Electronic Supplementary Information

Convenient Synthesis of Polymetallic Metal-Organic Gels for

Efficient Methanol Electro-Oxidation

Yan-Jiang Wang[#], Jun-Hua Wei[#], Shuang Li*, Jia-Yang Luo, Xi-Wen Chang, Ya-Ya Sun, Qiu Pi, Ya-Pan Wu and Dong-sheng Li*

College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China.

E-mail address: <u>lishmail@126.com</u>; <u>lidongsheng1@126.com</u>.

S1: Additional characterization information

Fig. 1. MIL-53(Al)-MOG immersed in different pH environment for at least 24 h.

Fig. S2. FT-IR spectrums of the synthesized bimetallic and trimetallic MOGs.

Fig. S3. The survey XPS spectra of the AlNiCu-MOG. Besides, the molar ratio of Al: Ni: Cu is close to 1:1:1, which was determined by inductively coupled plasma measurement.

Fig. S4. CV curves for CH_3OH electro-oxidation of the bimetallic catalysts in the 0.1 M KOH with 1.0 M methanol.

Fig. S5. CV curves for CH_3OH electro-oxidation of the trimetallic catalysts in the 0.1 M KOH with 1.0 M methanol.

Fig. S6. The XRD patterns of the as-synthesized AB&AlNiCu-MOG (3:4) before and after MOR test.

Fig. S7. XPS spectra (a) survey, (b) Al 2p, (c) Ni 2p and (d) Cu 2p of AB&AlNiCu-MOG (3:4) composite material.

Fig. S8. (a) The linear relationship between current densities and square root of scan rates for AlNiCu-MOG and AB&AlNiCu-MOG composite materials. (b) Chronoamperometry plot of AB&AlNiCu-MOG (3:4) composite material in 0.1 M KOH with 1 M CH₃OH.

Fig. S9. XPS spectra (a) survey, (b) Al 2p, (c) Ni 2p and (d) Cu 2p of AB&AlNiCu-MOG (3:4) composite material after MOR test.

Fig. S10. SEM image of AB&AlNiCu-MOG (3:4) composite material (a) before and (b) after MOR stability measurements.

Electrode Materials	Scanning Rate (mV s ⁻¹)	Peak Current Density (mA cm ⁻ ²)	Electrolyte	Reference
Ni-P/RGO	50	16.4	1.0M KOH + 0.5M CH ₃ OH	1
Mn Doped Ni(OH) ₂	50	16.7	1.0M KOH + 0.5M CH ₃ OH	2
NiPtAu-SR _{Au} HNCs	50	31.52	1.0M KOH + 1.0M CH ₃ OH	3
NiO NTs-400	50	24.3	1.0M KOH + 0.5M CH ₃ OH	4
PtZn intermetallic NPs	50	1.15	0.1M KOH + 0.5M CH ₃ OH	5
Pt ₁ Ni ₁ /C	50	4.90	1.0M KOH + 1.0M CH ₃ OH	6
NiO-Ni-P	50	28.56	1.0M KOH + 0.5M CH ₃ OH	7
NiO-SnO ₂ /SO ₄ ²⁻	100	12.2	1.0M NaOH + 1.0M CH ₃ OH	8
5 wt. % GO/Co-MOF-71	50	29.1	1.0M KOH + 3.0M CH ₃ OH	9
AlNi-MOG	50	11.46	0.1M KOH + 1.0M CH ₃ OH	
AlNiCu-MOG	50	17.1	0.1M KOH + 1.0M CH ₃ OH	
AB&AlNiCu-MOG(1:4)	50	29.33	0.1M KOH + 1.0M CH ₃ OH	
AB&AlNiCu-MOG(2:4)	50	32.31	0.1M KOH + 1.0M CH ₃ OH	unis work
AB&AlNiCu-MOG(3:4)	50	33.24	0.1M KOH + 1.0M CH ₃ OH	
AB&AlNiCu-MOG(4:4)	50	29.41	0.1M KOH + 1.0M CH ₃ OH	

Table S1. Comparisons of MOR performance for various Ni-basedelectrocatalysts.

References

1. H. Zhang, C. Gu, M. Huang, X. Wang and J. Tu, Anchoring three-dimensional network structured Ni–P nanowires on reduced graphene oxide and their enhanced electrocatalytic activity towards methanol oxidation, *Electrochem. Commun.*, 2013, **35**, 108-111.

2. B. Dong, W. Li, X. Huang, Z. Ali, T. Zhang, Z. Yang and Y. Hou, Fabrication of hierarchical hollow Mn doped Ni(OH)₂ nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol, *Nano Energy*, 2019, **55**, 37-41.

3. C. Liu, Z. Chen, D. Rao, J. Zhang, Y. Liu, Y. Chen, Y. Deng and W. Hu, Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for

alkaline methanol oxidation, *Sci. China Mater.*, 2020. DOI: https://doi.org/10.1007/s40843-020-1460-y.

4. T. Wang, H. Huang, X. Wu, H. Yao, F. Li, P. Chen, P. Jin, Z. Deng and Y. Chen, Self-template synthesis of defect-rich NiO nanotubes as efficient electrocatalysts for methanol oxidation reaction, *Nanoscale*, 2019, **11**, 19783-19790.

5. Z. Qi, C. Xiao, C. Liu, T. W. Goh, L. Zhou, R. Maligal-Ganesh, Y. Pei, X. Li, L. A. Curtiss and W. Huang, Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction, *J. Am. Chem. Soc.*, 2017, **139**, 4762-4768.

6. S. Lu, H. Li, J. Sun and Z. Zhuang, Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles, *Nano Res.*, 2018, **11**, 2058-2068.

7. Y. Tong, C. Gu, J. Zhang, H. Tang, X. Wang and J. Tu, Thermal growth of NiO on interconnected Ni–P tube network for electrochemical oxidation of methanol in alkaline medium, *Int. J. Hydrogen Energ.*, 2016, **41**, 6342-6352.

8. Y. Gu, P. Gao, Z. Yu, Y. Hu, Z. Xu, C. Zhang, J. Li and Y. An, Honeycomb-like Mesoporous NiO–SnO₂/SO₄²⁻ Solid Superacid for the Efficient Reaction of Methanol Oxidation, *Int. J. Electrochem. Sci.*, 2020, **15**, 2481-2498.

9 R. Mehek, N. Iqbal, T. Noor, H. Nasir, Y. Mehmood and S. Ahmed, Novel Co-MOF/Graphene Oxide Electrocatalyst for Methanol Oxidation, *Electrochim. Acta*, 2017, **255**, 195-204.