₄)₆Mo₇O₂₄·4H₂O and 0.84 g ethylenediamine (EDA) in 30 mL water in a round-bottomed flask under stirring. 1 mol L⁻¹ hydrochloric acid was dropwise added into the above solution until appearing white precipitate. Then, the formed suspension was heat-treated at 50 °C in oil bath for 4 h. The products were filtered and washed with water and ethanol for 3 times, dried at 60 °C overnight to obtain $MoO_3 \bullet EDA$ nanorods. Dissolved 1.4 g (NH₄)₆Mo₇O₂₄·4H₂O in 30 mL water and 6 mL concentrated nitric acid into a 100 mL hydrothermal synthesis reactor, heated at 200 °C for 20 h, then MoO_3 nanorods were obtained,

Preparation of $MoSe_2/N-C$ nanorods and $MoSe_2/C$ composites: Weighting 0.2 g $MoO_3 \bullet EDA$ and equal molar quantities of selenourea, dissolve them in 30 mL water, stirring until dissolved., the formed suspension was heat-treated at 200 °C for 12 h in 50 mL stainless still. The obtained product was annealed in Ar/H₂ atomosphere at 600 °C for 12 h to be as-prepared $MoSe_2/N-C$ nanorods. The control $MoSe_2/C$ composite was synthesized using the same selenide process with addition of glucose.

Materials characterization: The XRD patterns of samples were obtained on X-ray powder diffraction (Philips) with Cu Kα radiation. Microstructure morphology is characterized by field-emitting scanning electron microscope (FESEM, JEOL-JSM-6700F). nanostructure morphology is characterized by transmission electron microscopy (TEM, Hitachi H7650 and HRTEM, JEOL 2010). Raman spectral was collected by Confocal Laser Micro-Raman spectrometer (JYLABRAM-HR). The elemental valence of samples was collected by X-ray photoelectron spectroscopy (XPS) on ESCALAB 250 spectrometer with Al Kα radiation.

Electrochemical measurements: The anode electrode was prepared by ball-milling the mixture of active material, super P and polyvinylidene fluoride (PVDF) with N-methyl pyrrolidinone (NMP) as solvent. The weight ratio of these component is 7:2:1. The well-mixed slurry was pasted to Cu foils and dried in a vacuum oven at 80 °C overnight. Each electrode was cut into circular plate with area of 1cm² and showed a loading mass density of 1.5 mg cm⁻². All 2016 coin cells were assembled in a high-pure Ar-filled glove box with Na/K foil as counter electrode. The electrolyte used in these SIBs is 1 M NaClO₄ dissolved in ethylene carbonate and dimethylcarbonate (EC/DMC, volume ratio 1:1). The electrolyte used in these PIBs is 0.8 M KPF₆ dissolved in ethylene carbonate and

2

diethylcarbonate (EC/DEC, volume ratio 1:1). Cyclic voltammetry curves and Nyquist plots were performed on Chenhua electrochemical workstation (CHI 660E, Shanghai). The electrochemical performance involving cycle stability and rate capability was recorded on LAND-CT2001A instruments.

Figure S1. The Raman spectra of the MoSe₂/N-C nanorods.

Figure S2. The TG curves of MoSe₂/N-C nanorods and bare MoSe₂.

Figure S3. The nitrogen adsorption-desorption isotherm and pore-size distribution curve.

Figure S4. (a) SEM and (b) TEM images of the MoO₃•EDA precursor.

Figure S5. SEM image and EDS mapping image of MoSe₂/N-C nanorods composite.

Figure S6. (a) The SEM images of MoO_3 nanorods precursor and (b) $MoSe_2/C$ composites.

Figure S7. The TG curve of MoSe₂/C composite.

Figure S8. XPS spectra of MoO₃•EDA after hydrothermal and MoSe₂/C composite.

Figure S9. Electrochemical behavior of the $MoSe_2/C$ composite in SIBs. (a) rate performance, (b) cycle performance under a rate of 0.1 C.

Figure S10. Electrochemical behavior of the $MoSe_2/C$ composite in PIBs. (a) rate performace, (b) cycle performance under a rate of 0.1 C.

Figure S11. The cycle stability of $MoSe_2/C$ composite for potassium storage at a high current density of 1 A g⁻¹.

Figure S12. a) SEM image of obtained N-doped carbon, b) and c) cycle performance of N-doped carbon in SIBs and KIBs at a current density of 300 mA g^{-1} .

Figure S13. a) SEM image of heat-treated $MoSe_2/N-C$ nanorods, b) and c) cycle performance of as-obtained hierarchical rod-like $MoSe_2$ in SIBs and KIBs at a current density of 1 A g⁻¹.

Figure S14. GITT curves of MoSe₂/N-C nanorods and MoSe₂/C during initial discharge and charge process, respectively.

Figure S15. Nyquist plots of MoSe₂/N-C nanorods and MoSe₂/C.

Reference

- S. Zhuo, Y. Xu, W. Zhao, J. Zhang and B. Zhang, Hierarchical Nanosheet Based MoS2 Nanotubes Fabricated by an Anion - Exchange Reaction of MoO3 - Amine Hybrid Nanowires, *Angew. Chem. Int. Edit.* 2013, 52, 8602-8606.
- 2 X. Zhang, X. Li, J. Liang, Y. Zhu and Y. Qian, Synthesis of MoS2@ C nanotubes via the kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries, *Small*, 2016, **12**, 2484-2491.