Supplementary information

Porous calcium-manganese oxide/carbon nanotube microspheres as efficient

oxygen reduction catalysts for rechargeable zinc air batteries

Nguk Neng Tham¹, Xiaoming Ge¹, Aishui Yu², Bing Li^{1,3}, Yun Zong^{1*}, Zhaolin Liu^{1*}

¹Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Republic of Singapore. Email: zl-liu@imre.a-star.edu.sg

²Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200438, China

³School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

Contents

1.	Fig. S1 SEM image of the carbonate precursor, CaMn(CO ₃) ₂ S2
2.	Fig. S2 XRD pattern of CaMn(CO ₃) ₂ and its standard, PDF #84-1290S3
3. 4.	Fig. S3 TEM and HRTEM images of CaMnO3
5.	Fig. S5 Nyquist plot of zinc-air batteries with CMO/CNT-4, CMO/CNT-0.25 and Pt/C
6.	Fig. S6 Cycling stability performance of CMO/CNT-0.25 during galvanostatic recurrent
	pulse cycling test
7.	Table S1 Tabulated data for oxygen reduction reaction of the various electrocatalysts, with
	Pt/C as the benchmark

Fig. S1 SEM image of the carbonate precursor, $CaMn(CO_3)_2$.

Fig. S2 XRD pattern of $CaMn(CO_3)_2$ and its standard, PDF #84-1290 The presence of $CaMn(CO_3)_2$ is further confirmed by XRD which corresponds to the standard (PDF #84-1290).

Fig. S3 TEM (a) and high-resolution TEM (b) images of CaMnO₃.

Fig. S4 TGA profile of CaMnO₃, CMO/CNT and carbon nanotubes in air. CMO/CNT (red) shows re-oxidation to stoichiometric CaMnO₃ (black), where no mass gain is observed in CaMnO₃. Pure carbon nanotubes (blue) burn off occurs above 350 °C and corresponds to the weight loss of carbon nanotubes in CMO/CNT.

Fig. S5 Nyquist plot of zinc-air batteries with CMO/CNT-4, CMO/CNT-0.25 and Pt/C.

Fig. S6 Cycling stability performance of CMO/CNT-0.25 during galvanostatic recurrent pulse cycling test (discharging at 5 mA cm⁻² for 10 min and charging at 2.5 mA cm⁻² for 20 min in each cycle).

	Mn 2p _{3/2}			O 1s		
	Mn ³⁺	Mn^{4+}	Mn ³⁺ content	lattice oxygen	adsorbed oxygen	lattice oxygen content
	(eV)	(eV)	(%)	(eV)	(eV)	(%)
CaMnO _{3-δ}	642.0	642.8	34.8	529.0	532.1	42.2
CMO/CNT	641.7	642.5	33.6	529.4	531.0	41.3

Table S1. Chemical states of Mn and O in CaMnO_{3-\delta} and CMO/CNT.

Table S2 Tabulated data for oxygen reduction reaction of the various electrocatalysts, with Pt/C as the benchmark

	Oxygen reduction reaction activity			
Catalyst	Onset potential at tangent (V, vs RHE)	Current density at 0.2 V (vs RHE) (mA cm ⁻²)		
CaMnO ₃	0.76	-2.47		
CMO/CNT	0.84	-4.27		
Carbon nanotubes	0.72	-2.83		
20 % Pt/C	0.89	-5.34		