Unprecedented collateral sensitivity for cisplatin-resistant lung cancer cells presented by new ruthenium organometallic compounds

Ricardo G. Teixeira^a, Dimas C. Belisario^b, Xavier Fontrodona^c, Isabel Romero^c, Ana Isabel Tomaz^a, M. Helena Garcia^a, Chiara Riganti^b, Andreia Valente^{a,*}

^a Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade

de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

^b Department of Oncology, University of Torino, Torino, Italy.

[°] Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain.

Corresponding Authors

*E-mail: amvalente@ fc.ul.pt

Table of Contents

Scheme S1. Synthesis of compound 4.	2
Scheme S2. Synthesis route of compounds 1–8; all compounds are numbered for NM	R
assignments. ** Compound 8 was not studied in this work	2
S1. ESI mass spectra of compounds 1–7	3
S2. NMR spectra of compounds 1–7	7
S3. UV-vis data of compounds 1–7 1	8
S4. X-ray crystallographic structure determination 1	9
S5. Stability studies in aqueous solution	25
S6. P-gp and MRP1 expression in non-small cell lung cancer cell lines	60

Scheme S1. Synthesis of compound 4.

Scheme S2. Synthesis route of compounds 1–3 and 5-8; all compounds are numbered for NMR assignments. ** Compound 8 was not studied in this work.

S1. ESI mass spectra

Figure S1. ESI-MS spectrum of complex 1 (positive detection mode).

Figure S2. ESI-MS spectrum of complex 2 (positive detection mode).

Figure S3. ESI-MS spectrum of complex 3 (positive detection mode).

Figure S4. ESI-MS spectrum of complex 4 (positive detection mode).

Figure S5. ESI-MS spectrum of complex 5 (positive detection mode).

Figure S6. ESI-MS spectrum of complex 6 (positive detection mode).

Figure S7. ESI-MS spectrum of complex 7 (positive detection mode).

Figure S8. ¹H-NMR spectrum of complex 1 in acetone-d₆ at 298 K.

Figure S9. ³¹P{¹H}-NMR spectrum of complex 1 in acetone- d_6 at 298 K.

Figure S10. APT ${}^{13}C{}^{1}H$ -NMR spectrum of complex 1 in acetone- d_6 at 298 K.

Figure S11. ¹H-NMR spectrum of complex 2 in acetone-d₆ at 298 K.

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 δ/ppm

Figure S12. ³¹P $\{^{1}H\}$ -NMR spectrum of complex **2** in acetone-*d*₆ at 298 K.

Figure S13. APT ${}^{13}C{}^{1}H$ -NMR spectrum of complex **2** in acetone- d_6 at 298 K.

Figure S14. ¹H-NMR spectrum of complex **3** in acetone- d_6 at 298 K.

Figure S15. ³¹P{¹H}-NMR spectrum of complex **3** in acetone- d_6 at 298 K.

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ/ppm

Figure S16. APT ${}^{13}C{}^{1}H$ -NMR spectrum of complex 3 in acetone- d_6 at 298 K.

Figure S17. ¹H-NMR spectrum of complex 4 in acetone- d_6 at 298 K.

* residual diethyl ether

Figure S18. ${}^{31}P{}^{1}H$ -NMR spectrum of complex 4 in acetone-d₆ at 298 K.

Figure S19. APT ${}^{13}C{}^{1}H$ -NMR spectrum of complex 4 in acetone- d_6 at 298 K.

Figure S20. ¹H-NMR spectrum of complex 5 in acetone-d₆ at 298 K.

Figure S21. ³¹P{¹H}-NMR spectrum of complex **5** in acetone- d_6 at 298 K.

Figure S22. APT ${}^{13}C{}^{1}H$ -NMR spectrum of complex 5 in acetone-d₆ at 298 K.

Figure S23. ¹H-NMR spectrum of complex 6 in acetone- d_6 at 298 K.

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2 δ/ppm

Figure S24. ³¹P{¹H}-NMR spectrum of complex **6** in acetone- d_6 at 298 K.

Figure S25. APT ${}^{13}C{}^{1}H$ -NMR spectrum of complex 6 in acetone- d_6 at 298 K.

Figure S26. ¹H-NMR spectrum of complex 7 in acetone-d₆ at 298 K.

Figure S27. ³¹P $\{^{1}H\}$ -NMR spectrum of complex 7 in acetone-d₆ at 298 K.

Figure S28. APT ${}^{13}C{}^{1}H$ -NMR spectrum of complex 7 in acetone-d₆ at 298 K.

S3. Electronic data

Table S1. Optical spectral data for compounds 1-7 in dichloromethane and

dimethylsufoxide. Measurements were performed at room temperature using 10^{-4} – 10^{-6}

M solutions. (Sh = Shoulder).

Compound	$\lambda_{\rm max} / {\rm nm} \ (\epsilon \ {\rm x} \ 10^3 / {\rm M}^{-1} {\rm cm}^{-1})$			
	Dichloromethane	Dimethylsulfoxide		
1	289 (21.71), 357 (Sh), 409 (Sh), 457 (Sh)	289 (24.49), 362 (6.46), 415 (Sh)		
2	290 (26.10), 366 (6.91), 412 (Sh)	289 (26.27), 371 (7.21), 412 (Sh)		
3	277 (Sh), 289 (28.43), 379 (7.43), 451 (Sh)	290 (27.15), 366 (7.27), 416 (Sh)		
4	291 (12.59), 345 (Sh), 416 (2.39), 479 (Sh)	293 (47.69), 358 (11.94), 414(Sh) 468 (Sh)		
5	291 (24.89), 348 (Sh), 423 (4.38), 486 (Sh)	292 (16.59), 344 (Sh), 411 (2.93), 483 (Sh)		
6	287 (29.20), 345 (Sh), 417 (5.28), 470 (Sh)	291 (4.11), 351 (Sh), 418 (6.86), 472 (Sh).		
7	292 (8.16), 367 (Sh), 416 (1.75), 467 (Sh)	255 (Sh), 292 (5.67), 348 (Sh), 416 (1.02), 478 (Sh)		

S4. X-ray crystallographic structure determination

	Compound 1	Compound 2	Compound 3
Empirical formula	$C_{35}H_{28}F_3N_2O_4PRuS$	$C_{38}H_{34}Cl_2F_3N_2O_4PRuS$	$C_{37}H_{32}F_3N_2O_6PRuS$
Formula weight	761.69	874.67	821.74
Temperature (K)	100(2)	100(2)	100(2)
Crystal system	Monoclinic	Triclinic	Monoclinic
space group	C 2/c	P-1	P 2 ₁ /c
a (Å)	31.2279(13)	10.807(8)	12.6767(4)
b (Å)	9.3748(4)	11.451(8)	14.7750(5)
c (Å)	21.6058(8)	16.422(12)	19.1689(6)
β (deg)	92.8700	$\alpha = 74.05(2); \beta = 72.092(18);$	108.3440(10)
		$\gamma = 77.223(17)$	
Volume (Å ³)	6317.3(4)	1838.(2)	3407.86(19)
Ζ	8	2	4
Calculated density (g cm ⁻³)	1.602	1.580	1.602
Absorption coeficient (mm ⁻¹)	0.674	0.731	0.636
Goodness-of-fit	1.060	1.109	1.093
$R_1[I>2\sigma(I)]$	0.0236	0.0321	0.0248
$wR_2[I>2\sigma(I)]$	0.0588	0.0637	0.0555

Table S2. Crystallographic data and structural refinement details for compounds 1, 2 and 3.

	Compound 5	Compound 6	Compound 7
Empirical formula	$C_{35}H_{30}F_3N_2O_4PRuS$	$C_{37}H_{34}F_3N_2O_4PRuS$	$C_{37}H_{34}F_3N_2O_6PRuS$
Formula weight (g mol ⁻¹)	763.71	791.76	823.76
Temperature (K)	100(2)	100(2)	100(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic
space group	P 2 ₁ /n	P 2 ₁ /n	P 2 ₁ /c
a (Å)	12.995(8)	12.8677(4)	16.356(15)
b (Å)	13.774(9)	14.2849(5)	10.914(10)
c (Å)	18.311(12)	19.4057(6)	20.074(18)
β (deg)	105.75(2)	105.8660(10)	108.95(3)
Volume (Å ³)	3154.(4)	3431.14(19)	3389.(5)
Z	4	4	4
Calculated density (g cm ⁻³)	1.608	1.533	1.614
Absorption coeficient (mm ⁻¹)	0.676	0.624	0.639
Goodness-of-fit	1.051	1.115	1.156
$R_1[I>2\sigma(I)]$	0.0265	0.0390	0.0491
$wR_2[I>2\sigma(I)]$	0.0554	0.0915	0.1153

 Table S3. Crystallographic data and structural refinement details for compounds 5, 6 and 7.

Figure S29. X-ray structure of 1 showing the intramolecular hydrogen bond.

B)

A)

F)

Figure S30. Packing diagram for complexes 1 (A), 2 (B), 3 (C), 5 (D), 6 (E) and 7 (F).

A) Compound 1

D) Compound 4

G) Compound 7

Figure S31. Stability studies in cellular media, 2% DMSO / 98 % DMEM for compounds **1** (A), **2** (B), **3** (C), **4** (D), **5** (E), **6** (F) and **7** (G). On the right are represented the UV-Vis spectra during the 24 h of the study and on the left the percentage of variation for fixed wavelengths along time (1 cm optical path; see experimental section for details).

Figure S32. Stability studies monitored by ¹H-NMR in cellular media (35 % DMSO / 65 % DMEM) for compounds 1(A), 2(B), 3(C) and 4(D).

S6. P-gp and MRP1 expression in non-small cell lung cancer cell lines

Figure S33. P-gp and MRP1 expression in non-small cell lung cancer cell lines, measured by immunoblotting. The figure is representative of 1 out of 3 experiments. Tubulin has been used to check the equal control of proteins.