Supplementary information

Layered Double Hydroxide Derived Bimetallic Nickel-Iron Selenide as an Active Electrocatalyst for Nitrogen Fixation under Ambient Conditions

Shiyu Yang,^a Wen Ye,^c Demei Zhang^a, Xiaoyu Fang^a and Dongpeng Yan*abd

- a. Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry Beijing Normal University, Beijing 100875, P. R. China. E-mail: yandp@bnu.edu.cn
- b. College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China.
- c. School of Chemistry and Biological Engineering, Basic Experimental Center For Natural Science, University of Science and Technology Beijing, Beijing 100083, P. R. China
- d. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

Experimental details

Chemicals

All chemical reagents were directly used without any further purification. Nickel(II) nitrate hexahydrate $(Ni(NO_3)_2.6H_2O),$ iron(III) nitrate $(Fe(NO_3)_3.9H_2O),$ triethanolamine nonahydrate $(N(CH_2CH_2OH)_3),$ triethanolamine (TEA), selenium powder (Se), ammonium iron(II) sulfate $(Fe(NH_4)_2 \cdot (SO_4)_2 \cdot 6H_2O)$, citric acid (CA), ethyl alcohol (C₂H₅OH), salicylic acid $(C_7H_6O_3)$, sodium citrate dihydrate $(C_6H_5Na_3O_7 \cdot 2H_2O)$, sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O), sodium hypochlorite solution (NaClO), p-dimethylaminobenzaldehyde ($C_9H_{11}NO$), hydrazine dihydrochloride (N₂H₄·HCl), sodium sulfate (Na₂SO₄), potassium sulfate (K₂SO₄), lithium sulphat (Li₂SO₄), carbon paper (C), 5% Nafion solution, iso-propyl alcohol ((CH₃)₂CHOH), 211 Nafion membrane, deionized water, N₂ gas (99.99%), Ar gas (99.99%), ¹⁵N₂ gas (98%).

Characterization.

The morphology, microstructure and chemical composition of the samples are characterized by field emission scanning electron microscopy (FESEM, Hitachi S-8010), pH meter (METTLER TOLEDO), transmission electron microscopy (TEM, JEOL, JEM-2100F), X-ray diffraction (XRD, Rigaku Ultima-IV), and X-ray photoelectron spectroscopy (XPS, Thermo VG ESCALAB MK II).

Figure S1. XRD image of NiFe-LDH.

Figure S2. The local enlarged XRD patterns of $Ni_{0.67}Fe_{0.33}Se_2$, $Ni_{0.75}Fe_{0.25}Se_2$ and $Ni_{0.80}Fe_{0.20}Se_2$.

Figure S3. The HRTEM images and FFT patterns of $Ni_{0.75}Fe_{0.25}Se_2$

Figure S4. XPS survey scan spectrum of the $Ni_{0.75}Fe_{0.25}Se_2$ catalyst.

Figure S5. (a) XPS spectra of $Ni_{0.67}Fe_{0.33}Se_2$. (b) Ni 2p; (c) Fe 2p; and (d) Se

3d.

Figure S6. (a) XPS spectra of Ni_{0.80}Fe_{0.20}Se₂. (b) Ni 2p; (c) Fe 2p; and (d) Se 3d.

Figure S7. The HRTEM image of Ni_{0.75}Fe_{0.25}-LDH.

Figure S8. XRD image of NiFe-LDH with different basic materials.

Figure S9. SEM images of Ni_{0.75}Fe_{0.25}-LDH.

(The left with urea and TEA addition, the right with urea only.)

Figure S10. (a) SEM images and (b-e) EDS elemental mapping images of $Ni_{0.67}Fe_{0.33}$ -LDH for Ni (green), Fe (golden), O (red) and C (purple).

Figure S11. (a) SEM images and (b-e) EDS elemental mapping images of Ni_{0.75}Fe_{0.25}-LDH. for Ni (green), Fe (golden), O (red) and C (purple).

Figure S12. (a) SEM images and (b-e) EDS elemental mapping images of Ni_{0.80}Fe_{0.20}-LDH. for Ni (green), Fe (golden), O (red) and C (purple).

Figure S13. The XRD image of FeSe₂ and NiSe₂.

Figure S14. (a-b) low- and high-magnification SEM images of NiSe_{2.}

(c-d) low- and high-magnification SEM images of FeSe₂.

Figure S15. (a) UV–Vis absorption spectra of various NH_3 concentrations after incubated for 2 h in 0.1 M Li_2SO_4 aqueous solution at room temperature. (b) Calibration curve used for calculation of NH_3 concentrations.

Figure S16. (a) UV–Vis absorption spectra of various NH_3 concentrations after incubated for 2 h in 0.1 M Na_2SO_4 aqueous solution at room temperature. (b) Calibration curve used for calculation of NH_3 concentrations.

Figure S17. (a) UV–Vis absorption spectra of various NH₃ concentrations after incubated for 2 h in 0.1 M K₂SO₄ aqueous solution at room temperature.
(b) Calibration curve used for calculation of NH₃ concentrations.

Figure S18. (a) UV–Vis absorption spectra of various N_2H_4 concentrations after incubated for 20 min in 0.1 M Li₂SO₄ aqueous solution at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Figure S19. LSV curves of $Ni_{0.75}Fe_{0.25}Se_2$ sample in the N₂-saturated and Ar-saturated 0.1 M Li₂SO₄ aqueous solution, respectively.

Figure S20. Chrono-amperometry results of $Ni_{0.75}Fe_{0.25}$ -LDH for stability test (insert is the pH reading after 24h reaction).

Figure S21. Electrocatalytic NRR of $Ni_{0.67}Fe_{0.33}Se_2$, $Ni_{0.75}Fe_{0.25}Se_2$ and $Ni_{0.80}Fe_{0.20}Se_2$ at ambient conditions. (a) Yield rate of NH₃ and (b) Faradaic efficiency at each given potential.

Figure S22. UV-Vis absorption spectra of the electrolyte stained with indophenol indicator in four different condition at -0.1 V *vs*. RHE.

Figure S23. 1H NMR spectra of standard ¹⁴NH₄Cl and ¹⁵NH₄Cl solution, also the Li_2SO_4 electrolyte fed by ¹⁴N₂ and ¹⁵N₂ after the electrolytic reaction.

Figure S24. UV-Vis absorbance curves of $Ni_{0.75}Fe_{0.25}Se_2$ in Li_2SO_4 electrolytes detected by the method of Watt and Chrisp after the 2 hours NRR test at corresponding potential.

Figure S25. cycling test of $Ni_{0.75}Fe_{0.25}Se_2$. (a) Chrono-amperometry results of $Ni_{0.75}Fe_{0.25}Se_2$ at -0.1 V vs. RHE. (b) Corresponding UV-Vis absorption spectra of the electrolyte stained with indophenol indicator.

Figure S26. XPS spectra of $Ni_{0.75}Fe_{0.25}Se_2$ after the stability test (the 10-h N₂ reduction reaction). (a) Ni 2p; (b) Fe 2p; (c) Se 3d.

Figure S27. TEM image of $Ni_{0.75}Fe_{0.25}Se_2$ after the stability test. (a) TEM image of $Ni_{0.75}Fe_{0.25}Se_2$ after the 10-h N₂ reduction reaction. (b) EDS mappings of $Ni_{0.75}Fe_{0.25}Se_2$ after the 10-h N₂ reduction reaction for Ni (red), Fe (green), Se (purple) and O (golden).

Figure S28. XPS spectra of Ni_{0.75}Fe_{0.25}-LDH. (a) Ni 2p; (b) Fe 2p.

Figure S29. XPS spectra of NiSe₂. (a) Ni 2p; (b) Se 3d.

Figure S30. XPS spectra of FeSe₂. (a) Fe 2p; (b) Se 3d.

Figure S31. Chrono-amperometry results of (a) $Ni_{0.75}Fe_{0.25}$ -LDH., (b) $NiSe_2$ and (c) $FeSe_2$ at the corresponding potentials, respectively.

Figure S32. (a)-(d) Cyclic voltammograms for synthesized Ni_{0.75}Fe_{0.25}-LDH.,

Ni_{0.75}Fe_{0.25}Se₂, NiSe₂ and FeSe₂, respectively.

Figure S33. UV-Vis absorption spectra of the electrolyte of 0.1 M Li_2SO_4 and adding 0.1 mM KSCN stained with indophenol indicator at -0.1 V vs. RHE.

Figure S34. Charge density difference of NiSe₂; $Ni_{0.67}Fe_{0.33}Se_2$ and $Ni_{0.75}Fe_{0.25}Se_2$. In this plot a loss of electrons is indicated in blue, while electron enrichment is indicated in red.

	Sample	Ni	Fe
Atom ratio	Ni _{0.67} Fe _{0.33} -LDH	2.06	1
	Ni _{0.75} Fe _{0.25} -LDH	3.09	1
	Ni _{0.80} Fe _{0.20} -LDH	3.93	1

Table S1. Calculated Ni/Fe ratio of NiFe-LDH from ICP-AES.

Table S2. Calculated Ni/Fe ratio of NiFe-selenide from ICP-AES.

	Sample	Ni	Fe
Atom ratio	Ni _{0.67} Fe _{0.33} Se ₂	2.13	1
	Ni _{0.75} Fe _{0.25} Se ₂	3.04	1
	$Ni_{0.80}Fe_{0.20}Se_{2}$	3.86	1

based catalysts on electrocatalytic N2 fixation.

Catalyst	Electrolyte	Yield rate	FE %	Testing method	Ref
Pt/C	phosphate buffer solution	4.5 μg h ⁻¹ mg ⁻¹ _{cat}	8.2	indophenol blue method	1
Pd _{0.2} Cu _{0.8} /rGO	0.1 M KOH	2.8µg h ⁻¹ mg ⁻¹ _{cat}		indophenol blue method	2
AuSAs-NDPCs	0.1 M HCl	2.32 µg h ⁻¹ mg ⁻¹ _{cat}	12.3	indophenol blue method	3
Ru/MoS_2	0.01 M HCl	$1.14 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$	17.6	indophenol blue method	4
THH Au NRs	0.1 M KOH	1.648 µg h ⁻¹ cm ⁻²		Nessler's reagent	5
Au HNCs	0.5 M LiClO ₄	$3.9 \ \mu g \ h^{-1} \ cm^{-2}$	30.2	Nessler's reagent	6
Ag nanosheet	0.1 M HCl	$4.62 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	4.8	indophenol blue method	7
Fe/Fe ₃ O ₄	phosphate buffer solution	0.19 μg h ⁻¹ mg ⁻¹ _{cat}	8.29	indophenol blue method	8
FeSAs-N-C	0.1 M KOH	7.48 µg h ⁻¹ mg ⁻¹ _{cat}	56.55	indophenol blue method	9
FeSAs-MoS2	0.5 M K2SO4 (pH = 3)	8.63 µg h ⁻¹ mg ⁻¹ _{cat}	18.8	indophenol blue method	10

Ref.

- J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential, *Nat. Commun.*, 2018, 9, 1795.
- 2 M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan and Q. Jiang, Anchoring PdCu Amorphous Nanocluster on Graphene for Electrochemical Reduction of N₂ to NH₃ under Ambient Conditions in Aqueous Solution, *Adv. Energy Mater.*, 2018, **8**, 1800124.
- 3 Q. Qin, T. Heil, M. Antonietti and M. Oschatz, Single-Site Gold Catalysts on Hierarchical N-Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen, *Small Methods*, 2018, **2**, 1800202.
- 4 B. H. R. Suryanto, D. Wang, L. M. Azofra, M. Harb, L. Cavallo, R. Jalili, D. R. G. Mitchell, M. Chatti and D. R. MacFarlane, MoS₂ Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia, *ACS Energy Lett.*, 2018, 4, 430.
- 5 D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M. Yan, Q. Jiang and X. B. Zhang, Electrochemical Reduction of N₂ under Ambient Conditions for Artificial N₂ Fixation and Renewable Energy Storage Using N₂/NH₃ Cycle, *Adv. Mater.*, 2017, **29**, 1604799.
- 6 M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, Enhancing the rate of

electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages, *Nano Energy*, 2018, **49**, 316.

- H. Huang, L. Xia, X. Shi, A. M. Asiri and X. Sun, Ag nanosheets for efficient electrocatalytic N₂ fixation to NH₃ under ambient conditions, *Chem. Commun.*, 2018, 54, 11427.
- 8 L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden and X. Feng, Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst, *ACS Catal.*, 2018, **8**, 9312.
- 9 M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong and C. Yan, Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential, *Nat. Commun.*, 2019, 10, 341.
- 10 H. Su, L. Chen, Y. Chen, Y. Wu, X. Wu, R. Si, W. Zhang, Z. Geng and J. Zeng, Single Atoms of Iron on MoS₂ Nanosheets for N₂ Electroreduction into Ammonia, *Angew. Chem., Int. Ed.*, 2020, DOI: 10.1002/anie.202009217.