Supporting Information for

A Switchable Dimeric Yttrium Complex and Its Three Catalytic States in Ring Opening Polymerization

Shijie Deng and Paula L. Diaconescu*

Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095

Table of Contents

NMR spectra	S2
SEC traces	S25
Table S1. Homopolymerizations	S35
TGA traces	S36
X-ray data	S 39

Figure S1. ¹H NMR (C₆D₆, 500 MHz, 298 K) spectrum of $[(salfen)Y(OPh)]_2 \delta$ (ppm): 7.91 (s, 2H, N=CH), 7.56 (d, 2H, ArH), 7.29 (d, 2H, ArH), 6.78 (d, 2H, ArH), 6.69 (t, 2H, ArH), 6.45 (t, 1H, ArH), 4.81 (s, 2H, fc-H), 3.72-4.03 (s, s and s, 6H, fc-H), 1.58 (s, 18H, C(CH₃)₃), 1.27 (s, 18H, C(CH₃)₃).

Figure S2. ¹H NMR (C_6D_6 , 500 MHz, 298 K) spectrum of [(salfen)Y(OPh)]_2. The peaks at 8.05 ppm and 7.90 ppm integrate together to 2 H atoms. The peak at 0.85 ppm, which represents hexanes remaining in the sample, integrates as 2.80 H. The integration indicates that the formula of the sample is [(salfen)Y(OPh)]_2•(C_6H_{14})_0.2.

Figure S3. ¹³C{¹H} NMR (C₆D₆, 125 MHz, 298 K) spectrum of [(salfen)Y(OPh)]₂ δ (ppm): 164.8 (N=C), 158.8 (m-OC₆H₂), 138.8 (m-OC₆H₂), 136.6 (m-OC₆H₂), 130.1 (m-OC₆H₅), 129.7 (m-OC₆H₅), 128.3 (m-OC₆H₂), 122.7 (m-OC₆H₂), 121.4(m-OC₆H₂), 119.3 (m-OC₆H₅), 109.2 (m-OC₆H₅), 61.8-68.3(C₅H₄), 34.5 (C(CH₃)₃), 33.6 (C(CH₃)₃), 31.3 (C(CH₃)₃), 30.5 (C(CH₃)₃).

Figure S4. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of $[(salfen)Y(OPh)]_2[BAr^F] \delta$ (ppm): 8.14 (s, 8H, BAr^F, *o*-Ar*H*), 8.03 (d, 2H, Ar*H*), 7.70 (d, 2H, Ar*H*), 7.49 (s, 4H, BAr^F, *p*-Ar*H*), 4.03-4.29 (m, 8H, Cp-*H*), 3.61 (s, 9H, C(CH₃)₃), 1.69 (s, 9H, C(CH₃)₃), 1.34 (br, 9H, C(CH₃)₃), 1.24 (s, 9H, C(CH₃)₃). Other ¹H NMR peaks were not observed due to the paramagnetic nature of this compound.

Figure S5. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of [(salfen)Y(OPh)]₂[BAr^F]₂ δ (ppm): 8.41 (s, 8H, BAr^F, *o*-Ar*H*), 8.09 (d, 2H, Ar*H*), 7.71 (d, 2H, Ar*H*), 7.56 (s, 4H, BAr^F, *p*-Ar*H*), 4.09-4.25 (m, 8H, Ar*H*), 3.63 (br, 9H, C(CH₃)₃), 1.69 (s, 9H, C(CH₃)₃), 1.25 (s, 9H, C(CH₃)₃), 0.03 (s, 24H, Cp-*H*), -0.95 (s, 4H, Cp-*H*). Other ¹H NMR peaks were not observed due to the paramagnetic nature of this compound.

Figure S6. ¹H NMR (C_6D_6 , 300 MHz, 298 K) spectrum of [(salfen)Y(OPh)]₂[BAr^F] (top) and [(salfen)Y(OPh)]₂ +1 equivalent of [(salfen)Y(OPh)]₂[BAr^F]₂ (bottom).

Figure S7. Thermal decomposition study $(C_6D_6, 300 \text{ MHz}, 298 \text{ K})$ of $[(salfen)Y(OPh)]_2$. $[(salfen)Y(OPh)]_2$ before heating (bottom) and after heating at 80°C for 24 h (top).

Figure S8. Thermal decomposition study $(C_6D_6, 300 \text{ MHz}, 298 \text{ K})$ of $[(salfen)Y(OPh)]_2[BAr^F]$. $[(salfen)Y(OPh)]_2[BAr^F]$ generated *in situ* before heating (bottom) and after heating at 80°C for 24 h (top).

Figure S9. Thermal decomposition study (C_6D_6 , 300 MHz, 298 K) of [(salfen)Y(OPh)]₂[BAr^F]₂. [(salfen)Y(OPh)]₂[BAr^F]₂ generated *in situ* before heating (bottom) and after heating at 80°C for 24 h (top).

Radius in benzene, r_{H} : Stoke-Einstein equation D = $(kT)/(6\pi\eta r_{H})$ was used to calculated hydrodynamic radius in solution, D was obtained from DOSY NMR spectrum.

Radius in solid state, r_{X-ray} : The molecular volume was obtained from Olex2.¹ The molecule was assumed to be a sphere and the solid-state radius was calculated using the sphere volume equation.

Reference: 1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.

Figure S13. DOSY (C₆D₆, 500 MHz, 298 K) of $[(salfen)Y(OPh)]_2 + 1$ equivalent of $[(salfen)Y(OPh)]_2[BAr^F]_2$.

Figure S14. ¹H NMR (C_6D_6 , 300 MHz, 298 K) spectrum of [(salfen)Y(OPh)]₂ (bottom), [(salfen)Y(OPh)]₂[BAr^F] generated in situ (middle), and [(salfen)Y(OPh)]₂ generated from [(salfen)Y(OPh)]₂[BAr^F] (top). All the peaks in the top spectrum match those in the bottom spectrum. The extra peaks in the bottom spectrum belong to ^{Ac}Fc and CoCp₂[BAr^F].

Figure S15. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of $[(salfen)Y(OPh)]_2$ (bottom), $[(salfen)Y(OPh)]_2[BAr^F]_2$ generated in situ (middle), and $[(salfen)Y(OPh)]_2$ generated from $[(salfen)Y(OPh)]_2[BAr^F]_2$ (top). All the peaks in the top spectrum match those in the bottom spectrum. The extra peaks in the bottom spectrum belong to AcFc and CoCp₂[BAr^F].

Figure S16. Variable temperature ¹H NMR (C₆D₆, 500 MHz) study of [(salfen)Y(OPh)]₂.

Figure S17. Variable temperature ¹H NMR (toluene-d₈, 500 MHz) study of [(salfen)Y(OPh)]₂.

Figure S18. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of L-lactide polymerization by [(salfen)Y(OPh)]₂ (Table 1, entry 1). δ (ppm): 5.04 (q, 1H, CH(CH₃)COO, PLA), 3.83 (t, 1H, CH(CH₃)COO, LA), 1.34 (d, 3H, CH(CH₃)COO, PLA), 1.19 (d, 3H, CH(CH₃)COO, LA).

Figure S19. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of L-lactide polymerization by *in situ* generated [(salfen)Y(OPh)]₂⁺ (Table 1, entry 2). δ (ppm): 5.03 (q, 1H, CH(CH₃)COO, PLA), 3.93 (t, 1H, CH(CH₃)COO, LA), 1.34 (d, 3H, CH(CH₃)COO, PLA), 1.21 (d, 3H, CH(CH₃)COO, LA).

Figure S20. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of L-lactide polymerization by *in situ* generated [(salfen)Y(OPh)]₂²⁺ (Table 1, entry 3). δ (ppm): 5.03 (q, 1H, CH(CH₃)COO, PLA), 4.12 (t, 1H, CH(CH₃)COO, LA), 1.36 (d, 3H, CH(CH₃)COO, PLA), 1.24 (d, 3H, CH(CH₃)COO, LA).

Figure S22. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of ε -caprolactone polymerization by *in situ* generated [(salfen)Y(OPh)]₂⁺ (Table 1, entry 5). δ (ppm): 3.97 (t, 2H, COOCH₂, PCL), 3.60 (t, 2H, COOCH₂, CL), 2.20 (t, 2H, CH₂COO, PCL). 1.50 (m, 2H, COOCH₂CH₂CH₂, PCL) 1.40 (m, 2H, COOCH₂CH₂CH₂CH₂, PCL), 1.16 (m, 2H, COOCH₂CH₂CH₂CH₂, PCL), 1.10. (m, 2H, COOCH₂CH₂CH₂CH₂, CL).

Figure S23. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of δ -valerolactone polymerization by [(salfen)Y(OPh)]₂ (Table 1, entry 7). δ (ppm): 3.95 (t, 2H, COOCH₂, PVL), 3.57 (t, 2H, COOCH₂, VL), 2.07 (t, 2H, CH₂COO, PVL), 1.99 (t, 2H, CH₂COO, VL), 1.54 (m, 4H, CH₂CH₂CH₂COO, PVL), 0.96 (m, 4H, CH₂CH₂COO, VL).

Figure S24. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of δ -valerolactone polymerization by *in situ* generated [(salfen)Y(OPh)]₂⁺ (Table 1, entry 8). δ (ppm): 3.95 (t, 2H, COOCH₂, PVL), 3.57 (t, 2H, COOCH₂, VL), 2.07 (t, 2H, CH₂COO, PVL), 1.99 (t, 2H, CH₂COO, VL), 1.54 (m, 4H, CH₂CH₂COO, PVL), 0.96 (m, 4H, CH₂CH₂COO, VL).

Figure S25. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of trimethylene carbonate polymerization by [(salfen)Y(OPh)]₂ (Table 1, entry 10). δ (ppm): 4.03 (s, 4H, OCH₂CH₂CH₂CH₂O, PTMC), 3.28 (t, 4H, OCH₂CH₂CH₂O, TMC), 1.71 (br, 2H, OCH₂CH₂CH₂O, PTMC), 0.70 (m, 2H, OCH₂CH₂CH₂O, TMC).

Figure S26. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of trimethylene carbonate polymerization by *in situ* generated [(salfen)Y(OPh)]₂⁺ (Table 1, entry 11). δ (ppm): 4.04 (s, 4H, OCH₂CH₂CH₂O, PTMC), 3.53 (t, 4H, OCH₂CH₂CH₂O, TMC), 1.73 (br, 2H, OCH₂CH₂CH₂O, PTMC), 0.97 (m, 2H, OCH₂CH₂CH₂O, TMC).

Figure S27. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of trimethylene carbonate polymerization by *in situ* generated [(salfen)Y(OPh)]₂²⁺ (Table 1, entry 12). δ (ppm): 4.04 (s, 4H, OCH₂CH₂CH₂O, PTMC), 3.63 (t, 4H, OCH₂CH₂CH₂O, TMC), 1.73 (br, 2H, OCH₂CH₂CH₂O, PTMC), 1.11 (m, 2H, OCH₂CH₂CH₂O, TMC).

Figure S28. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of cyclohexene oxide polymerization by *in situ* generated [(salfen)Y(OPh)]₂⁺ (Table 1, entry 14). δ (ppm): 3.56 (br, 2H, CH₂CH₂CH(O), PCHO), 2.80 (br, 2H, CH₂CH₂CH(O), CHO), 2.11 (br, 2H, CH₂CH₂CH(O), PCHO), 1.74 (br, 2H, CH₂CH₂CH(O), PCHO), 1.54 (br, 2H, CH₂CH₂CH(O), PCHO), 1.32 (br, 2H, CH₂CH₂CH(O), PCHO), 0.94 (br, 2H, CH₂CH₂CH(O), CHO).

Figure S29. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of cyclohexene oxide polymerization by *in situ* generated [(salfen)Y(OPh)]₂²⁺ (Table 1, entry 15). δ (ppm): 3.56 (br, 2H, CH₂CH₂CH(O), PCHO), 2.10 (br, 2H, CH₂CH₂CH(O), PCHO), 1.74 (br, 2H, CH₂CH₂CH(O), PCHO), 1.54 (br, 2H, CH₂CH₂CH(O), PCHO), 1.32 (br, 2H, CH₂CH₂CH(O), PCHO).

Figure S30. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of propylene oxide polymerization by *in situ* generated [(salfen)Y(OPh)]₂⁺ (Table 1, entry 17). δ (ppm): 3.50 (br, 3H, OCH(CH₃)CH₂O, PPO), 2.57(m, 1H, OCH(CH₃)CH₂O, PO), 2.32(t, 1H, OCH(CH₃)CH₂O, PO), 2.00(m, 1H, OCH(CH₃)CH₂O, PO), 1.17 (br, 3H, OCH(CH₃)CH₂O, PPO), 0.97(d, 3H, OCH(CH₃)CH₂O, PO).

Figure S31. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of propylene oxide polymerization by *in situ* generated [(salfen)Y(OPh)]₂²⁺ (Table 1, entry 18). δ (ppm): 3.50 (br, 3H, OCH(CH₃)CH₂O, PPO), 2.57(m, 1H, OCH(CH₃)CH₂O, PO), 2.32(t, 1H, OCH(CH₃)CH₂O, PO), 2.00(m, 1H, OCH(CH₃)CH₂O, PO), 1.18 (br, 3H, OCH(CH₃)CH₂O, PPO), 0.97(d, 3H, OCH(CH₃)CH₂O, PO).

Figure S32. ¹H NMR (C_6D_6 , 300 MHz, 298 K) spectrum of 200 equivalents of LLA and 200 equivalents of TMC copolymerization (Table 2, entry 2).

Figure S33. ¹H NMR (C_6D_6 , 300 MHz, 298 K) spectrum of 200 equivalents of LLA and 200 equivalents of CHO copolymerization (Table 2, entry 3).

Figure S34. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of LLA and 200 equivalents of CHO and another 200 equivalents of LLA copolymerization (Table 2, entry 4).

Figure S35. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of LLA ,200 equivalents of CHO, and another 200 equivalents of LLA copolymerization (Table 2, entry 5).

Figure S36. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of LLA, 200 equivalents of TMC and 200 equivalents of CHO copolymerization (Table 2, entry 6).

Figure S37. ¹³C{¹H} NMR (CDCl₃, 125 MHz, 298 K) spectrum of 200 equivalents of LLA, 200 equivalents of TMC copolymerization (Table 2, entry 1).

Figure S38. ¹³C{¹H} NMR (CDCl₃, 125 MHz, 298 K) spectrum of 200 equivalents of LLA, 200 equivalents of TMC copolymerization (Table 2, entry 2).

Figure S42. DOSY (CDCl₃, 500 MHz, 298 K) of PLLA before quenching with H₂O.

Figure S44. ¹H NMR (C₆D₆, 300 MHz, 298 K) spectrum of 200 equivalents of propylene oxide polymerization by $^{Ac}FcBAr^{F}$ at 298K after 2 hours. δ (ppm): 3.50 (br, 3H, OCH(CH₃)CH₂O, PPO), 2.57(m, 1H, OCH(CH₃)CH₂O, PO), 2.32(t, 1H, OCH(CH₃)CH₂O, PO), 2.00(m, 1H, OCH(CH₃)CH₂O, PO), 1.18 (br, 3H, OCH(CH₃)CH₂O, PPO), 0.97(d, 3H, OCH(CH₃)CH₂O, PO).

SEC traces

Figure S45. SEC trace for the reaction between 200 equivalents of LLA and [(salfen)Y(OPh)]₂ (Table 1, entry 1).

Figure S46. SEC trace for the reaction between 200 equivalents of LLA and *in situ* generated $[(salfen)Y(OPh)]_2^+$ (Table 1, entry 2).

Figure S47. SEC trace for the reaction between 200 equivalents of LLA and *in situ* generated $[(salfen)Y(OPh)]_2^{2+}$ (Table 1, entry 3).

Figure S48. SEC trace for the reaction between 200 equivalents of CL and $[(salfen)Y(OPh)]_2$ (Table 1, entry 4).

Figure S49. SEC trace for the reaction between 200 equivalents of VL and [(salfen)Y(OPh)]₂ (Table 1, entry 7).

Figure S50. SEC trace for the reaction between 200 equivalents of VL and *in situ* generated $[(salfen)Y(OPh)]_2^+$ (Table 1, entry 8).

Figure S51. SEC trace for the reaction between 200 equivalents of VL and *in situ* generated $[(salfen)Y(OPh)]_2^{2+}$ (Table 1, entry 9).

Figure S52. SEC trace for the reaction between 200 equivalents of TMC and $[(salfen)Y(OPh)]_2$ (Table 1, entry 10).

Figure S53. SEC trace for the reaction between 200 equivalents of TMC and *in situ* generated $[(salfen)Y(OPh)]_2^+$ (Table 1, entry 11).

Figure S54. SEC trace for the reaction between 200 equivalents of TMC and *in situ* generated $[(salfen)Y(OPh)]_2^{2+}$ (Table 1, entry 12).

Figure S55. SEC trace for the reaction between 200 equivalents of CHO and *in situ* generated $[(salfen)Y(OPh)]_2^+$ (Table 1, entry 14).

Figure S56. SEC trace for the reaction between 200 equivalents of CHO and *in situ* generated $[(salfen)Y(OPh)]_2^{2+}$ (Table 1, entry 15).

Figure S57. SEC trace for the reaction between 200 equivalents of PO and *in situ* generated $[(salfen)Y(OPh)]_2^+$ (Table 1, entry 17).

Figure S58. SEC trace for the reaction between 200 equivalents of PO and *in situ* generated $[(salfen)Y(OPh)]_2^{2+}$ (Table 1, entry 18).

Figure S59. SEC trace for PLLA-PTMC copolymer (Table 2, entry 1).

Figure S60. SEC trace for PLLA-PTMC copolymer (Table 2, entry 2).

Figure S61. SEC trace for PLLA-PCHO copolymer (Table 2, entry 3).

Figure S62. SEC traces corresponding to the stepwise preparation of PLLA-PCHO-PLLA (Table 2, entry 4).

Figure S63. SEC traces corresponding to the stepwise preparation of PLLA-PCHO-PLLA (Table 2, entry 5).

Entry	Monomer ^ь	Cat. ^c	Time	Conv. (%)	M _{n,calc} ^d (kDa)	M _{n,exp} ^e (kDa)	Ð
1	LLA	red	0.6 h	92	13	17	1.26
2	LLA	ox⁺	5 h	84	12	29	1.20
3	LLA	0X ²⁺	24 h	31	4.4	7.9	1.27
4	CL	red	21 h	81	8.3	83	1.59
5	CL	ox⁺	24 h	11	N/A		
6	CL	0X ²⁺	24 h	0	N/A		
7	VL	red	10 h	82	N/A		
8	VL	ox⁺	24 h	32	N/A		
9	VL	0X ²⁺	24 h	7	N/A		
10	TMC	red	25 h	99	10	118	1.50
11	ТМС	OX ⁺	72 h	84	8.6	16	1.33
12	ТМС	0X ²⁺	72 h	40	N/A		
13	СНО	red	24 h	0	N/A		
14	СНО	OX^+	5 min	99	9.7	27	2.5
15	СНО	0X ²⁺	5 min	99	9.7	60	3.5
16 ^f	PO	red	24 h	0	N/A		
17 ^f	PO	OX ⁺	48 h	25	N/A		
18 ^f	РО	0X ²⁺	49 h	56	3.3	300	1.39

Table S1. Replication of homopolymerization results

^a All polymerization reactions were performed with 2.5 µmol precatalyst, 0.6 mL of C_6D_6 as the solvent, 200 equivalents of monomer, at ambient temperature unless otherwise mentioned; conversions were determined by ¹H NMR spectroscopy. ^b LLA stands for L-lactide, CL stands for ε -caprolactone, VL stands for δ -valerolactone, TMC stands for 1,3-trimethylene carbonate, CHO stands for cyclohexene oxide, and PO stands for propylene oxide. ^c "red" represents [(salfen)Y(OPh)]₂, "ox⁺" represents *in situ* generated [(salfen)Y(OPh)]₂⁺, and "ox²⁺" represents *in situ* generated [(salfen)Y(OPh)]₂²⁺. ^d M_{n,calc} is calculated based on initiation from both phenoxide groups, $M_{n,calc} = M_{monomer} \times 100 \times \text{conversion}$. ^e $M_{n,exp}$ were determined by SEC measurements. ^f Polymerization was conducted at 80 °C.

TGA traces

Figure S64. TGA trace for PLLA-PTMC copolymer (Table 2, entry 1)

Figure S65. TGA trace for PLLA-PTMC copolymer (Table 2, entry 2).

Figure S66. TGA trace for PLLA-PCHO copolymer (Table 2, entry 3).

Figure S67. TGA trace for PLLA-PCHO-PLLA copolymer (Table 2, entry 4).

Figure S68. TGA trace for PLLA-PCHO-PLLA copolymer (Table 2, entry 5).

Figure S69. TGA trace for PLLA-PTMC copolymer (Table 2, entry 6).

Figure S70. Thermal ellipsoid (50% probability) representation of the crystallographically independent molecules of [(salfen)Y(OPh)]₂ in the unit cell (CCDC# 2049815). Hydrogen atoms were omitted for clarity. Single crystals suitable for X-ray crystallography were grown from a hexanes solution. A total of 102675 reflections ($-17 \le h \le 17$, $-18 \le k \le 18$, $-39 \le l \le 39$) were collected at T = 100 K with $2\vartheta_{max} = 50.00^\circ$, of which 23299 were unique. The residual peak and hole electron density were 1.62 and -0.83 eA^{-3} . The least-squares refinement converged normally with residuals of $R_1 = 0.0550$ and GOF = 0.965. Crystal and refinement data for [(salfen)Y(OPh)]₂: formula C₉₂H₁₁₀Fe₂N₄O₆Y₂, space group P-1, a = 14.8170(17), b = 15.3498(18), c = 33.240(4) Å; $\alpha = 84.575(2)$, $\beta = 81.112(2)$, $\gamma = 62.305(2)^\circ$; V = 6611.2(13) Å³; Z = 3; $\lambda = 0.71073$ Å; $\mu = 1.678$ mm⁻¹; d_{calc} = 1.249 g·cm⁻³; F(000) = 2604, R1 = 0.1025 and wR2 = 0.1370 (based on all data, $I > 2\delta(I)$).