Electronic Supplementary Information

for the manuscript entitled

Cobalt Mediated *N*-Alkylation of Amines by Alcohols: Role of Hydrogen Bonding Pocket

Divya Prabha, Sanya Pachisia and Rajeev Gupta*

Department of Chemistry, University of Delhi, Delhi 110007 (India)

E-mail: rgupta@chemistry.du.ac.in

Figure No. Page No. Contents **Figure S1** FTIR spectra of 1 (red trace), 2 (blue trace) and 3 (green trace) **S6** recorded at 25 °C. Figure S2 UV-Visible spectra of 1-3 (ca. 50µM) recorded in DMF at 25 °C. **S7** Figure S3 (a) Full range ESI⁺-MS spectrum of **1** recorded in DMF. (b and c) **S8** Comparison of the relevant isotope pattern with the simulated pattern calculated using ChemCalc. Figure S4 (a) Full range ESI⁺-MS spectrum of **2** recorded in DMF. (b and c) **S9** Comparison of the relevant isotope pattern with the simulated pattern calculated using ChemCalc. (a) Full range ESI⁺-MS spectrum of **3** recorded in DMF. (b and c) Figure S5 **S10** Comparison of the relevant isotope pattern with the simulated pattern calculated using ChemCalc. ¹H NMR (400 MHz, DMSO-D₆, 25 °C) spectrum of **1**. Asterisk **S11** Figure S6 represents the residual solvent and adventitious water while *†* represents the peak for acetonitrile. Figure S7 ¹H NMR (400 MHz, DMSO-D₆, 25 °C) spectrum of **3**. Asterisk **S12** represents the residual solvent and adventitious water while † represents the peak for acetonitrile. Peaks at 2.64, 2.79 and 7.88 ppm are due to residual DMF. Cyclic voltammograms (negative potential region) of 1 (purple trace), Figure S8 **S13** 2 (red trace) and 3 (green trace) recorded in DMF at 25 °C. Conditions: cobalt complex (ca. 1 mM); supporting electrolyte, TBAP (ca. 100 mM); working electrode, glassy carbon; reference electrode, Ag/Ag^+ ; auxiliary electrode, Pt wire; scan rate, 100 mV/s. Cyclic voltammograms (positive potential region) of 1 (purple trace), Figure S9 **S14** 2 (red trace) and 3 (green trace) recorded in DMF at 25 °C.

List of Figures:

	Conditions: cobalt complex (ca. 1 mM); supporting electrolyte, TBAP (ca. 100 mM); working electrode, glassy carbon; reference electrode,	
	Ag/Ag ⁺ ; auxiliary electrode, Pt wire; scan rate, 100 mV/s.	
Figure S10	Benesi-Hildebrand plot for the binding of 4-methoxy benzyl alcohol with 1 using the UV-Visible spectral titration at 30 °C.	S15
Figure S11	Benesi-Hildebrand plot for the binding of 4-nitro benzyl alcohol with 1 using the UV-Visible spectral titration at 30 °C.	S15
Figure S12	Benesi-Hildebrand plot for the binding of benzyl alcohol with 1 using the UV-Visible spectral titration at 40 °C.	S16
Figure S13	Benesi-Hildebrand plot for the binding of benzyl alcohol with 1 using the UV-Visible spectral titration at 50 °C.	S16
Figure S14	Benesi-Hildebrand plot for the binding of benzyl alcohol with 1 using the UV-Visible spectral titration at 60 °C.	S17
Figure S15	Benesi-Hildebrand plot for the binding of benzyl alcohol with 1 using the UV-Visible spectral titration at 70 °C.	S17
Figure S16	Change in the absorption spectra of 1 with increasing concentration of potassium salt of benzyl alcohol recorded in DMF at 25 °C.	S18
Figure S17	¹ H NMR (400 MHz, DMSO-D ₆ , 25 °C) spectrum of 1 on addition of benzyl alcohol and KOH. The magnified view in the negative ppm region shows the peak for the in-situ generated Co-hydride species.	S19
Figure S18	Comparison of the selected parts of ¹ H NMR (400 MHz, DMSO-D ₆ , 25 °C) spectra of 1 (red trace) and the one after the addition of benzyl alcohol (blue trace). The resonances at ca. 7.1 and ca. 7.2 ppm are due to excess of benzyl alcohol.	S20
Figure S19	Docking structure of 1 to that of benzyl alcohol (carbon atoms are shown in golden color for clarity). The arene-hydrogen atoms of benzyl alcohol show weak interactions to that of one of the Co- coordinated chlride atoms. Heteroatom separations for the selected H-	S21

	bonds; C1-H1Cl1: 2.94 – 3.33 Å and C2-H2Cl1: 3.02 – 3.69 Å.	
Figure S20	Chromatogram for the <i>N</i> -alkylation of 2-aminopyridine (A) with benzyl alcohol (C) giving product (D) using ligand H_2L^1 and CoCl ₂ .	S22
Figure S21	Chromatogram for the <i>N</i> -alkylation of 2-aminopyridine (A) with benzyl alcohol (C) giving product (D) using ligand H_2L^2 and CoCl ₂ .	S23
Figure S22	Chromatogram for the <i>N</i> -alkylation of 2-aminopyridine (A) with benzyl alcohol (C) giving product (D) using ligand H_2L^4 and CoCl ₂ .	S23
Figure S23	Chromatogram for the <i>N</i> -alkylation of 2-aminopyridine (A) with benzyl alcohol (C) giving product (D) using ligand H_2L^5 and CoCl ₂ .	S24
Figure S24	Chromatogram for the <i>N</i> -alkylation of 2-aminopyridine (A) with benzyl alcohol (C) giving product (D) using ligand H_2L^6 and $CoCl_2$.	S24
Figure S25	Chromatogram for the <i>N</i> -alkylation of 2-aminopyridine (A) with benzyl alcohol (C) giving product (D) using ligand H_2L^7 and CoCl ₂ .	S25
Figure S26	Chromatogram for the <i>N</i> -alkylation of 2-aminopyridine (A) with benzyl alcohol (C) giving product (D) using ligand H_2L^8 and CoCl ₂ .	S25
Figure S27	Chromatogram for the <i>N</i> -alkylation of 2-aminopyridine (A) with benzyl alcohol (C) giving product (D) using ligand H_2L^9 and $CoCl_2$.	S26
Figure S28	¹ H NMR (400 MHz, CDCl ₃ , 25 °C) spectrum of $2g$. Asterisk represents the residual solvents and adventitious water.	S27
Figure S29	¹ H NMR (400 MHz, CDCl ₃ , 25 °C) spectrum of 2d . Asterisk represents the residual solvents and adventitious water.	S28
Figure S30	¹ H NMR (400 MHz, CDCl ₃ , 25 °C) spectrum of 4e . Asterisk represents the residual solvents and adventitious water.	S29

List of Tables:

Table No.	Contents	Page No.
Table S1	<i>N</i> -alkylation reaction between aniline and benzyl alcohol catalyzed by various cobalt based catalysts reported in the literature.	S30
Table S2	X-ray data collection and structure refinement parameters for $1 - 3$.	S31
Table S3	Selected distances (Å) and angles (°) for 1–3.	832
Table S4	Literature values of the Co-Cl distances for a few selected Co(II) complexes.	S33
Table S5	<i>N</i> -alkylation reaction between 2-aminopyridine and benzyl alcohol by using an equimolar mixture of a pro-ligand/ligand $(H_2L^1 - H_2L^9)$ and CoCl ₂ as the catalyst (5-mol%).	S34-S35

Figure S1. FTIR spectra of 1 (red trace), 2 (blue trace) and 3 (green trace) recorded at 25 °C.

Figure S2. UV-Visible spectra of 1-3 (ca. 50μ M) recorded in DMF at 25 °C.

Figure S3. (a) Full range ESI⁺-MS spectrum of **1** recorded in DMF. (b and c) Comparison of the relevant isotope pattern with the simulated pattern calculated using ChemCalc.

Figure S4. (a) Full range ESI⁺-MS spectrum of **2** recorded in DMF. (b and c) Comparison of the relevant isotope pattern with the simulated pattern calculated using ChemCalc.

Figure S5. (a) Full range ESI⁺-MS spectrum of **3** recorded in DMF. (b and c) Comparison of the relevant isotope pattern with the simulated pattern calculated using ChemCalc.

Figure S6. ¹H NMR (400 MHz, DMSO-D₆, 25 °C) spectrum of **1**. Asterisk represents the residual solvent and adventitious water while \dagger represents the peak for acetonitrile.

Figure S7. ¹H NMR (400 MHz, DMSO-D₆, 25 °C) spectrum of **3**. Asterisk represents the residual solvent and adventitious water while \dagger represents the peak for acetonitrile. Peaks at 2.64, 2.79 and 7.88 ppm are due to residual DMF.

Figure S8. Cyclic voltammograms (negative potential region) of **1** (purple trace), **2** (red trace) and **3** (green trace) recorded in DMF at 25 °C. Conditions: cobalt complex (ca. 1 mM); supporting electrolyte, TBAP (ca. 100 mM); working electrode, glassy carbon; reference electrode, Ag/Ag⁺; auxiliary electrode, Pt wire; scan rate, 100 mV/s.

Figure S9. Cyclic voltammograms (positive potential region) of **1** (purple trace), **2** (red trace) and **3** (green trace) recorded in DMF at 25 °C. Conditions: cobalt complex (ca. 1 mM); supporting electrolyte, TBAP (ca. 100 mM); working electrode, glassy carbon; reference electrode, Ag/Ag⁺; auxiliary electrode, Pt wire; scan rate, 100 mV/s.

Figure S10. Benesi-Hildebrand plot for the binding of 4-methoxy benzyl alcohol with 1 using the UV-Visible spectral titration at 30 °C.

Figure S11. Benesi-Hildebrand plot for the binding of 4-nitro-benzyl alcohol with 1 using the UV-Visible spectral titration at 30 °C.

Figure S12. Benesi-Hildebrand plot for the binding of benzyl alcohol with 1 using the UV-Visible spectral titration at 40 °C.

Figure S13. Benesi-Hildebrand plot for the binding of benzyl alcohol with 1 using the UV-Visible spectral titration at 50 °C.

Figure S14. Benesi-Hildebrand plot for the binding of benzyl alcohol with 1 using the UV-Visible spectral titration at 60 °C.

Figure S15. Benesi-Hildebrand plot for the binding of benzyl alcohol with 1 using the UV-Visible spectral titration at 70 °C.

Figure S16. Change in the absorption spectra of **1** with increasing concentration of potassium salt of benzyl alcohol recorded in DMF at 25 °C.

Figure S17. ¹H NMR (400 MHz, DMSO-D₆, 25 °C) spectrum of **1** on addition of benzyl alcohol and KOH. The magnified view in the negative ppm region shows the peak for the in-situ generated Co-hydride species.

Figure S18. Comparison of the selected parts of ¹H NMR (400 MHz, DMSO-D₆, 25 °C) spectra of **1** (red trace) and the one after the addition of benzyl alcohol (blue trace). The resonances at ca. 7.1 and ca. 7.2 ppm are due to excess of benzyl alcohol.

Figure S19. Docking structure of **1** to that of benzyl alcohol (carbon atoms are shown in golden color for clarity). The arene-hydrogen atoms of benzyl alcohol show weak interactions to that of one of the Co-coordinated chlride atoms. Heteroatom separations for the selected H-bonds; C1-H1...Cl1: 2.94 - 3.33 Å and C2-H2...Cl1: 3.02 - 3.69 Å.

Figure S20. Chromatogram for the *N*-alkylation of 2-aminopyridine (**A**) with benzyl alcohol (**C**) giving product (**D**) using ligand H_2L^1 and CoCl₂.

Figure S21. Chromatogram for the *N*-alkylation of 2-aminopyridine (**A**) with benzyl alcohol (**C**) giving product (**D**) using ligand H_2L^2 and CoCl₂.

Figure S22. Chromatogram for the *N*-alkylation of 2-aminopyridine (**A**) with benzyl alcohol (**C**) giving product (**D**) using ligand H_2L^4 and CoCl₂.

Figure S23. Chromatogram for the *N*-alkylation of 2-aminopyridine (**A**) with benzyl alcohol (**C**) giving product (**D**) using ligand H_2L^5 and $CoCl_2$.

Figure S24. Chromatogram for the *N*-alkylation of 2-aminopyridine (**A**) with benzyl alcohol (**C**) giving product (**D**) using ligand H_2L^6 and CoCl₂.

Figure S25. Chromatogram for the *N*-alkylation of 2-aminopyridine (**A**) with benzyl alcohol (**C**) giving product (**D**) using ligand H_2L^7 and CoCl₂.

Figure S26. Chromatogram for the *N*-alkylation of 2-aminopyridine (**A**) with benzyl alcohol (**C**) giving product (**D**) using ligand H_2L^8 and CoCl₂.

Figure S27. Chromatogram for the *N*-alkylation of 2-aminopyridine (**A**) with benzyl alcohol (**C**) giving product (**D**) using ligand H_2L^9 and $CoCl_2$.

Figure S28. ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of **2g**. Asterisk represents the residual solvents and adventitious water.

Figure S29. ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of **2d**. Asterisk represents the residual solvents and adventitious water.

Figure S30. ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of **4e**. Asterisk represents the residual solvents and adventitious water.

Table S1. *N*-alkylation reaction between aniline and benzyl alcohol catalyzed by various cobalt based catalysts reported in the literature.

 NH_2

$H_0' = H_2 O $							
S. No.	Catalyst	Reaction Conditions	Yield (%)	Reference			
1	NH NH HN HN NH $(i-Pr)_2P$ Co $P(i-Pr)_2$	2-mol% catalyst, ^t BuOK, Toluene, 80 °C, 24 h	90	1			
2	$CI' CI = BArF_4^-$	2-mol% catalyst, Toluene, Reflux (> 110 °C), 4 Å Molecular sieves	94	2			
3	$(i-Pr)_2P \xrightarrow{Co} P(i-Pr)_2$	2-mol% catalyst, ^t BuOK, Toluene, 80 °C or 130 °C, 16 h	93	3			
4		5-mol% catalyst, n-octane, [†] BuOK, 130 – 150 °C	88	4			
5	$\Lambda = CI OF DF; T = U OF INH$ CoCl., 6H, O/PPh,	5-mol% CoCl ₂ 6H ₂ O	64	5			
5		10-mol% PPh ₃ , ^t BuOK, Toluene, 130 °C, 18 h	UT	5			

References:

1. S. Rösler, M. Ertl, T. Irrgang and R. Kempe, Angew. Chem. Int. Ed., 2015, 54, 15046.

^{2. (}a) G. Zhang, Z. Yin and S. Zheng, *Org. Lett.*, 2016, **18**, 300–303. (b) Z. Yin, H. Zeng, J. Wu, S. Zheng and G. Zhang, *ACS Catal.*, 2016, **6**, 6546.

^{3.} M. Mastalir, G. Tomsu, E. Pittenauer, G. Allmaier and K. Kirchner, Org. Lett., 2016, 18, 3462.

^{4.} S. P. Midya, J. Pitchaimani, V. G. Landge, V. Madhu and E. A. Balaraman, *Catal. Sci. Technol.*, 2018, **8**, 3469.

^{5.} S. P. Midya, A. Mondal, A. Begum and E. A. Balaraman, Synthesis, 2017, 49, 3957.

	1	2	3
Formula	$C_{28}H_{21}Cl_4Co_2N_{11}O_4S_4$	$C_{13}H_{13}Cl_2CoN_5O_2S_2$	$C_{21}H_{15}Cl_2CoN_7O_2$
Formula weight	963.46	465.23	527.23
T (K)	298(2)	298(2)	273(2)
Cell system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	<i>C</i> 2/c	$P2_1/n$
<i>a</i> (Å)	21.496(3)	17.7178(10)	10.7819(15)
<i>b</i> (Å)	12.5372(12)	12.5889(6)	10.4395(15)
<i>c</i> (Å)	13.863(3)	7.9556(4)	18.083(3)
α (°)	90	90	90
β (°)	103.800(16)	100.462(5)	94.555(4)
γ (°)	90	90	90
$V(Å^3)$	3628.2(10)	3459.47(18)	2029.0(5)
Ζ	4	4	4
$ ho_{ m calc.}~(m mg/m^3)$	1.764	1.771	1.726
μ (mm ⁻¹)	1.493	1.547	1.147
$F\left(000 ight)$	1936	940	1068
Goodness-of-fit (GOF) on F^2	1.132	0.997	1.111
Final <i>R</i> indices $[I > 2\sigma(I)]^{a,b}$	$R_1 = 0.1225,$ w $R_2 = 0.2794$	$R_1 = 0.0425,$ w $R_2 = 0.0904$	$R_1 = 0.0981,$ w $R_2 = 0.2367$
R indices (all data)	$R_1 = 0.1683,$ w $R_2 = 0.3114$	$R_1 = 0.0614,$ w $R_2 = 0.1021$	$R_1 = 0.1138,$ w $R_2 = 0.2482$
CCDC No.	1995912	1995911	1995910

Table S2. X-ray data collection and structure refinement parameters for 1 - 3.

 $R = \sum (\| \text{Fo} | - | \text{Fc} \|) / \sum | \text{Fo} |, \ ^{b}wR = \{ \sum [w(\text{F}_{o}^{2} - \text{F}_{c}^{2})^{2}] / \sum [w(\text{F}_{o}^{2})^{2}] \}^{\frac{1}{2}}$

Bonds	1	Bonds	2	Bonds	3
Co(1)-N(1)	2.050(9)	Co-N(1)	2.034(3)	Co-N(1)	2.019(6)
Co(1)-N(3)	2.204(8)	Co-N(2)	2.212(2)	Co-N(5)	2.155(6)
Co(1)-N(2)	2.225(8)	Co-N(2) ^{#1}	2.212(2)	Co-N(2)	2.172(6)
Co(1)-Cl(2)	2.296(3)	Co-Cl(1)	2.2804(8)	Co-Cl(1)	2.288(2)
Co(1)-Cl(1)	2.309(3)	Co-Cl(1) ^{#1}	2.2804(8)	Co-Cl(2)	2.324(2)
N(1)-Co(1)-N(3)	75.2(3)	N(1)-Co-N(2)	76.09(6)	N(1)-Co-N(5)	76.5(2)
N(1)-Co(1)-N(2)	75.4(3)	N(1)-Co-N(2) ^{#1}	76.09(6)	N(1)-Co-N(2)	76.3(3)
N(3)-Co(1)-N(2)	149.5(3)	N(2)-Co-N(2) ^{#1}	152.19(12)	N(5)-Co-N(2)	152.5(2)
N(1)-Co(1)-Cl(2)	112.5(3)	N(1)-Co-Cl(1)	123.26(3)	N(1)-Co-Cl(1)	121.5(2)
N(3)-Co(1)-Cl(2)	100.7(3)	N(2)-Co-Cl(1)	98.29(6)	N(5)-Co-Cl(1)	99.39(19)
N(2)-Co(1)-Cl(2)	97.8(2)	N(2)#1-Co-Cl(1)	96.86(6)	N(2)-Co-Cl(1)	97.63(19)
N(1)-Co(1)-Cl(1)	137.2(3)	N(1)-Co-Cl(1)#1	123.26(3)	N(1)-Co-Cl(2)	134.3(2)
N(3)-Co(1)-Cl(1)	97.3(2)	N(2)-Co-Cl(1)#1	96.86(6)	N(5)-Co-Cl(2)	98.60(19)
N(2)-Co(1)-Cl(1)	98.7(3)	N(2) ^{#1} -Co-Cl(1) ^{#1}	98.28(6)	N(2)-Co-Cl(2)	98.0(2)
Cl(2)-Co(1)-Cl(1)	110.35(14)	Cl(1)-Co-Cl(1) ^{#1}	113.49(6)	Cl(1)-Co-Cl(2)	104.14(9)
C(10)-N(3)-Co(1)	114.3(6)	C(3) _{#1} -N(1)-Co	120.23(16)	C(5)-N(2)-Co	124.6(5)
C(11)-N(3)-Co(1)	129.1(7)	C(3)-N(1)-Co	120.23(16)	C(4)-N(2)-Co	115.8(5)
C(4)-N(2)-Co(1)	116.1(7)	C(5)-N(2)-Co	128.61(18)	C(15)-N(5)-Co	126.4(5)
C(5)-N(2)-Co(1)	125.4(7)	C(4)-N(2)-Co	114.11(17)	C(14)-N(5)-Co	115.2(5)
C(9)-N(1)-Co(1)				C(13)-N(1)-Co	119.8(5)
C(3)-N(1)-Co(1)				C(3)-N(1)-Co	120.2(5)

Table S3. Selected distances (Å) and angles (°) for 1–3.

Symmetry transformations used to generate equivalent atoms for complex 2 (#1): -x+1, y, -z+1/2.

S. No.	Chemical structure	Distance (Å)	Reference
1	$ \begin{array}{c} H \\ N-C \\ R_2C=N \\ R_2C=N \\ H \\ N-C \\ H \\ NH_2 \end{array} $ CI	Co – Cl = 2.256	B. Sen, H. K. Kalhan, V. Demir, E. E. Güler, H. A. Kayali and E. Subasi, <i>Mat. Sci.</i> <i>Engin.:C</i> , 2019, 98 , 550.
2	$ \begin{array}{c} \left(\begin{array}{c} N \\ N \\ \end{array} \right) \\ \left(\begin{array}{c} C \\ O \\ \end{array} \right) \\ \left(\begin{array}{c} N \\ \end{array} \right)$	Co – Cl = 2.334	S. Sabiah, B. Varghese and N. N. Murthy, <i>J.</i> <i>Chem. Crystallogr.</i> , 2006, 36 , 147.
3		Co-Cl1 = 2.231 Co-Cl2 = 2.261	I. Banerjee, A. Jana, S. Singh, J. Marek, E. del Barco and M. Ali, <i>Polyhedron</i> , 2013, 66 , 162.
4		Co-Cl1 = 2.069 Co-Cl2 = 2.206	I. Banerjee, A. Jana, S. Singh, J. Marek, E. del Barco and M. Ali, <i>Polyhedron</i> , 2013, 66 , 162.

Table S4. Literature values of the Co-Cl distances for a few selected Co(II) complexes.

Table S5. *N*-alkylation reaction between 2-aminopyridine and benzyl alcohol by using an equimolar mixture of a pro-ligand/ligand $(H_2L^1 - H_2L^9)$ and CoCl₂ as the catalyst (5-mol%).

6		CoCl ₂	63981	13153	17	2
7	NH HN H ₂ L ⁸	CoCl ₂	37760	5273	12	3
8	$CH_3 H H H H H H H H H H H H H H H H H H $	CoCl ₂	105162	11439	9	4

References:

- 1. P. Kumar, V. Kumar and R. Gupta, RSC Adv., 2015, 5, 97874-97882.
- 2. P. Kumar, V. Kumar, S. Pandey and R. Gupta, Dalton Trans., 2018, 47, 9536 9545.

3. H. Goyal, S. Pachisia and R. Gupta, Cryst. Growth Des., 2020, 20, 6117-6128.

4. J. Tehranchi, P. J. Donoghue, C. J. Cramer and W. B. Tolman, *Eur. J. Inorg. Chem.*, 2013, 4077-4084.