Supporting Information

Dipolar and Catalytic Effect of Fe₃O₄ Based Nitrogen Doped Hollow Carbon Sphere Framework for High Performance Lithium Sulfur Batteries

Shungui Deng,^{a,b} Qihua Li, ^b Yanhua Chen, ^c Chao Wang, ^b Hongbin Zhao, ^a Jiaqiang Xu, *^a Jinghua Wu*^{b,d} and Xiayin Yao ^{b,d}

^aNEST Lab. Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China

^bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, P. R. China

^cZhejiang Fashion Institute of Technology, Ningbo 315211, Zhejiang, P. R. China

^dCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

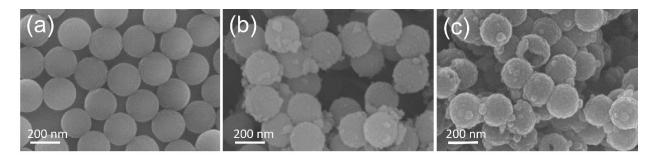


Fig. S1 SEM image of (a) polystyrene microspheres, (b) Fe^{3+} @polydopmine/polystyrene spheres, (c) hollow Fe_3O_4 @carbon spheres.

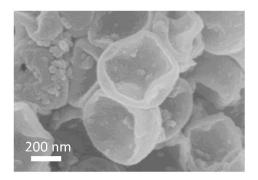


Fig. S2 The morphology of NC.

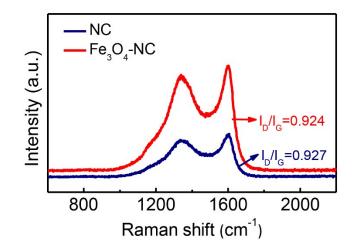


Fig. S3 Raman spectra of NC and Fe₃O₄-NC.

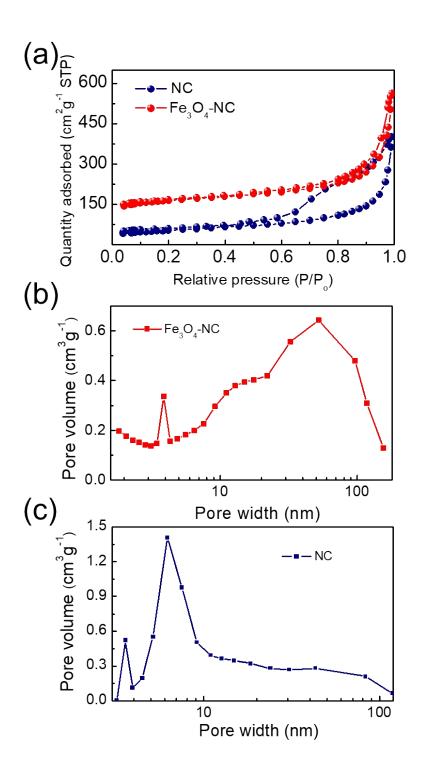


Fig. S4 (a) N_2 sorption isotherms at 77 K of NC and Fe₃O₄-NC. (b, c) BJH model for pore size distribution of Fe₃O₄-NC and NC.

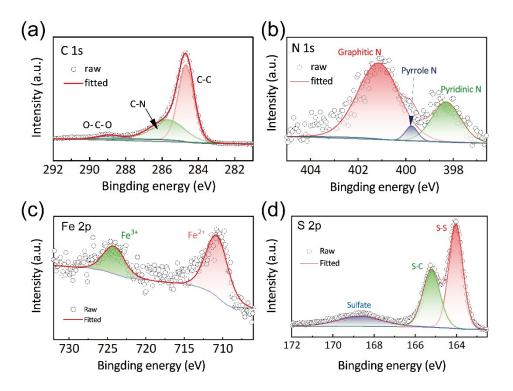


Fig. S5 High-resolution XPS spectra of (a) C 1s, (b) N 1s, (c) Fe 2p and (d) S 2p.

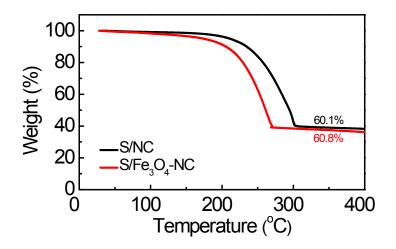


Fig. S6 TG curves of pure sulfur for S/NC and S/Fe₃O₄-NC with different sulfur contents.

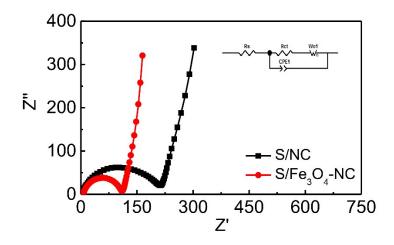


Fig. S7 EIS plots of S/NC, S/Fe₃O₄-NC and the relevant equivalent circuit.

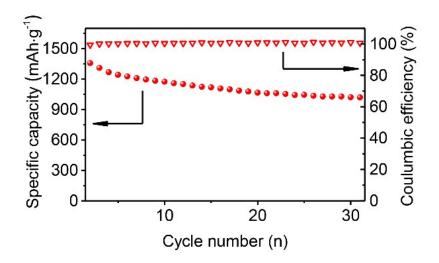


Fig. S8 Cycling performance of S/Fe₃O₄-NC electrode at 0.1 A g⁻¹.

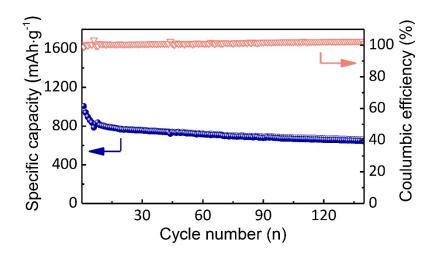


Fig. S9 Cycling performances of S/Fe₃O₄-NC electrode with 2.5 mg cm⁻² sulfur loading at current density of 0.2 A g⁻¹.

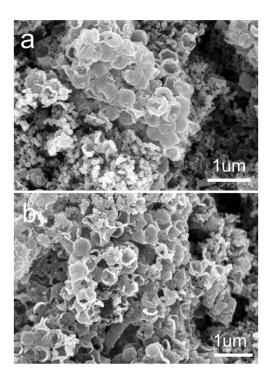


Fig. S10 SEM of S/Fe₃O₄-NC electrode (a) before and (b) after 500 cycling.

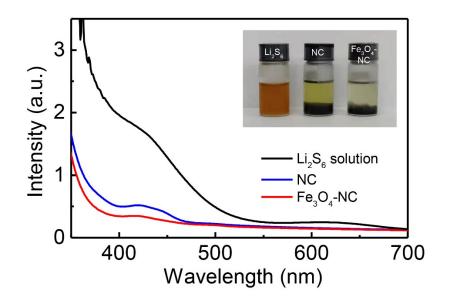


Fig. S11 UV-Vis spectra and digital photograph of the blank Li_2S_6 solution, Li_2S_6 solution with NC after 24h and Li_2S_6 solution with Fe₃O₄-NC after 24h.

Material	BET surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Average pore diameter (nm)
NC	190	0.61	16.42
Fe ₃ O ₄ -NC	559	0.71	14.32

Table S1 BET parameters of NC and Fe_3O_4 -NC.

 Table S2 Parameters of the equivalent circuit corresponding to EIS measurement.

Electrodes	$\mathrm{R}_{s}\left(\Omega ight)$	$\mathrm{R}_{ct}\left(\Omega ight)$
S/NC	4.616	174.5
S/Fe ₃ O ₄ -NC	1.843	96.9

Sulfur host	Current density (sulfur loading)	Capacity retained (cycle)	Ref.
Crumpled graphene- encapsulated sulfur ¹	0.5 C (0.5mg cm ⁻²)	432mAh g ⁻¹ (500 th cycle)	1
Multifunctional hollow spheres ²	0.2 C (2.25 mg cm ⁻²)	605 mAh g ⁻¹ (300 th cycle)	2
three-dimensional ordered porous carbon bulk networks ³	1 C (2 mg cm ⁻²)	455mAh g ⁻¹ (400 th cycle)	3
Hollow N-doped Carbon Polyhedrons ⁴	1 C (1.0 mg cm ⁻²)	404 mAh g ⁻¹ (500 th cycle)	4
"Brain-Coral-Like" Mesoporous Hollow CoS ₂ @N-Doped Carbon Nanoshells ⁵	1 C (75wt% sulfur content)	519mAh g ⁻¹ (300 th cycle)	5
SnO ₂ /C hybrid hollow spheres ⁶	1 C (0.96 mg cm ⁻²)	478 mAh g ⁻¹ (600 th cycle)	6
hollow porous carbon sphere @ MXene composites ⁷	1 C (1.0 mg cm ⁻²)	495mAh (500 th cycle)	7
Fe ₃ O ₄ @N-doped hollow carbon spheres	1 A g ⁻¹ (1.5 mg cm ⁻²)	528mAh g ⁻¹ (500 th cycle)	This work

 Table S3 A brief comparison of cycling performance of different carbon host.

References

- 1. X. Hu, K. Leng, C. Zhang and J. Luo, Crumpled graphene-encapsulated sulfur for lithium-sulfur batteries, *Rsc Advances*, 2018, **8**, 18502-18507.
- 2. P. Li, J. Deng, J. Li, M. Zeng, L. Wang and J. Guo, Multifunctional hollow spheres as sulfur hosts for high-performance Li-S batteries, *Journal of Materials Science*, 2020, **55**, 3964-3973.
- 3. H. Gu, R. Zhang, P. Wang, S. Xie, C. Niu and H. Wang, Construction of three-dimensional ordered porous carbon bulk networks for high performance lithium-sulfur batteries, *Journal of Colloid and Interface Science*, 2019, **533**, 445-451.
- 4. D.-H. Yang, H.-Y. Zhou, H. Liu and B.-H. Han, Hollow N-doped Carbon Polyhedrons with Hierarchically Porous Shell for Confinement of Polysulfides in Lithium-Sulfur Batteries, *Iscience*, 2019, **13**, 243-253.
- 5. S.-D. Seo, D. Park, S. Park and D.-W. Kim, "Brain-Coral-Like" Mesoporous Hollow CoS2@N-Doped Graphitic Carbon Nanoshells as Efficient Sulfur Reservoirs for Lithium-Sulfur Batteries, *Adv. Funct. Mater.*, 2019, **29**, 1903712.
- 6. Q. Xiao, K. Wang, X. Wang, S. Huang, N. Cai and N. Li, Solvent-free template synthesis of SnO2/C hybrid hollow spheres for superior lithium-sulfur batteries, *Materials Chemistry and Physics*, 2020, **239**, 122070.
- 7. Q. Qi, H. Zhang, P. Zhang, Z. Bao, W. Zheng, W. Tian, W. Zhang, M. Zhou and Z. Sun, Selfassembled sandwich hollow porous carbon sphere @ MXene composites as superior LiS battery cathode hosts, *2d Materials*, 2020, **7**, 025049.