Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Ultraviolet Nonlinear Optical Crystals A_3 SrBi $(P_2O_7)_2$ (A = K, Rb) with

Large Second Harmonic Generation Responses

Shiwei Liu,^a Bingbing Zhang,^b Hongping Wu,^{*a} Hongwei Yu,^a Zhanggui Hu,^a Jiyang Wang,^a and Yicheng Wu^a

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

^bKey Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.

*To whom correspondence should be addressed. E-mail: wuhp@ms.xjb.ac.cn

CONTENTS

Table S1. Crystal data and structure refinement for A ₃ SrBi(P ₂ O ₇) ₂ (A = K, Rb)	3
Table S2. Atomic coordinates, equivalent isotropic displacement parameters (Å ²)	
and bond valence sum (BVS) for K ₃ SrBi(P ₂ O ₇) ₂	4
Table S3. Atomic coordinates, equivalent isotropic displacement parameters (Å ²)	
and bond valence sum (BVS) for $Rb_3SrBi(P_2O_7)_2$	5
Table S4. Bond lengths (Å) and angles (°) for K ₃ SrBi(P ₂ O ₇)2	6
Table S5. Bond lengths (Å) and angles (°) for $Rb_3SrBi(P_2O_7)_2$	9
Table S6. The dipole moments of single P–O and Bi–O units in $K_3SrBi(P_2O_7)_2$ and $Rb_3SrBi(P_2O_7)_2$	12
Table S7. φ and Θ angles of K ₃ SrBi(P ₂ O ₇) ₂ and Rb ₃ SrBi(P ₂ O ₇) ₂	13
Table S8. SHG and UV cut-off edges of compounds in the family of $A_3BBi(P_2O_7)_2$	14
Figure S1. PXRD patterns of K ₃ SrBi(P ₂ O ₇) ₂ and Rb ₃ SrBi(P ₂ O ₇) ₂	15
Figure S2. K–O framework of K ₃ SrBi(P ₂ O ₇) ₂ and Rb–O framework of Rb ₃ SrBi(P ₂ O ₇) ₂	16
Figure S3. UV-Vis-NIR diffuse reflectance and absorption spectra of K_3 SrBi(P_2O_7) ₂	
and $Rb_3SrBi(P_2O_7)_2$	17
Figure S4. IR spectra of K_3 SrBi $(P_2O_7)_2$ and Rb_3 SrBi $(P_2O_7)_2$	18
Figure S5. TG and DSC curves of K_3 SrBi $(P_2O_7)_2$ and Rb_3 SrBi $(P_2O_7)_2$	19
Figure S6. EDS spectra of a) K ₃ SrBi(P ₂ O ₇) ₂ and b) Rb ₃ SrBi(P ₂ O ₇) ₂	20
Figure S7. Experimental optical path diagram of SHG measurement	21
Figure S8. The schematic diagram of the second harmonic generation	22
REFERENCES	23

Empirical formula	K_3 SrBi(P ₂ O ₇) ₂	$Rb_3SrBi(P_2O_7)_2$
Formula weight	761.78	900.89
Temperature / K	299	0(2)
Wavelength / Å	0.71	073
Crystal system	Mono	oclinic
Space group, Z	P2:	, 2
a / Å	8.6613(7)	8.9637(8)
b/Å	9.6076(7)	9.4920(8)
c / Å	8.8354(8)	9.2113(9)
6/°	106.469(3)	105.995(3)
Volume / ų	705.07(10)	753.39(12)
ho / Mg/m ³	3.588	3.971
μ / mm ⁻¹	17.656	25.324
F(000)	700	808
Θ range for data collection / °	2.404 to 27.538	2.300 to 27.534
	-11≤h≤11,	-9<=h<=11,
Limiting indices	-12≤ <i>k</i> ≤12,	-12<=k<=12,
	-11≤/≤11	-11<= <=11
Reflections collected / unique	10362 / 3231	7667 / 3370
Reflections collected / unique	[<i>R</i> (int) = 0.1080]	[R(int) = 0.0357]
Completeness	100%	99.4%
Refinement method	Full-matrix leas	t-squares on <i>F</i> ²
Data / restraints / parameters	3231 / 133 / 203	3370 / 1 / 208
Goodness-of-fit on <i>F</i> ²	0.992	1.029
Einal R indices $[E^2 > 2\sigma(E^2)]^{[a]}$	$R_1 = 0.0514,$	$R_1 = 0.0580,$
	$wR_2 = 0.0911$	$wR_2 = 0.1558$
R indices (all data) [a]	$R_1 = 0.0675,$	$R_1 = 0.0641,$
A malees (an data)	$wR_2 = 0.1010$	$wR_2 = 0.11623$
Absolute structure parameter	0.003(11)	0.042(9)
Largest diff. peak and hole / $e \cdot Å^{-3}$	1.667 and -1.455	7.541 and -1.370

Table S1. Crystal data and structure refinement for $A_3SrBi(P_2O_7)_2$ (A = K, Rb).

[a] $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$ and $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$.

Atom	x	У	Z	U(eq) ^[b]	BVS
Bi(1)	-0.0126(1)	0.8064(1)	0.7239(1)	0.012(1)	2.98
Sr(1)	0.2487(2)	0.5021(2)	1.0252(2)	0.011(1)	2.11
K(1)	0.1798(6)	0.8301(6)	0.3057(6)	0.030(1)	0.91
K(2)	0.4782(6)	0.1702(5)	0.2542(7)	0.024(1)	1.16
K(3)	0.6848(8)	0.7201(7)	0.2843(9)	0.046(2)	0.86
P(1)	0.6773(7)	0.3811(6)	0.0683(7)	0.015(1)	4.84
P(2)	0.3907(7)	0.4906(6)	0.4092(7)	0.016(1)	4.94
P(3)	0.8855(7)	0.6080(6)	0.0174(7)	0.014(1)	5.01
P(4)	0.1469(7)	0.5374(6)	0.5790(7)	0.014(1)	5.09
O(1)	0.2636(18)	0.5839(14)	0.4781(18)	0.017(3)	2.26
O(2)	0.0745(18)	0.3972(15)	0.5174(18)	0.017(2)	2.21
O(3)	1.0119(17)	0.5387(15)	0.1501(18)	0.017(2)	1.97
O(4)	0.7678(17)	0.2750(15)	-0.0030(18)	0.024(3)	1.81
O(5)	0.0147(19)	0.6460(15)	0.5510(20)	0.023(3)	2.09
O(6)	0.7551(18)	0.3819(15)	0.2492(19)	0.022(3)	1.89
O(7)	0.8589(18)	0.7579(14)	0.0496(18)	0.021(3)	1.89
O(8)	0.4991(19)	0.3653(15)	0.0213(19)	0.021(3)	1.97
O(9)	0.7133(17)	0.5363(14)	0.0089(18)	0.017(2)	2.18
O(10)	0.9187(19)	0.5803(15)	-0.1390(20)	0.024(3)	1.86
O(11)	0.2461(18)	0.5306(15)	0.7474(18)	0.020(3)	1.92
O(12)	0.5240(20)	0.4513(17)	0.5480(20)	0.034(4)	1.84
O(13)	0.4220(20)	0.5894(16)	0.2900(20)	0.027(3)	2.03
O(14)	0.2920(18)	0.3654(15)	0.3240(20)	0.022(3)	2.03

Table S2. Atomic coordinates, equivalent isotropic displacement parameters (Å²) and bond valence sum (BVS) for K_3 SrBi $(P_2O_7)_2$.

[b] U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	х	У	Z	U(eq) ^[b]	BVS
Bi(1)	0.5010(1)	0.4943(1)	0.7270(1)	0.030(1)	3.31
Sr(1)	0.7462(3)	1.1622(3)	1.0006(3)	0.030(1)	2.37
Rb(1)	0.3322(3)	0.9916(4)	0.6852(3)	0.047(1)	0.94
Rb(2)	0.9950(3)	-0.1622(3)	0.2504(3)	0.042(1)	0.91
Rb(3)	1.1393(4)	0.3475(4)	0.2811(4)	0.054(1)	0.79
P(1)	0.6373(8)	0.2047(7)	0.5714(8)	0.033(1)	5.04
P(2)	0.8675(7)	0.0983(7)	0.4277(8)	0.033(1)	5.28
P(3)	0.8331(8)	0.5578(8)	0.9771(8)	0.034(1)	4.81
P(4)	0.5993(8)	0.7715(7)	1.0126(7)	0.033(1)	4.99
O(1)	0.5320(20)	0.7620(20)	1.1450(30)	0.040(5)	1.97
O(2)	0.9960(20)	0.6150(30)	1.0180(30)	0.060(7)	2.01
O(3)	0.8820(20)	0.1480(30)	0.2800(20)	0.051(5)	2.01
O(4)	1.0110(20)	0.0850(30)	0.5480(20)	0.052(6)	1.93
O(5)	0.5010(20)	0.1300(30)	0.4670(20)	0.050(6)	2.19
O(6)	0.7050(30)	0.1370(30)	0.7170(20)	0.054(6)	2.05
O(7)	0.5890(30)	0.3630(20)	0.5810(30)	0.060(6)	2.15
O(8)	0.6730(30)	0.9120(20)	0.9970(30)	0.057(6)	1.82
O(9)	0.7640(20)	0.2190(20)	0.4810(20)	0.039(4)	2.29
O(10)	0.4860(20)	0.7160(20)	0.8700(20)	0.037(4)	1.91
O(11)	0.7630(20)	-0.0300(20)	0.4110(20)	0.042(5)	2.02
O(12)	0.7550(30)	0.5690(30)	0.8060(20)	0.050(5)	1.99
O(13)	0.8110(50)	0.4110(30)	1.0330(30)	0.095(13)	1.89
O(14)	0.7370(30)	0.6580(40)	1.0650(30)	0.074(8)	2.23

Table S3. Atomic coordinates, equivalent isotropic displacement parameters (Å²) and bond valence sum (BVS) for $Rb_3SrBi(P_2O_7)_2$.

[b] U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	-		
L	1		
г			
٠		,	

Table S4. Bond length	ns (Å) and angles (°) for K_3Sr	Bi(P ₂ O ₇) ₂ .
Bi(1)-O(2)#1	2.224(15)	K(2)-O(

	0 - () -	5 (27)2	
Bi(1)-O(2)#1	2.224(15)	K(2)-O(14)	2.656(16)
Bi(1)-O(5)	2.230(16)	K(2)-O(12)#7	2.737(19)
Bi(1)-O(6)#2	2.293(15)	K(2)-O(11)#7	2.742(15)
Bi(1)-O(14)#1	2.404(15)	K(2)-O(9)#9	2.761(16)
Bi(1)-O(3)#2	2.493(14)	K(2)-O(8)	2.827(16)
Bi(1)-O(10)#3	2.637(16)	K(2)-O(1)#7	2.878(16)
Sr(1)-O(11)	2.463(16)	K(2)-O(6)	3.155(16)
Sr(1)-O(13)#6	2.540(17)	K(3)-O(13)	2.612(17)
Sr(1)-O(7)#7	2.541(14)	K(3)-O(2)#2	2.871(16)
Sr(1)-O(8)#6	2.545(15)	K(3)-O(7)	2.912(17)
Sr(1)-O(3)#3	2.614(15)	K(3)-O(8)#8	3.055(17)
Sr(1)-O(4)#2	2.630(14)	K(3)-O(9)	3.072(16)
Sr(1)-O(14)#6	2.875(16)	K(3)-O(11)#2	3.070(16)
Sr(1)-O(10)#3	2.913(16)	K(3)-O(5)#10	3.225(17)
K(1)-O(12)#2	2.778(19)	K(3)-O(6)	3.336(16)
K(1)-O(1)	2.796(15)	P(1)-O(8)	1.487(16)
K(1)-O(10)#8	2.823(16)	P(1)-O(4)	1.527(15)
K(1)-O(4)#8	2.886(16)	P(1)-O(6)	1.549(17)
K(1)-O(2)#1	3.109(15)	P(1)-O(9)	1.640(15)
K(1)-O(7)#5	3.125(16)	P(2)-O(12)	1.477(19)
K(1)-O(13)	3.152(17)	P(2)-O(13)	1.497(17)
K(1)-O(3)#5	3.274(16)	P(2)-O(14)	1.544(16)
K(1)-O(5)	3.409(17)	P(2)-O(1)	1.663(15)
P(4)-O(11)	1.493(16)	P(3)-O(7)	1.499(14)
P(4)-O(5)	1.517(16)	P(3)-O(10)	1.511(17)
P(4)-O(2)	1.519(15)	P(3)-O(3)	1.513(16)
P(4)-O(1)	1.589(16)	P(3)-O(9)	1.625(15)
O(2)#1-Bi(1)-O(5)	70.0(6)	O(14)-K(2)-O(12)#7	106.3(6)
O(2)#1-Bi(1)-O(6)#2	86.5(6)	O(14)-K(2)-O(11)#7	158.9(5)
O(5)-Bi(1)-O(6)#2	90.0(6)	O(12)#7-K(2)-O(11)#7	78.0(5)
O(2)#1-Bi(1)-O(14)#1	77.4(5)	O(14)-K(2)-O(9)#9	105.3(5)
O(5)-Bi(1)-O(14)#1	109.9(6)	O(12)#7-K(2)-O(9)#9	93.9(5)
O(6)#2-Bi(1)-O(14)#1	147.7(5)	O(11)#7-K(2)-O(9)#9	94.8(5)
O(2)#1-Bi(1)-O(3)#2	92.7(5)	O(14)-K(2)-O(8)	82.4(5)
O(5)-Bi(1)-O(3)#2	159.6(5)	O(12)#7-K(2)-O(8)	170.9(5)
O(6)#2-Bi(1)-O(3)#2	77.9(5)	O(11)#7-K(2)-O(8)	94.9(5)
O(14)#1-Bi(1)-O(3)#2	75.1(5)	O(9)#9-K(2)-O(8)	81.0(5)
O(2)#1-Bi(1)-O(10)#3	137.7(5)	O(14)-K(2)-O(1)#7	113.2(5)
O(5)-Bi(1)-O(10)#3	80.1(5)	O(12)#7-K(2)-O(1)#7	53.1(5)
O(6)#2-Bi(1)-O(10)#3	123.5(5)	O(11)#7-K(2)-O(1)#7	52.3(4)
O(14)#1-Bi(1)-O(10)#3	85.8(5)	O(9)#9-K(2)-O(1)#7	134.4(5)
O(3)#2-Bi(1)-O(10)#3	120.3(5)	O(8)-K(2)-O(1)#7	126.4(5)

-	
1	

	105.0(5)		
O(11)-Sr(1)-O(13)#6	135.9(5)	O(14)-K(2)-O(6)	93.5(4)
O(11)-Sr(1)-O(7)#7	86.8(5)	O(12)#7-K(2)-O(6)	130.4(5)
O(13)#6-Sr(1)-O(7)#7	128.5(5)	O(11)#7-K(2)-O(6)	69.4(4)
O(11)-Sr(1)-O(8)#6	79.1(5)	O(9)#9-K(2)-O(6)	124.5(5)
O(13)#6-Sr(1)-O(8)#6	84.2(5)	O(8)-K(2)-O(6)	49.9(4)
O(7)#7-Sr(1)-O(8)#6	76.8(5)	O(1)#7-K(2)-O(6)	77.3(4)
O(11)-Sr(1)-O(3)#3	128.3(5)	O(13)-K(3)-O(2)#2	139.3(6)
O(13)#6-Sr(1)-O(3)#3	84.0(5)	O(13)-K(3)-O(7)	134.8(5)
O(7)#7-Sr(1)-O(3)#3	87.7(5)	O(2)#2-K(3)-O(7)	85.8(4)
O(8)#6-Sr(1)-O(3)#3	148.1(5)	O(13)-K(3)-O(8)#8	89.9(5)
O(11)-Sr(1)-O(4)#2	80.2(5)	O(2)#2-K(3)-O(8)#8	112.0(4)
O(13)#6-Sr(1)-O(4)#2	75.2(5)	O(7)-K(3)-O(8)#8	63.8(4)
O(7)#7-Sr(1)-O(4)#2	153.2(5)	O(13)-K(3)-O(9)	90.3(5)
O(8)#6-Sr(1)-O(4)#2	122.8(5)	O(2)#2-K(3)-O(9)	128.1(4)
O(3)#3-Sr(1)-O(4)#2	82.2(4)	О(7)-К(3)-О(9)	48.2(4)
O(11)-Sr(1)-O(14)#6	158.0(4)	O(8)#8-K(3)-O(9)	72.6(4)
O(13)#6-Sr(1)-O(14)#6	54.2(5)	O(13)-K(3)-O(11)#2	131.5(5)
O(7)#7-Sr(1)-O(14)#6	76.1(5)	O(2)#2-K(3)-O(11)#2	49.7(4)
O(8)#6-Sr(1)-O(14)#6	83.5(5)	O(7)-K(3)-O(11)#2	70.1(4)
O(3)#3-Sr(1)-O(14)#6	65.7(4)	O(8)#8-K(3)-O(11)#2	62.8(4)
O(4)#2-Sr(1)-O(14)#6	120.9(5)	O(9)-K(3)-O(11)#2	115.1(5)
O(11)-Sr(1)-O(10)#3	75.2(5)	O(13)-K(3)-O(5)#10	118.4(5)
O(13)#6-Sr(1)-O(10)#3	127.9(5)	O(2)#2-K(3)-O(5)#10	49.1(4)
O(7)#7-Sr(1)-O(10)#3	82.7(5)	O(7)-K(3)-O(5)#10	91.0(5)
O(8)#6-Sr(1)-O(10)#3	147.8(5)	O(8)#8-K(3)-O(5)#10	151.4(5)
O(3)#3-Sr(1)-O(10)#3	53.0(4)	О(9)-К(3)-О(5)#10	101.4(4)
O(4)#2-Sr(1)-O(10)#3	71.4(4)	O(11)#2-K(3)-O(5)#10	97.2(4)
O(14)#6-Sr(1)-O(10)#3	115.4(5)	O(13)-K(3)-O(6)	73.5(5)
O(12)#2-K(1)-O(1)	92.2(5)	O(2)#2-K(3)-O(6)	120.9(5)
O(12)#2-K(1)-O(10)#8	89.4(5)	O(7)-K(3)-O(6)	84.9(4)
O(1)-K(1)-O(10)#8	176.9(5)	O(8)#8-K(3)-O(6)	115.2(4)
O(12)#2-K(1)-O(4)#8	98.1(5)	O(9)-K(3)-O(6)	46.3(4)
O(1)-K(1)-O(4)#8	105.3(4)	O(11)#2-K(3)-O(6)	153.1(4)
O(10)#8-K(1)-O(4)#8	77.1(5)	O(5)#10-K(3)-O(6)	72.9(4)
O(12)#2-K(1)-O(2)#1	111.8(5)	O(8)-P(1)-O(4)	115.5(9)
O(1)-K(1)-O(2)#1	90.7(4)	O(8)-P(1)-O(6)	113.7(9)
O(10)#8-K(1)-O(2)#1	86.2(4)	O(4)-P(1)-O(6)	107.8(9)
O(4)#8-K(1)-O(2)#1	145.5(4)	O(8)-P(1)-O(9)	106.3(8)
O(12)#2-K(1)-O(7)#5	160.7(5)	O(4)-P(1)-O(9)	108.0(8)
O(1)-K(1)-O(7)#5	104.3(4)	O(6)-P(1)-O(9)	105.0(8)
O(10)#8-K(1)-O(7)#5	74,7(4)	O(12)-P(2)-O(13)	119.4(10)
O(4)#8-K(1)-O(7)#5	68.2(4)	O(12)-P(2)-O(14)	113.7(9)
O(2)#1-K(1)-O(7)#5	78.4(4)	O(13)-P(2)-O(14)	109.7(9)
O(12)#2-K(1)-O(13)	77 8(5)	O(12)-P(2)-O(1)	106 1(10)
U(12)#2-N(1)-U(13)	(2)0.11	0(12)-8(2)-0(1)	100.1(10)

O(1)-K(1)-O(13)	47.9(4)	O(13)-P(2)-O(1)	100.7(9)
O(10)#8-K(1)-O(13)	135.1(5)	O(14)-P(2)-O(1)	105.5(8)
O(4)#8-K(1)-O(13)	62.8(4)	O(7)-P(3)-O(10)	115.0(9)
O(2)#1-K(1)-O(13)	138.5(4)	O(7)-P(3)-O(3)	113.1(9)
O(7)#5-K(1)-O(13)	105.8(4)	O(10)-P(3)-O(3)	110.3(8)
O(12)#2-K(1)-O(3)#5	142.7(5)	O(7)-P(3)-O(9)	103.1(8)
O(1)-K(1)-O(3)#5	61.4(4)	O(10)-P(3)-O(9)	107.1(9)
O(10)#8-K(1)-O(3)#5	118.5(4)	O(3)-P(3)-O(9)	107.6(8)
O(4)#8-K(1)-O(3)#5	67.8(4)	O(11)-P(4)-O(5)	112.9(9)
O(2)#1-K(1)-O(3)#5	95.4(4)	O(11)-P(4)-O(2)	112.4(9)
O(7)#5-K(1)-O(3)#5	46.2(4)	O(5)-P(4)-O(2)	109.6(9)
O(13)-K(1)-O(3)#5	64.9(4)	O(11)-P(4)-O(1)	107.1(9)
O(12)#2-K(1)-O(5)	114.9(5)	O(5)-P(4)-O(1)	106.5(9)
O(1)-K(1)-O(5)	46.0(4)	O(2)-P(4)-O(1)	108.2(8)
O(10)#8-K(1)-O(5)	130.9(5)	O(7)#5-K(1)-O(5)	84.1(4)
O(4)#8-K(1)-O(5)	134.2(4)	O(13)-K(1)-O(5)	92.9(4)
O(2)#1-K(1)-O(5)	45.9(4)	O(3)#5-K(1)-O(5)	66.8(4)

Symmetry transformations used to generate equivalent atoms:

 #1 -x, y+1/2, -z+1
 #2 -x+1, y+1/2, -z+1

 #3 x-1, y, z+1
 #4 -x, y+1/2, -z+2
 #5 x-1, y, z

 #6 x, y, z+1
 #7 -x+1, y-1/2, -z+1
 #8 -x+1, y+1/2, -z

 #9 -x+1, y-1/2, -z
 #10 x+1, y, z
 #11 -x, y-1/2, -z+2

 #12 x, y, z-1
 #13 x+1, y, z-1
 #14 -x, y-1/2, -z+1

Table S5. Bond lengths (Å) and angles (°) for $Rb_3SrBi(P_2O_7)_2$.

	8 ()	. = //=	
Bi(1)-O(7)	2.14(2)	Rb(3)-O(11)#12	2.97(2)
Bi(1)-O(5)#1	2.20(2)	Rb(3)-O(3)	2.98(2)
Bi(1)-O(12)	2.30(2)	Rb(3)-O(12)#11	2.99(3)
Bi(1)-O(11)#1	2.364(19)	Rb(3)-O(6)#12	3.08(2)
Bi(1)-O(10)	2.51(2)	Rb(3)-O(13)#13	3.25(4)
Bi(1)-O(1)#2	2.55(2)	Rb(3)-O(4)#12	3.25(3)
Rb(1)-O(4)#9	2.948(19)	Rb(3)-O(2)#11	3.47(3)
Rb(1)-O(7)#1	2.99(3)	Rb(3)-O(8)#11	3.49(3)
Rb(1)-O(14)#7	3.00(3)	Rb(3)-O(2)#13	3.50(3)
Rb(1)-O(9)#1	3.01(2)	P(1)-O(6)	1.46(2)
Rb(1)-O(1)#7	3.08(2)	P(1)-O(5)	1.51(2)
Rb(1)-O(5)#5	3.12(2)	P(1)-O(7)	1.58(2)
Rb(1)-O(10)	3.21(2)	P(1)-O(9)	1.591(19)
Rb(1)-O(13)#7	3.29(4)	P(2)-O(4)	1.452(19)
Rb(1)-O(6)#5	3.56(3)	P(2)-O(3)	1.48(2)
Rb(2)-O(14)#10	3.00(3)	P(2)-O(11)	1.520(19)
Rb(2)-O(2)#10	3.01(3)	P(2)-O(9)	1.627(19)
Rb(2)-O(9)#11	3.022(19)	P(3)-O(2)	1.51(2)
Rb(2)-O(4)#11	3.04(2)	P(3)-O(13)	1.52(3)
Rb(2)-O(11)	3.128(19)	P(3)-O(12)	1.54(2)
Rb(2)-O(3)	3.15(3)	P(3)-O(14)	1.64(3)
Rb(2)-O(6)#11	3.24(3)	P(4)-O(1)	1.51(2)
Rb(2)-O(8)#10	3.25(3)	P(4)-O(8)	1.51(2)
Rb(2)-O(12)#11	3.28(2)	P(4)-O(10)	1.52(2)
Sr(1)-O(2)#4	2.40(2)	P(4)-O(14)	1.61(3)
Sr(1)-O(13)#5	2.43(3)	Sr(1)-O(6)#5	2.55(2)
Sr(1)-O(8)	2.46(2)	Sr(1)-O(1)#7	2.66(2)
Sr(1)-O(3)#6	2.53(2)	Sr(1)-O(10)#7	2.71(2)
O(7)-Bi(1)-O(5)#1	75.6(9)	O(14)#10-Rb(2)-O(2)#10	49.3(6)
O(7)-Bi(1)-O(12)	82.8(9)	O(14)#10-Rb(2)-O(9)#11	121.2(7)
O(5)#1-Bi(1)-O(12)	82.1(8)	O(2)#10-Rb(2)-O(9)#11	100.3(6)
O(7)-Bi(1)-O(11)#1	95.3(9)	O(14)#10-Rb(2)-O(4)#11	76.1(7)
O(5)#1-Bi(1)-O(11)#1	80.7(8)	O(2)#10-Rb(2)-O(4)#11	83.4(8)
O(12)-Bi(1)-O(11)#1	162.6(7)	O(9)#11-Rb(2)-O(4)#11	48.1(5)
O(7)-Bi(1)-O(10)	154.6(8)	O(14)#10-Rb(2)-O(11)	89.4(6)
O(5)#1-Bi(1)-O(10)	86.9(8)	O(2)#10-Rb(2)-O(11)	138.6(5)
O(12)-Bi(1)-O(10)	76.7(7)	O(9)#11-Rb(2)-O(11)	100.5(5)
O(11)#1-Bi(1)-O(10)	99.9(6)	O(4)#11-Rb(2)-O(11)	84.4(6)
O(7)-Bi(1)-O(1)#2	84.1(8)	O(14)#10-Rb(2)-O(3)	111.5(7)
O(5)#1-Bi(1)-O(1)#2	154.8(9)	O(2)#10-Rb(2)-O(3)	141.4(7)
O(12)-Bi(1)-O(1)#2	110.5(8)	O(9)#11-Rb(2)-O(3)	116.9(5)
O(11)#1-Bi(1)-O(1)#2	86.4(7)	O(4)#11-Rb(2)-O(3)	128.6(6)

O(10)-Bi(1)-O(1)#2	116.8(6)	O(11)-Rb(2)-O(3)	46.6(5)
O(2)#4-Sr(1)-O(13)#5	89.3(13)	O(14)#10-Rb(2)-O(6)#11	101.9(7)
O(2)#4-Sr(1)-O(8)	94.6(10)	O(2)#10-Rb(2)-O(6)#11	59.2(5)
O(13)#5-Sr(1)-O(8)	173.0(10)	O(9)#11-Rb(2)-O(6)#11	46.9(5)
O(2)#4-Sr(1)-O(3)#6	81.9(7)	O(4)#11-Rb(2)-O(6)#11	68.4(6)
O(13)#5-Sr(1)-O(3)#6	83.9(9)	O(11)-Rb(2)-O(6)#11	146.6(5)
O(8)-Sr(1)-O(3)#6	90.9(8)	O(3)-Rb(2)-O(6)#11	145.1(6)
O(2)#4-Sr(1)-O(6)#5	77.3(8)	O(14)#10-Rb(2)-O(8)#10	47.3(7)
O(13)#5-Sr(1)-O(6)#5	100.3(9)	O(2)#10-Rb(2)-O(8)#10	79.5(6)
O(8)-Sr(1)-O(6)#5	86.2(8)	O(9)#11-Rb(2)-O(8)#10	164.2(5)
O(3)#6-Sr(1)-O(6)#5	158.7(7)	O(4)#11-Rb(2)-O(8)#10	116.6(5)
O(2)#4-Sr(1)-O(1)#7	144.7(7)	O(11)-Rb(2)-O(8)#10	71.1(6)
O(13)#5-Sr(1)-O(1)#7	82.7(10)	O(3)-Rb(2)-O(8)#10	67.5(6)
O(8)-Sr(1)-O(1)#7	97.3(8)	O(6)#11-Rb(2)-O(8)#10	138.1(6)
O(3)#6-Sr(1)-O(1)#7	130.8(7)	O(14)#10-Rb(2)-O(12)#11	138.1(7)
O(6)#5-Sr(1)-O(1)#7	70.5(7)	O(2)#10-Rb(2)-O(12)#11	102.7(6)
O(2)#4-Sr(1)-O(10)#7	158.9(7)	O(9)#11-Rb(2)-O(12)#11	90.8(5)
O(13)#5-Sr(1)-O(10)#7	87.0(11)	O(4)#11-Rb(2)-O(12)#11	138.7(5)
O(8)-Sr(1)-O(10)#7	87.3(8)	O(11)-Rb(2)-O(12)#11	112.3(5)
O(3)#6-Sr(1)-O(10)#7	77.0(6)	O(3)-Rb(2)-O(12)#11	68.8(6)
O(6)#5-Sr(1)-O(10)#7	123.8(7)	O(6)#11-Rb(2)-O(12)#11	79.8(6)
O(1)#7-Sr(1)-O(10)#7	55.2(6)	O(8)#10-Rb(2)-O(12)#11	104.7(6)
O(4)#9-Rb(1)-O(7)#1	101.3(7)	O(11)#12-Rb(3)-O(3)	106.0(5)
O(4)#9-Rb(1)-O(14)#7	77.6(7)	O(11)#12-Rb(3)-O(12)#11	124.7(5)
O(7)#1-Rb(1)-O(14)#7	172.2(7)	O(3)-Rb(3)-O(12)#11	75.0(6)
O(4)#9-Rb(1)-O(9)#1	86.1(6)	O(11)#12-Rb(3)-O(6)#12	68.3(5)
O(7)#1-Rb(1)-O(9)#1	48.2(5)	O(3)-Rb(3)-O(6)#12	156.1(7)
O(14)#7-Rb(1)-O(9)#1	138.8(7)	O(12)#11-Rb(3)-O(6)#12	127.9(7)
O(4)#9-Rb(1)-O(1)#7	99.7(6)	O(11)#12-Rb(3)-O(13)#13	124.9(7)
O(7)#1-Rb(1)-O(1)#7	127.3(6)	O(3)-Rb(3)-O(13)#13	64.2(7)
O(14)#7-Rb(1)-O(1)#7	46.1(7)	O(12)#11-Rb(3)-O(13)#13	105.6(7)
O(9)#1-Rb(1)-O(1)#7	173.6(6)	O(6)#12-Rb(3)-O(13)#13	99.2(7)
O(4)#9-Rb(1)-O(5)#5	100.8(7)	O(11)#12-Rb(3)-O(4)#12	46.9(5)
O(7)#1-Rb(1)-O(5)#5	51.5(6)	O(3)-Rb(3)-O(4)#12	91.1(6)
O(14)#7-Rb(1)-O(5)#5	120.9(7)	O(12)#11-Rb(3)-O(4)#12	161.5(6)
O(9)#1-Rb(1)-O(5)#5	99.1(5)	O(6)#12-Rb(3)-O(4)#12	67.9(6)
O(1)#7-Rb(1)-O(5)#5	77.4(6)	O(13)#13-Rb(3)-O(4)#12	78.2(7)
O(4)#9-Rb(1)-O(10)	134.2(6)	O(11)#12-Rb(3)-O(2)#11	162.4(6)
O(7)#1-Rb(1)-O(10)	86.5(6)	O(3)-Rb(3)-O(2)#11	59.6(5)
O(14)#7-Rb(1)-O(10)	99.8(7)	O(12)#11-Rb(3)-O(2)#11	45.2(6)
O(9)#1-Rb(1)-O(10)	65.8(5)	O(6)#12-Rb(3)-O(2)#11	129.0(5)
O(1)#7-Rb(1)-O(10)	111.0(4)	O(13)#13-Rb(3)-O(2)#11	60.6(7)
O(5)#5-Rb(1)-O(10)	118.1(6)	O(4)#12-Rb(3)-O(2)#11	136.4(5)
O(4)#9-Rb(1)-O(13)#7	82.0(8)	O(11)#12-Rb(3)-O(8)#11	123.9(6)

O(7)#1-Rb(1)-O(13)#7	141.6(6)	O(3)-Rb(3)-O(8)#11	129.8(6)
O(14)#7-Rb(1)-O(13)#7	46.1(7)	O(12)#11-Rb(3)-O(8)#11	72.9(5)
O(9)#1-Rb(1)-O(13)#7	94.6(6)	O(6)#12-Rb(3)-O(8)#11	62.5(5)
O(1)#7-Rb(1)-O(13)#7	88.8(6)	O(13)#13-Rb(3)-O(8)#11	88.8(8)
O(5)#5-Rb(1)-O(13)#7	166.2(7)	O(4)#12-Rb(3)-O(8)#11	125.6(6)
O(10)-Rb(1)-O(13)#7	66.1(7)	O(2)#11-Rb(3)-O(8)#11	70.3(5)
O(4)#9-Rb(1)-O(6)#5	134.8(7)	O(11)#12-Rb(3)-O(2)#13	109.5(5)
O(7)#1-Rb(1)-O(6)#5	78.2(6)	O(3)-Rb(3)-O(2)#13	108.8(6)
O(14)#7-Rb(1)-O(6)#5	97.0(7)	O(12)#11-Rb(3)-O(2)#13	122.6(6)
O(9)#1-Rb(1)-O(6)#5	120.5(5)	O(6)#12-Rb(3)-O(2)#13	55.6(6)
O(1)#7-Rb(1)-O(6)#5	53.3(6)	O(13)#13-Rb(3)-O(2)#13	44.8(6)
O(5)#5-Rb(1)-O(6)#5	43.7(5)	O(4)#12-Rb(3)-O(2)#13	73.1(6)
O(10)-Rb(1)-O(6)#5	91.0(5)	O(2)#11-Rb(3)-O(2)#13	86.01(11)
O(13)#7-Rb(1)-O(6)#5	126.0(7)	O(8)#11-Rb(3)-O(2)#13	61.5(5)
O(6)-P(1)-O(5)	116.1(15)	O(2)-P(3)-O(13)	117(2)
O(6)-P(1)-O(7)	114.9(15)	O(2)-P(3)-O(12)	111.5(14)
O(5)-P(1)-O(7)	107.2(15)	O(13)-P(3)-O(12)	110.1(15)
O(6)-P(1)-O(9)	109.9(12)	O(2)-P(3)-O(14)	105.8(16)
O(5)-P(1)-O(9)	105.8(11)	O(13)-P(3)-O(14)	103(2)
O(7)-P(1)-O(9)	101.4(12)	O(12)-P(3)-O(14)	108.2(13)
O(4)-P(2)-O(3)	116.4(13)	O(1)-P(4)-O(8)	114.0(13)
O(4)-P(2)-O(11)	113.8(13)	O(1)-P(4)-O(10)	111.0(12)
O(3)-P(2)-O(11)	111.8(13)	O(8)-P(4)-O(10)	115.5(14)
O(4)-P(2)-O(9)	106.7(12)	O(1)-P(4)-O(14)	99.5(13)
O(3)-P(2)-O(9)	104.6(13)	O(8)-P(4)-O(14)	107.5(17)
O(11)-P(2)-O(9)	101.9(11)	O(10)-P(4)-O(14)	107.7(13)

Symmetry transformations used to generate equivalent atoms:

 #1 -x+1, y+1/2, -z+1
 #2 -x+1, y-1/2, -z+2

 #3 -x+1, y-1/2, -z+1
 #4 -x+2, y+1/2, -z+2

 #5 x, y+1, z
 #6 x, y+1, z+1
 #7 -x+1, y+1/2, -z+2

 #8 -x+2, y+3/2, -z+1
 #9 x-1, y+1, z
 #10 x, y-1, z-1

 #11 -x+2, y-1/2, -z+1
 #12 -x+2, y+1/2, -z+1

 #13 x, y, z-1
 #14 x, y-1, z
 #15 x, y, z+1

 #16 -x+2, y-1/2, -z+2
 #17 x+1, y-1, z

		а	b	С	Magnitude
	Bi(1)O ₆	4.14	-0.83	-2.10	4.16
	P(1)O ₄	1.56	2.32	0.34	2.76
	P(2)O ₄	4.21	2.43	-0.14	4.83
	P(3)O ₄	-2.67	-1.25	0.13	2.92
K_3 SrBI(P_2O_7) ₂	P(4)O ₄	-0.73	0.67	1.39	1.53
	P(1)P(3)O7	-1.11	1.06	0.47	1.51
	P(2)P(4)O ₇	3.48	3.10	1.25	4.56
	Average(P_2O_7)				3.04
Rb ₃ SrBi(P ₂ O ₇) ₂	Bi(1)O ₆	1.52	-1.79	-0.89	2.36
	P(1)O ₄	-0.81	2.13	3.19	3.74
	P(2)O ₄	3.69	2.36	-0.81	4.26
	P(3)O ₄	-2.26	1.46	1.06	2.65
	P(4)O ₄	2.27	-3.45	2.74	4.60
	P(1)P(2)O7	2.88	4.49	2.38	5.51
	P(3)P(4)O ₄	0.01	-1.99	3.80	4.29
	Average(P_2O_7)				4.90

Table S6. The dipole moments of single P–O and Bi–O units in $K_3SrBi(P_2O_7)_2$ and $Rb_3SrBi(P_2O_7)_2$.

		K_3 SrBi(P ₂ O ₇) ₂	Rb ₃ SrBi(P ₂ O ₇) ₂
	φ1	24.6	85.1
	φ ₂	115.1	45.5
P_2O_7	φ ₃	73.7	132.0
	Φ_4	57.4	54.6
	ф	67.7	79.3
	Θ1	66.9	54.2
	Θ ₂	26.5	149.6
	Θ ₃	133.7	125.6
BiO ₆	Θ_4	71.6	32.9
	Θ ₅	145.5	95.5
	Θ_6	76.4	72.1
	Θ	86.8	88.3

Table S7. ϕ and Θ angles of K₃SrBi(P₂O₇)₂ and Rb₃SrBi(P₂O₇)₂.

Compound	SHG (× KDP)	UV cut-off edge (nm)
Rb ₃ PbBi(P ₂ O ₇) ₂ ¹	2.8	285
Cs ₃ PbBi(P ₂ O ₇) ₂ ¹	1.1	276
$Rb_3BaBi(P_2O_7)_2^2$	2.5	241
$Cs_3BaBi(P_2O_7)_2^2$	0.8	244
$Cs_3CaBi(P_2O_7)_2^3$		285
$Cs_3SrBi(P_2O_7)_2^3$		288
K_3 SrBi(P ₂ O ₇) ₂	4.0	~240
$Rb_3SrBi(P_2O_7)_2$	2.1	~240

 Table S8. SHG and UV cut-off edges of compounds in the family of $A_3BBi(P_2O_7)_2$.

Figure S1. PXRD patterns of a) K_3 SrBi $(P_2O_7)_2$ and b) Rb₃SrBi $(P_2O_7)_2$.

Figure S2. a) K–O framework of K_3 SrBi $(P_2O_7)_2$ and b) Rb–O framework of Rb₃SrBi $(P_2O_7)_2$.

Figure S3. UV-Vis-NIR diffuse reflectance and absorption spectra of a) K_3 SrBi $(P_2O_7)_2$ and b) Rb₃SrBi $(P_2O_7)_2$.

Figure S4. IR spectra of a) K_3 SrBi(P_2O_7)₂ and b) Rb₃SrBi(P_2O_7)₂.

Figure S5. TG and DSC curves of a) K_3 SrBi $(P_2O_7)_2$ and b) Rb₃SrBi $(P_2O_7)_2$.

Figure S6. EDS spectra of a) K_3 SrBi $(P_2O_7)_2$ and b) Rb₃SrBi $(P_2O_7)_2$.

Figure S7. Experimental optical path diagram of SHG measurement (A: Nd³⁺ laser, B: filter, C: lens, D: attenuator, E: 1064 nm filter, F: sample, G: 532 nm filter, H: photomultiplier tube, I: oscilloscope).

Figure S8. The schematic diagram of the second harmonic generation (SHG).

REFERENCES

- [1] X.F. Lu, Z. H. Chen, X. R. Shi, Q. Jing and M. H. Lee, Two pyrophosphates with large birefringences and second-harmonic responses as ultraviolet nonlinear optical materials, *Angew. Chem. It. Ed.*, 2020, **59**, 17648–17654.
- [2] L. Qi, Z. H. Chen, X. R. Shi, X. D. Zhang, Q. Jing, N. Li, Z. Q. Jiang, B. B. Zhang and M. H. Lee, A₃BBi(P₂O₇)₂ (A = Rb, Cs; B = Pb, Ba): isovalent cation substitution to sustain large secondharmonic generation responses, *Chem. Mater.*, 2020, **32**, 8713–8723.
- [3] I. Zatovsky, N. Strutynska, Y. Hizhnyi, V. N. Baumer, I. V. Ogorodnyk, N. S. Slobodyanik, I. V. Odynets and K. Nickolai, New complex phosphates Cs₃M^{II}Bi(P₂O₇)₂ (M^{II} = Ca, Sr, Pb): synthesis, characterization, crystal and electronic structure, *Dalton Trans.*, 2018, **47**, 2274–2283.