Electronic Supplementary Information

A Superhydrophobic Covalent Zeolitic Imidazolate Framework-Polyhedral Oligomeric Silsesquioxane Hybrid Material as a Highly Efficient and Reusable Sorbent for Organic Solvents

Pushparaj Loganathan, K. K. R. Datta, Swaminathan Shanmugan*

Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.

Corresponding author: Swaminathan Shanmugan (shanmugs2@srmist.edu.in)

Contents

Synthesis of POSS-NH₂

Estimation of POSS-NH₂ functionalized with ZIF-90 by TG analysis.

Figure S1. FE-SEM images of (a) ZIF-90; (b) ZIF-POSS.

Figure S2. PXRD patterns of ZIF-POSS in boiled water, ethanol and hexane for 24 h.

Figure S3. N_2 isotherm for ZIF-90, inset shows the pore size distribution measured at 77 K (Blue and red circles represent adsorption and desorption, respectively).

Figure S4.²⁹Si NMR spectrum of ZIF-POSS.

Figure S5. Photographs of water contact angle of POSS-NH₂.

Figure S6. (a) Photographs showing the water wetting behaviour of ZIF-90 and ZIF-POSS;(b) Photographs of ZIF-POSS exposing into acidic and alkaline media.

Figure S7. The picture of (a) PU sponge in water and (b) ZIF-POSS@PDA@sponge on water; (c) oil droplet on surface of ZIF-POSS@PDA@sponge; (d) water droplet on surface of ZIF-POSS@PDA@sponge.

Figure S8. Photographs of chloroform-water separation using ZIF-POSS@PDA@sponge.

Figure S9. (a) Photographs of ZIF-POSS@PDA@sponge exposing to acidic, salt and alkaline media; (b) Testing selective 'chloroform' sorption for chemically treated ZIF-POSS@PDA@sponge; (c) SEM images of ZIF-POSS@PDA@sponge after exposing to acidic and alkaline media.

Table S1. Absorption capacities and separation efficiency of various POSS and MOF based materials.

Synthesis of POSS-NH₂

To a solution of isobutyl-T₇-triol (2 g, 2.53 mmol) in dichloromethane (20 mL), 3aminopropyltrimethoxysilane (0.5 ml, 2.79 mmol) in dichloromethane (20 mL) was added under nitrogen atmosphere at RT. The reaction mixture was stirred for 48 h, then the colourless solution evaporated under vacuum to afford colourless solid (POSS-NH₂). Yield: 2.29g (90%). IR (KBr, cm⁻¹): 3372(br), 2951(s), 2871(s), 1464(m), 1365(s), 1327(w), 1228(s), 1171(m), 1087(s), 1037(m), 954(m), 841(m), 746(s), 684(w), 557(w). ¹H NMR (500 MHz, CDCl₃, TMS, ppm): $\delta = 0.59$ (t, 2H, -*CH*₂CH₂CH₂NH₂), 0.62(d, 14H, -CH₂ in *i*Bu), 0.95 (dd, 42H, -CH₃), 1.53 (m, 2H, -CH₂CH₂CH₂NH₂), 1.85 (septet, 7H, -CH), 2.67 (t, 2H, -CH₂CH₂CH₂NH₂). ¹³C NMR (100 MHz, CDCl₃, TMS, ppm): $\delta = 44.9$, 27.3, 25.8, 24.0, 22.6, and 9.3 (aliphatic-carbons). ²⁹Si NMR (79.30 MHz, CDCl₃, TMS, ppm): $\delta =$ -67.8, -67.6, -67.2. Positive ion ESI-Mass m/z = 874.20 [POSS-NH₂].

Estimation of POSS-NH₂ functionalized with ZIF-90 by TG analysis:

Figure S1. FE-SEM images of (a) ZIF-90; (b) ZIF-POSS.

Figure S2. PXRD patterns of ZIF-POSS in boiled water, ethanol and hexane for 24 h.

Figure S3. N_2 isotherm for ZIF-90, inset shows the pore size distribution measured at 77 K (Blue and red circles represent adsorption and desorption, respectively).

Figure S4. ²⁹Si NMR spectrum of ZIF-POSS.

Figure S5. Photographs of water contact angle of POSS-NH₂.

Figure S6. (a) Photographs showing the water wetting behaviour of ZIF-90 and ZIF-POSS; (b) Photographs of ZIF-POSS exposing into alkaline and acidic media. (c) ZIF-POSS in (i) water/neutral (ii)acidic and (iii) basic media under stirring (500 rpm) for different times.

Figure S7. The picture of (a) PU sponge in water and (b) ZIF-POSS@PDA@sponge on water; (c) oil droplet on surface of ZIF-POSS@PDA@sponge; (d) water droplet on surface of ZIF-POSS@PDA@sponge.

Figure S8. Photographs of chloroform-water separation using ZIF-POSS@PDA@sponge.

Figure S9. (a) Photographs of ZIF-POSS@PDA@sponge exposing to acidic, salt and alkaline media; (b) Testing selective 'chloroform' sorption for chemically treated ZIF-POSS@PDA@sponge; (c) SEM images of ZIF-POSS@PDA@sponge after exposing to acidic and alkaline media.

Table S1. Absorption capacities and separation efficiency of various POSS and MOF based

 materials.

S. No	Materials	Contact	Absorption	Separation	Application	Ref
		Angle [°]	capacities	efficiency		
1	P(MMA-SMA-	153	-	99%	Oil-water	
	MAPOSS)				separation	1
2	TiO ₂ -SH-	157.6	-	99%	Self-cleaning and	
	POSS@CT				Oil-water	2
					separation	
3	POSS-modified	155	-	-	Oil absorption	
	Luffa sponges				from water	3
4	PIM-1/POSS	155	-	99.97%	Oil–Water	
					separation,	4
					Cleanup of Oil	
					Soluble	
					Contaminants	
5	POSS-MPTMS	142	280 wt%	96%	Oil-water	
					separation and	5
					Self-cleaning	
					process	
6	S-MIL-101	156±1	142-369 wt%	≥99.5%	Oil-water	
	S-UiO-66	154±1	125-281 wt%		separation	6
	S-ZIF-67	151±1	122-341 wt%			
	S-HKUST	155±1	118-325 wt%			

7	Superhydrophobic	152.4	-	98%	Bio-alcohols	
	ZIF-90				recovered from	7
					alcohol/water	
					mixture	
8	F-ZIF-	159.1	1600-4800	-	Oil-water	
	90@PDA@sponge		wt%		separation	8
9	ZIF-8@	158	1400-2900	99%	Removal	
	rGO@Sponge		wt%		of organic	9
					solvents and oils	
					from water	
10	MF-ZIF-8@	140	1000 -	-	Oil-water	
	sponge		3800 wt%		separation and	10
					Catalysis	
					in a knoevenagel	
					reaction†	
11	ZIF-POSS	157	540-860 wt%.	>99%	Removal of	This
					Organic	work
					Pollutants from	
					Water	

References

- 1. D. Guo, K. Hou, S. Xu, Y. Lin, L. Li, X. Wen and P. Pi, Superhydrophobic superoleophilic stainless steel meshes by spray-coating of a POSS hybrid acrylicpolymer for oil-water separation, *J. Mater. Sci.*, 2018, **53**, 6403–6413.
- 2. M. Yang, W. Liu, L. Liang, C. Jiang, C. Liu, Y. Xie, H. Shi, F. Zhang and K. Pi, A

mild strategy to construct superhydrophobic cotton with dual self-cleaning and oilwater separation abilities based on TiO_2 and POSS via thiol-ene click reaction, *Cellulose*, 2020, **27**, 2847–2857.

- 3. Z. Wang, H. Ma, B. Chu and B. S. Hsiao, Super-hydrophobic modification of porous natural polymer "luffa sponge" for oil absorption, *Polymer*, 2017, **126**, 470–476.
- C. Zhang, P. Li and B. Cao, Electrospun Microfibrous Membranes Based on PIM-1/POSS with High Oil Wettability for Separation of Oil–Water Mixtures and Cleanup of Oil Soluble Contaminants, *Ind. Eng. Chem. Res.*, 2015, 54, 8772–8781.
- Y. Deng, D. Han, Y. Y. Deng, Q. Zhang, F. Chen and Q. Fu, Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation, *Chem. Eng. J.*, 2020, 379, 122391.
- M. L. Gao, S. Y. Zhao, Z. Y. Chen, L. Liu and Z. B. Han, Superhydrophobic/Superoleophilic MOF Composites for Oil–Water Separation, *Inorg. Chem.*, 2019, 58, 2261–2264.
- C. Liu, Q. Liu and A. Huang, Superhydrophobic Zeolitic Imidazolate Framework ZIF-90 with High Steam Stability for Efficient Recover of Bioalcohols, *Chem. Commun.*, 2016, **52**, 3400–3402.
- 8. C. Liu and A. Huang, One-step synthesis of the superhydrophobic zeolitic imidazolate framework F-ZIF-90 for efficient removal of oil, *New J. Chem.*, 2018, **42**, 2372–2375.
- J. Gu, H. Fan, C. Li, J. Caro and H. Meng, Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil-Water Separation *Angew. Chem. Int. Ed.*, 2019, 58, 5297-5301.

 Z. Lei, Y. Deng and C. Wang, Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a knoevenagel reaction *J. Mater. Chem. A*, 2018, 6, 3258–3263.