Supporting Information for

Diiron azadithiolate cluster supported on carbon nanotubes for efficient electrocatalytic proton reduction

Pei-Hua Zhao,^{a,*} Jian-Rong Li,^a Zhong-Yi Ma,^a Hong-Fei Han,^b Yong-Ping Qu,^a and Bao-Ping Lu^{b,*}

^aSchool of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China

^bDepartment of Chemistry, Taiyuan Normal University, Jinzhong 030619, P. R. China

*Corresponding author.

Email: zph2004@nuc.edu.cn (P.-H. Zhao), lubp@tynu.edu.cn (B.-P. Lu)

Contents:

I. Relevant spectroscopic and electrochemical data of 1-f-SWCNTs and 1

- p3. Fig. S1. FT-IR spectrum (KBr disk) of hybrid 1-f-SWCNTs.
- *p4.* Fig. S2. Raman spectra (RBM region) of 1-*f*-SWCNTs (black line), *f*-SWCNTs (green line), and *p*-SWCNTs (blue line) at an excitation wavelength of 785 nm.
- *p5.* Fig. S3. Cyclic voltammetries of diiron compound 1 dissolved in MeCN (1.0 mM, black line) and loaded on GCE electrode (0.71 mg·cm⁻² loading, blue line) in 0.1 M *n*-Bu₄NPF₆/MeCN solution at a scan rate of 0.05 V s⁻¹. Data in MeCN were recorded using a nonaqueous Ag/AgNO₃ (0.01 M in MeCN) reference electrode and are further referred to the normal hydrogen eletrode (NHE) for comparison.
- *p6.* Fig. S4. Controlled-potential electrolysis experiments of (a) hybrid 1-*f*-SWCNTs, (b) compound 1, (c) pristine SWCNTs absorbed respectively on GCE electrodes with loading of 0.71 mg·cm⁻² and (d) bare GCE electrode at -0.90 V vs. Ag/AgCl (sat. KCl) in 0.2 N H₂SO₄ solution.

II. TON and TOF calculations of 1-f-SWCNTs and 1

- *p7.* Fig. S5. (a) Cyclic voltammetry of hybrid 1-*f*-SWCNTs (loading of 0.71 mg cm⁻²) absorbed on GCE electrode in 0.1 M Na₂SO₄/H₂O at a scan rate of 0.05 V s⁻¹. (b) Controlled potential electrolysis of hybrid 1-*f*-SWCNTs (loading of 0.71 mg cm⁻²) absorbed on GCE electrode and bare GCE electrode at -0.9 V vs Ag/AgCl (sat. KCl) in 0.2 N H₂SO₄ solution.
- *p8.* Fig. S6. (a) Cyclic voltammetry of compound 1 (loading of 0.71 mg cm⁻²) absorbed on GCE electrode in 0.1 M Na₂SO₄/H₂O at a scan rate of 0.05 V s⁻¹. (b) Controlled potential electrolysis of compound 1 (loading of 0.71 mg cm⁻²) absorbed on GCE electrode and bare GCE electrode at -0.9 V vs Ag/AgCl (sat. KCl) in 0.2 N H₂SO₄ solution.

III. Crystallographic and spectroscopic data of compound 1

- p10. Table S1. Details of crystallographic data and structure refinement for compound 1
- *p11.* Fig. S7. FT-IR spectrum (KBr disk) of compound 1.
- p12. Fig. S8. ¹H NMR (600 MHz, CDCl₃, 25°C) spectrum of compound 1.
- *p13.* Fig. S9. ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃, 25°C) spectrum of compound 1.

I. Relevant spectroscopic and electrochemical data of 1-f-SWCNTs and 1

Fig. S1. FT-IR spectrum (KBr disk) of hybrid 1-*f*-SWCNTs.

Fig. S2. Raman spectra (RBM region) of **1-***f***-SWCNTs** (black line), *f*-SWCNTs (green line), and *p*-SWCNTs (blue line) at an excitation wavelength of 785 nm.

Fig. S3. Cyclic voltammetries of diiron compound **1** dissolved in MeCN (1.0 mM, black line) and loaded on GCE electrode (0.71 mg cm⁻² loading, blue line) in 0.1 M n-Bu₄NPF₆/MeCN solution at a scan rate of 0.05 V s⁻¹. Data in MeCN were recorded using a nonaqueous Ag/AgNO₃ (0.01 M in MeCN) reference electrode and are further referred to the normal hydrogen eletrode (NHE) for comparison.

Fig. S4. Controlled-potential electrolysis experiments of (a) hybrid **1-***f***-SWCNTs**, (b) compound **1**, (c) pristine SWCNTs absorbed respectively on GCE electrodes with loading of 0.71 mg cm⁻² and (d) bare GCE electrode at -0.90 V vs. Ag/AgCl (sat. KCl) in 0.2 N H₂SO₄ solution.

Fig. S5. (a) Cyclic voltammetry of hybrid **1-***f***-SWCNTs** (loading of 0.71 mg cm⁻²) absorbed on GCE electrode in 0.1 M Na₂SO₄/H₂O at a scan rate of 0.05 V s⁻¹. (b) Controlled potential electrolysis of hybrid **1-***f***-SWCNTs** (loading of 0.71 mg cm⁻²) absorbed on GCE electrode and bare GCE electrode at -0.9 V vs Ag/AgCl (sat. KCl) in 0.2 N H₂SO₄ solution.

TON and TOF calculation for the **1-***f***-SWCNTs** hybrid [1-4]:

- (1) From the CV curve shown in Fig. S4a, the charge of anodic peak integral is estimated to 3.54 x 10⁻⁷ C. Thus, we converted this charge to the moles of catalyst 1-*f*-SWCNTs on the GCE electrode (division by faraday constant), *i.e.*, n (catalyst) = Q/(F x 1) = 3.54 x 10⁻⁷C/96500C·mol⁻¹ = 0.37 x 10⁻¹¹ mol.
- (2) From the CPE experiment shown in Fig. S4b, the neat charge passed on the 1-*f*-SWCNTs/GCE electrode is equal to 24 C with 1 hour. Thus, we converted this charge to the moles of transfer electron on the GCE electrode (division by faraday constant), *i.e.*, $n(e^-) = Q/F = 24C/96500C \cdot mol^{-1} = 2.48 \times 10^{-4}$ mol. According to the reaction $2H^+ + 2e^- = H_2$, the moles of H₂ produced is estimated from the moles of transfer electron on the GCE electrode (division by 2), *i.e.*, $n(H_2) = n(e^-)/2 = 2.48 \times 10^{-4} mol/2 = 1.24 \times 10^{-4} mol$.
- (3) According to the equations: $TON = n(H_2)/n(catalyst)$ and TOF = TON/t, the TON for hybrid **1-***f***-SWCNTs** is estimated to be ~ 3.4 x 10⁷ after 1h and thus the TOF value is 9444 s⁻¹.

Fig. S6. (a) Cyclic voltammetry of compound **1** (loading of 0.71 mg cm⁻²) absorbed on GCE electrode in 0.1 M Na₂SO₄/H₂O at a scan rate of 0.05 V s⁻¹. (b) Controlled potential electrolysis of compound **1** (loading of 0.71 mg cm⁻²) absorbed on GCE electrode and bare GCE electrode at -0.9 V vs Ag/AgCl (sat. KCl) in 0.2 N H₂SO₄ solution.

TON and TOF calculation for compound 1 [1-4]:

- (1) From the CV curve shown in Fig. S5a, the charge of anodic peak integral is estimated to 1.04 x 10⁻⁶ C. Thus, we converted this charge to the moles of catalyst 1 on the GCE electrode (division by faraday constant), *i.e.*, n (catalyst) = Q/(F x 1) = 1.04 x 10⁻⁶C/96500C·mol⁻¹ = 1.08 x 10⁻¹¹ mol.
- (2) From the CPE experiment shown in Fig. S5b, the neat charge passed on the 1 /GCE electrode is equal to 13.4 C with 1 hour. Thus, we converted this charge to the moles of transfer electron on the GCE electrode (division by faraday constant), *i.e.*, n(e⁻) = Q/F = 13.4C/96500 C·mol⁻¹ = 1.39 x 10⁻⁴ mol. According to the reaction 2H⁺ +2e⁻ = H₂, the moles of H₂ produced is estimated from the moles of transfer electron on the GCE electrode (division by 2), *i.e.*, n(H₂) = n(e⁻)/2 = 1.39 x 10⁻⁴ mol/2 = 0.70 x 10⁻⁴ mol.
- (3) According to the equations: TON = $n(H_2)/n(\text{catalyst})$ and TOF = TON/t, the TON for complex **1** is estimated to be ~ 0.6 x 10⁷ after 1h and thus the TOF value is 1667 s⁻¹.

References:

- [1] A. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin and M. Fontecave, From hydrogenases to noble metal–free catalytic nanomaterials for H₂ production and uptake, *Science*, 2009, **326**, 1384–1387.
- [2] A. L. Goff, F. Moggia, N. Debou, P. Jegou, V. Artero, M. Fontecave, B. Jousselme and S. Palacin, Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and π -stacking interactions and their relevance to glucose bio-sensing, *J. Electroanal. Chem.*, 2010, **641**, 57–63.
- [3] S. Dey, A. Rana, S. G. Dey and A. Dey, Electrochemical hydrogen Production in acidic water by an azadithiolate bridged synthetic hydrogenese mimic: Role of aqueous solvation in lowering overpotential, ACS Catal., 2013, 3, 429–436.
- [4] M. E. Ahmed, S. Dey, B. Mondal and A. Dey, H₂ Evolution catalyzed by FeFehydrogenase synthetic model covalently attached to graphite surface, Chem. *Commun.*, 2017, 53, 8188–8191.

III. Crystallographic and spectroscopic data of compound 1

Identification code	Compound 1
CCDC number	2044503
Empirical formula	$C_{16}H_{13}Fe_2NO_7S_2 \cdot 0.5H_2O$
Formula weight	516.12
Temperature /K	150(2)
Crystal system	orthorhombic
Space group	Pbcn
a /Å	28.3033(7)
b /Å	10.6482(3)
c /Å	13.0200(4)
α /°	90
β /°	90
γ /°	90
Volume /Å ³	3923.95(19)
Z	8
$\rho_{calc}/g \text{ cm}^{-3}$	1.747
μ /mm ⁻³	14.239
F(000)	2088.0
Crystal size/mm ³	$0.18 \times 0.17 \times 0.16$
Radiation	$CuK\alpha (\lambda = 1.54178)$
2θ range for data collection /°	8.872 to 132
	-17≤h≤33,
Index ranges	-12≤k≤12,
	- 15≤l≤11
Reflections collected	8004
Independent reflections	3401 [$R_{int} = 0.0919$, $R_{sigma} = 0.1167$]
Data/restraints/parameters	3401/15/258
Goodness-of-fit on F ²	1.038
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0853, wR_2 = 0.2154$
Final R indexes [all data]	$R_1 = 0.1120, wR_2 = 0.2442$
Largest diff. peak/hole / e Å ⁻³	1.57/-1.12

 Table S1. Details of crystallographic data and structure refinement for compound 1

Fig. S7. FT-IR spectrum (KBr disk) of compound 1.

Fig. S8. 1 H NMR (600 MHz, CDCl₃, 25°C) spectrum of compound 1.

Fig. S9. ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃, 25°C) spectrum of compound 1.