Biological activity of bis(pyrazolylpyridine) and terpiridine Os(II) complexes in presence of biocompatible ionic liquids

Angelina Z. Petrović,^a Dušan C. Ćoćić,^a Dirk Bockfeld,^b Marko Živanović,^c Nevena Milivojević,^c Katarina Virijević,^c Nenad Janković,^c Andreas Scheurer,^d Milan Vraneš,^e Jovana V. Bogojeski^{a*}

^a University of Kragujevac, Faculty of Science, Radoja Domanovića 12,

34000 Kragujevac, Serbia

^b Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig,

Hagenring 30, 38106 Brauschweig, Germany

^cUniversity of Kragujevac, Institute for Information Technologies Kragujevac, Department

of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia

^d Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-

Nürnberg, 91058 Erlangen, Germany

^e Department of Chemistry, Biochemistry and Environmental Protection University of Novi

Sad, Faculty of Science, Trg Dositeja Obradovića 3, 21000 Novi Sad

*Corresponding author:

Dr. Jovana Bogojeski Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovića 12 Tel: +381(0)34336223

Fax: +381 (0)34 335040

e-mail: jovana.bogojeski@pmf.kg.ac.rs

CCDC	2045190			
Empirical formula	$C_{23}H_{39}Cl_2N_5O_3OsS_2$			
Formula weight	758.81			
Temperature	100(2) K			
Wavelength	1.54184 Å			
Instrument (scan mode)	XtaLAB Synergy, Single	source HyPix (ω scan)		
Crystal system	Orthorhombic			
Space group	Pbca			
Unit cell dimensions	a = 10.0149(3) Å	α= 90°		
	b = 19.5277(5) Å	β= 90°		
	c = 29.9561(9) Å	$\gamma = 90^{\circ}$		
Volume	5858.5(3) Å ³			
Ζ	8			
Density (calculated)	1.721 Mg/m ³			
Absorption coefficient	11.510 mm ⁻¹			
F(000)	3024			
Crystal habitus	needle (black)			
Crystal size	0.078 x 0.020 x 0.012 mm ³			
Theta range for data collection	4.529 to 77.572°			
Index ranges	-12<=h<=12, -24<=k<=23, -31<=l<=37			
Reflections collected	66071			
Independent reflections	6158 [R(int) = 0.0778]			
Completeness to theta = 67.684°	99.9 %			
Absorption correction	Gaussian			
Max. and min. transmission	0.962 and 0.529			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	6158 / 0 / 338			
Goodness-of-fit on F ²	1.041			
Final R indices [I>2 σ (I)]	R1 = 0.0348, WR2 = 0.0882			
R indices (all data)	R1 = 0.0432, wR2 = 0.092	25		
Largest diff. peak and hole	1.458 and -1.462 e.Å ⁻³			
Crystallisation Details:	from DMSO/water, r.t.			

Table S1. Crystal data and structure refinement of $[Os^{II}(H_2L^{tBut})Cl_2(dmso)] \cdot H_2O \cdot DMSO.$

()) - (- 1)					
	X	у	Z	U(eq)	
Os(1)	5575.7(2)	3487.9(2)	6423.0(2)	17.1(1)	
Cl(1)	3847.7(10)	4309.5(5)	6491.2(3)	23.6(2)	
Cl(2)	7146.3(10)	2593.6(5)	6359.0(3)	22.8(2)	
S(1)	5945.1(11)	3799.2(6)	5701.8(3)	23.6(2)	
O(1)	5150(4)	3503.1(19)	5333.6(12)	38.6(9)	
N(1)	3269(4)	2408.0(18)	6142.3(12)	21.4(7)	
N(2)	4064(4)	2739.5(18)	6428.6(11)	19.1(7)	
N(3)	5332(3)	3288.5(17)	7083.2(11)	16.6(7)	
N(4)	6915(3)	4129.7(17)	6686.7(11)	18.9(7)	
N(5)	7704(3)	4632.0(17)	6526.3(12)	19.7(7)	
C(1)	1332(5)	1601(2)	6102.1(15)	25.5(9)	
C(2)	609(5)	2068(3)	5773.1(18)	35.6(11)	
C(3)	2057(5)	1016(3)	5851.5(18)	35.7(11)	
C(4)	331(5)	1294(3)	6431.3(17)	31.9(11)	
C(5)	2354(4)	2019(2)	6355.5(14)	20.7(8)	
C(6)	2584(4)	2101(2)	6808.4(14)	21.1(8)	
C(7)	3653(4)	2551(2)	6844.0(13)	18.4(8)	
C(8)	4359(4)	2856(2)	7219.6(14)	19.1(8)	
C(9)	4124(4)	2762(2)	7669.9(14)	20.5(8)	
C(10)	4911(4)	3113(2)	7975.7(14)	20.2(8)	
C(11)	5926(4)	3552(2)	7829.3(15)	20.9(8)	
C(12)	6106(4)	3641.9(19)	7373.9(13)	17.1(8)	
C(13)	6995(4)	4117(2)	7149.4(13)	17.3(8)	
C(14)	7894(4)	4610(2)	7278.0(14)	20.2(8)	
C(15)	8288(4)	4926(2)	6876.8(14)	21.2(8)	
C(16)	9202(4)	5543(2)	6827.9(15)	22.6(9)	
C(17)	8661(6)	6109(2)	7133.9(17)	36.8(12)	
C(18)	10612(5)	5357(3)	6965(2)	46.7(15)	
C(19)	9194(5)	5806(3)	6348.8(17)	32.5(11)	
C(20)	5815(5)	4701(3)	5638.8(17)	32.3(11)	
C(21)	7658(5)	3706(3)	5553.8(17)	35.4(11)	
S(2)	6290.4(13)	732.0(7)	5097.8(5)	39.2(3)	
O(2)	4879(4)	936(2)	5184.9(13)	43.0(9)	
C(22)	7278(7)	1467(3)	5223(2)	51.0(15)	
C(23)	6478(7)	735(4)	4506(2)	62.6(19)	
O(3)	3924(4)	2270.9(19)	5266.1(12)	34.4(8)	

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Os(1)-N(4)	1.998(3)	C(9)-H(9)	0.9500
Os(1)-N(3)	2.031(3)	C(10)-C(11)	1.400(6)
Os(1)-N(2)	2.104(4)	C(10)-H(10)	0.9500
Os(1)-S(1)	2.2743(10)	C(11)-C(12)	1.387(6)
Os(1)-Cl(2)	2.3581(10)	C(11)-H(11)	0.9500
Os(1)-Cl(1)	2.3687(10)	C(12)-C(13)	1.451(6)
S(1)-O(1)	1.478(4)	C(13)-C(14)	1.374(6)
S(1)-C(20)	1.776(5)	C(14)-C(15)	1.407(6)
S(1)-C(21)	1.781(5)	C(14)-H(14)	0.9500
N(1)-N(2)	1.337(5)	C(15)-C(16)	1.520(6)
N(1)-C(5)	1.351(6)	C(16)-C(18)	1.516(6)
N(1)-H(1)	0.8800	C(16)-C(19)	1.524(7)
N(2)-C(7)	1.361(5)	C(16)-C(17)	1.533(6)
N(3)-C(8)	1.352(5)	C(17)-H(17A)	0.9800
N(3)-C(12)	1.355(5)	C(17)-H(17B)	0.9800
N(4)-N(5)	1.348(5)	C(17)-H(17C)	0.9800
N(4)-C(13)	1.389(5)	C(18)-H(18A)	0.9800
N(5)-C(15)	1.332(5)	C(18)-H(18B)	0.9800
N(5)-H(5)	0.8800	C(18)-H(18C)	0.9800
C(1)-C(5)	1.514(6)	C(19)-H(19A)	0.9800
C(1)-C(2)	1.526(7)	C(19)-H(19B)	0.9800
C(1)-C(4)	1.528(7)	C(19)-H(19C)	0.9800
C(1)-C(3)	1.548(6)	C(20)-H(20A)	0.9800
C(2)-H(2A)	0.9800	C(20)-H(20B)	0.9800
C(2)-H(2B)	0.9800	C(20)-H(20C)	0.9800
C(2)-H(2C)	0.9800	C(21)-H(21A)	0.9800
C(3)-H(3A)	0.9800	C(21)-H(21B)	0.9800
C(3)-H(3B)	0.9800	C(21)-H(21C)	0.9800
C(3)-H(3C)	0.9800	S(2)-O(2)	1.492(4)
C(4)-H(4A)	0.9800	S(2)-C(23)	1.782(7)
C(4)-H(4B)	0.9800	S(2)-C(22)	1.784(6)
C(4)-H(4C)	0.9800	C(22)-H(22A)	0.9800
C(5)-C(6)	1.386(6)	C(22)-H(22B)	0.9800
C(6)-C(7)	1.390(6)	C(22)-H(22C)	0.9800
C(6)-H(6)	0.9500	C(23)-H(23A)	0.9800
C(7)-C(8)	1.457(6)	C(23)-H(23B)	0.9800
C(8)-C(9)	1.382(6)	C(23)-H(23C)	0.9800
C(9)-C(10)	1.389(6)	O(3)-H(3D)	0.8509

 Table S3.
 Bond lengths [Å] and angles [°].

O(3)-H(3E)	0.8497	C(5)-C(1)-C(4)	109.3(4)
		C(2)-C(1)-C(4)	109.9(4)
N(4)-Os(1)-N(3)	79.39(14)	C(5)-C(1)-C(3)	108.9(4)
N(4)-Os(1)-N(2)	156.24(13)	C(2)-C(1)-C(3)	110.5(4)
N(3)-Os(1)-N(2)	76.85(13)	C(4)-C(1)-C(3)	109.4(4)
N(4)-Os(1)-S(1)	95.67(10)	C(1)-C(2)-H(2A)	109.5
N(3)-Os(1)-S(1)	174.85(10)	C(1)-C(2)-H(2B)	109.5
N(2)-Os(1)-S(1)	108.07(9)	H(2A)-C(2)-H(2B)	109.5
N(4)-Os(1)-Cl(2)	92.80(10)	C(1)-C(2)-H(2C)	109.5
N(3)-Os(1)-Cl(2)	91.00(10)	H(2A)-C(2)-H(2C)	109.5
N(2)-Os(1)-Cl(2)	88.07(10)	H(2B)-C(2)-H(2C)	109.5
S(1)-Os(1)-Cl(2)	90.70(4)	C(1)-C(3)-H(3A)	109.5
N(4)-Os(1)-Cl(1)	91.80(10)	C(1)-C(3)-H(3B)	109.5
N(3)-Os(1)-Cl(1)	87.58(10)	H(3A)-C(3)-H(3B)	109.5
N(2)-Os(1)-Cl(1)	86.79(10)	C(1)-C(3)-H(3C)	109.5
S(1)-Os(1)-Cl(1)	91.13(4)	H(3A)-C(3)-H(3C)	109.5
Cl(2)-Os(1)-Cl(1)	174.85(4)	H(3B)-C(3)-H(3C)	109.5
O(1)-S(1)-C(20)	105.6(2)	C(1)-C(4)-H(4A)	109.5
O(1)-S(1)-C(21)	107.0(2)	C(1)-C(4)-H(4B)	109.5
C(20)-S(1)-C(21)	98.4(3)	H(4A)-C(4)-H(4B)	109.5
O(1)-S(1)-Os(1)	121.11(15)	C(1)-C(4)-H(4C)	109.5
C(20)-S(1)-Os(1)	110.74(17)	H(4A)-C(4)-H(4C)	109.5
C(21)-S(1)-Os(1)	111.45(18)	H(4B)-C(4)-H(4C)	109.5
N(2)-N(1)-C(5)	111.9(3)	N(1)-C(5)-C(6)	106.6(4)
N(2)-N(1)-H(1)	124.1	N(1)-C(5)-C(1)	121.7(4)
C(5)-N(1)-H(1)	124.1	C(6)-C(5)-C(1)	131.7(4)
N(1)-N(2)-C(7)	106.0(3)	C(5)-C(6)-C(7)	106.0(4)
N(1)-N(2)-Os(1)	139.4(3)	C(5)-C(6)-H(6)	127.0
C(7)-N(2)-Os(1)	114.4(3)	C(7)-C(6)-H(6)	127.0
C(8)-N(3)-C(12)	122.4(4)	N(2)-C(7)-C(6)	109.5(4)
C(8)-N(3)-Os(1)	120.0(3)	N(2)-C(7)-C(8)	116.7(3)
C(12)-N(3)-Os(1)	117.4(3)	C(6)-C(7)-C(8)	133.8(4)
N(5)-N(4)-C(13)	109.6(3)	N(3)-C(8)-C(9)	120.1(4)
N(5)-N(4)-Os(1)	135.1(3)	N(3)-C(8)-C(7)	111.8(4)
C(13)-N(4)-Os(1)	114.9(3)	C(9)-C(8)-C(7)	128.1(4)
C(15)-N(5)-N(4)	106.9(3)	C(8)-C(9)-C(10)	118.8(4)
C(15)-N(5)-H(5)	126.6	C(8)-C(9)-H(9)	120.6
N(4)-N(5)-H(5)	126.6	C(10)-C(9)-H(9)	120.6
C(5)-C(1)-C(2)	108.8(4)	C(9)-C(10)-C(11)	120.5(4)

C(9)-C(10)-H(10)	119.8	C(16)-C(19)-H(19A)	109.5
С(11)-С(10)-Н(10)	119.8	C(16)-C(19)-H(19B)	109.5
C(12)-C(11)-C(10)	118.7(4)	H(19A)-C(19)-H(19B)	109.5
C(12)-C(11)-H(11)	120.7	C(16)-C(19)-H(19C)	109.5
C(10)-C(11)-H(11)	120.7	H(19A)-C(19)-H(19C)	109.5
N(3)-C(12)-C(11)	119.6(4)	H(19B)-C(19)-H(19C)	109.5
N(3)-C(12)-C(13)	112.2(3)	S(1)-C(20)-H(20A)	109.5
C(11)-C(12)-C(13)	128.1(4)	S(1)-C(20)-H(20B)	109.5
C(14)-C(13)-N(4)	107.7(3)	H(20A)-C(20)-H(20B)	109.5
C(14)-C(13)-C(12)	136.1(4)	S(1)-C(20)-H(20C)	109.5
N(4)-C(13)-C(12)	116.1(3)	H(20A)-C(20)-H(20C)	109.5
C(13)-C(14)-C(15)	104.6(4)	H(20B)-C(20)-H(20C)	109.5
C(13)-C(14)-H(14)	127.7	S(1)-C(21)-H(21A)	109.5
C(15)-C(14)-H(14)	127.7	S(1)-C(21)-H(21B)	109.5
N(5)-C(15)-C(14)	111.2(4)	H(21A)-C(21)-H(21B)	109.5
N(5)-C(15)-C(16)	122.0(4)	S(1)-C(21)-H(21C)	109.5
C(14)-C(15)-C(16)	126.8(4)	H(21A)-C(21)-H(21C)	109.5
C(18)-C(16)-C(15)	110.1(4)	H(21B)-C(21)-H(21C)	109.5
C(18)-C(16)-C(19)	109.9(4)	O(2)-S(2)-C(23)	105.9(3)
C(15)-C(16)-C(19)	110.8(4)	O(2)-S(2)-C(22)	105.9(3)
C(18)-C(16)-C(17)	109.8(4)	C(23)-S(2)-C(22)	98.5(3)
C(15)-C(16)-C(17)	107.5(4)	S(2)-C(22)-H(22A)	109.5
C(19)-C(16)-C(17)	108.6(4)	S(2)-C(22)-H(22B)	109.5
C(16)-C(17)-H(17A)	109.5	H(22A)-C(22)-H(22B)	109.5
C(16)-C(17)-H(17B)	109.5	S(2)-C(22)-H(22C)	109.5
H(17A)-C(17)-H(17B)	109.5	H(22A)-C(22)-H(22C)	109.5
C(16)-C(17)-H(17C)	109.5	H(22B)-C(22)-H(22C)	109.5
H(17A)-C(17)-H(17C)	109.5	S(2)-C(23)-H(23A)	109.5
H(17B)-C(17)-H(17C)	109.5	S(2)-C(23)-H(23B)	109.5
C(16)-C(18)-H(18A)	109.5	H(23A)-C(23)-H(23B)	109.5
C(16)-C(18)-H(18B)	109.5	S(2)-C(23)-H(23C)	109.5
H(18A)-C(18)-H(18B)	109.5	H(23A)-C(23)-H(23C)	109.5
C(16)-C(18)-H(18C)	109.5	H(23B)-C(23)-H(23C)	109.5
H(18A)-C(18)-H(18C)	109.5	H(3D)-O(3)-H(3E)	104.5
H(18B)-C(18)-H(18C)	109.5		

 Table S4.
 Torsion angles [°].

C(5)-N(1)-N(2)-C(7)	0.6(5)	N(5)-N(4)-C(13)-C(14)	-2.1(5)
C(5)-N(1)-N(2)-Os(1)	-173.0(3)	Os(1)-N(4)-C(13)-C(14)	-176.5(3)
C(13)-N(4)-N(5)-C(15)	0.9(4)	N(5)-N(4)-C(13)-C(12)	174.6(3)
Os(1)-N(4)-N(5)-C(15)	173.8(3)	Os(1)-N(4)-C(13)-C(12)	0.2(4)
N(2)-N(1)-C(5)-C(6)	-0.5(5)	N(3)-C(12)-C(13)-C(14)	175.2(5)
N(2)-N(1)-C(5)-C(1)	179.3(4)	C(11)-C(12)-C(13)-C(14)	-0.7(8)
C(2)-C(1)-C(5)-N(1)	-52.6(5)	N(3)-C(12)-C(13)-N(4)	-0.3(5)
C(4)-C(1)-C(5)-N(1)	-172.6(4)	C(11)-C(12)-C(13)-N(4)	-176.1(4)
C(3)-C(1)-C(5)-N(1)	67.9(5)	N(4)-C(13)-C(14)-C(15)	2.3(4)
C(2)-C(1)-C(5)-C(6)	127.2(5)	C(12)-C(13)-C(14)-C(15)	-173.4(5)
C(4)-C(1)-C(5)-C(6)	7.2(7)	N(4)-N(5)-C(15)-C(14)	0.6(5)
C(3)-C(1)-C(5)-C(6)	-112.2(5)	N(4)-N(5)-C(15)-C(16)	-176.7(4)
N(1)-C(5)-C(6)-C(7)	0.2(5)	C(13)-C(14)-C(15)-N(5)	-1.8(5)
C(1)-C(5)-C(6)-C(7)	-179.6(4)	C(13)-C(14)-C(15)-C(16)	175.3(4)
N(1)-N(2)-C(7)-C(6)	-0.4(5)	N(5)-C(15)-C(16)-C(18)	-115.1(5)
Os(1)-N(2)-C(7)-C(6)	175.0(3)	C(14)-C(15)-C(16)-C(18)	68.1(6)
N(1)-N(2)-C(7)-C(8)	-179.0(3)	N(5)-C(15)-C(16)-C(19)	6.7(6)
Os(1)-N(2)-C(7)-C(8)	-3.6(4)	C(14)-C(15)-C(16)-C(19)	-170.1(4)
C(5)-C(6)-C(7)-N(2)	0.1(5)	N(5)-C(15)-C(16)-C(17)	125.2(4)
C(5)-C(6)-C(7)-C(8)	178.4(4)	C(14)-C(15)-C(16)-C(17)	-51.6(6)
C(12)-N(3)-C(8)-C(9)	0.0(6)		
Os(1)-N(3)-C(8)-C(9)	-174.9(3)		
C(12)-N(3)-C(8)-C(7)	178.8(3)		
Os(1)-N(3)-C(8)-C(7)	3.8(4)		
N(2)-C(7)-C(8)-N(3)	0.0(5)		
C(6)-C(7)-C(8)-N(3)	-178.2(4)		
N(2)-C(7)-C(8)-C(9)	178.7(4)		
C(6)-C(7)-C(8)-C(9)	0.5(8)		
N(3)-C(8)-C(9)-C(10)	-0.6(6)		
C(7)-C(8)-C(9)-C(10)	-179.1(4)		
C(8)-C(9)-C(10)-C(11)	-0.3(6)		
C(9)-C(10)-C(11)-C(12)	1.7(6)		
C(8)-N(3)-C(12)-C(11)	1.4(6)		
Os(1)-N(3)-C(12)-C(11)	176.5(3)		
C(8)-N(3)-C(12)-C(13)	-174.8(3)		
Os(1)-N(3)-C(12)-C(13)	0.2(4)		
C(10)-C(11)-C(12)-N(3)	-2.2(6)		
C(10)-C(11)-C(12)-C(13)	173.4(4)		

 $[Os^{II}(H_2L^{tBut})Cl_2H_2O]$ (Os1) $10^4 k_2$ $10^{1}k_{1}$ [Cl⁻] ΔH_2^{\neq} ΔS_2^{\neq} *T*(K) kJ mol⁻¹ $M^{-1}s^{-1}$ $M^{-1}s^{-1}$ JK⁻¹mol⁻¹ / / L-Met 310 0.39 ± 0.02 1.04 ± 0.04 288 1.18 ± 0.36 0.57 ± 0.13 2.30 ± 0.24 0.13 ± 0.73 -154 ± 4 298 12 ± 1 **5'-GMP** 310 2.80 ± 0.28 0.65 ± 0.47 GSH 0.18 ± 0.02 0.87 ± 0.05 / / 310 [Os^{II}(Me₂L^{tBut})Cl₂H₂O] (Os2) $10^{1}k_{1}[Cl^{-}]$ $10^4 k_2$ ΔH_2^{\neq} ΔS_2^{\neq} *T*(K) $M^{-1}s^{-1}$ $M^{-1}s^{-1}$ kJ mol-1 JK⁻¹mol⁻¹ / L-Met 310 0.34 ± 0.02 0.57 ± 0.03 / 288 1.18 ± 0.10 1.68 ± 0.17 298 2.29 ± 0.25 5.64 ± 0.42 -102 ± 6 **5'-GMP** 28 ± 2 310 2.85 ± 0.18 6.31 ± 0.29 0.20 ± 0.02 0.77 ± 0.04 / / GSH 310 [Os^{II}(terpy)Cl₂H₂O] (Os3) $10^4 k_2$ $10^{1}k_{l}$ [Cl⁻] ΔH_2^{\neq} ΔS_2^{\neq} *T*(K) $M^{-1}s^{-1}$ $M^{-1}s^{-1}$ kJ mol⁻¹ JK⁻¹mol⁻¹ L-Met 0.12 ± 0.02 0.24 ± 0.03 / / 310 288 1.13 ± 0.10 1.69 ± 0.16 **5'-GMP** 298 1.47 ± 0.11 1.97 ± 0.19 -157 ± 7 12 ± 2 310 1.76 ± 0.15 2.34 ± 0.25 GSH 310 0.17 ± 0.01 0.10 ± 0.03 / /

Table S5. The constant rates of the substitution reactions of the **Os1-3** complexes with L-Met, 5'-GMP, and GSH at pH = 7.2 (25 mM Hepes buffer/50 mM NaCl).

CT-DNA	Ref.
$10^4 K_{\rm b} [{ m M}^{-1}]$	
1.43 ± 0.1	This paper
1.30 ± 0.1	This paper
1.42 ± 0.1	This paper
9.7 ± 0.1	59
7.0 ± 0.1	24
	CT-DNA $10^4 K_b [M^{-1}]$ 1.43 ± 0.1 1.30 ± 0.1 1.42 ± 0.1 9.7 ± 0.1 7.0 ± 0.1

Table S6. DNA binding constants (K_b) for the examined osmium complexes and structurally similar rhodium complexes.

Table S7. Values of Stern-Volmers constants, K_{sv} , for the examined osmium complexes for fluorescence titrations with CT-DNA/EB (concentration CT-DNA/EB 5µM, ratio complex: DNA was 0.5-5) in the presence of different ionic liquids, IL1-8. Complex-ionic liquids ratio was 1:1, all reactions were performed in PBS.

	Os1	Os2	Os3
	$10^4 K_{SV} [M^{-1}]$	$10^4 K_{SV} [M^{-1}]$	$10^4 K_{SV} [M^{-1}]$
In absence of IL	4.41 ± 0.1	2.85 ± 0.1	2.63 ± 0.1
IL1	3.46 ± 0.1	3.43 ± 0.1	3.24 ± 0.1
IL2	3.71 ± 0.1	3.66 ± 0.1	3.58 ± 0.1
IL3	3.51 ± 0.1	3.08 ± 0.1	3.22 ± 0.1
IL4	3.19 ± 0.1	2.54 ± 0.1	3.11 ± 0.1
IL5	3.15 ± 0.1	2.58 ± 0.1	2.76 ± 0.1
IL6	2.86 ± 0.1	2.10 ± 0.1	2.61 ± 0.1
IL7	3.37 ± 0.1	3.09 ± 0.1	3.39 ± 0.1
IL8	3.10 ± 0.1	2.34 ± 0.1	3.06 ± 0.1

Table S8. Values of Stern-Volmers constants, K_b , quenching rate constants k_q , number of binding
sites, n, and coloration factor, R, for the examined osmium complexes to HAS molecule.

	$10^4 K_b [M^{-1}]$	$10^{13} k_q [M^{-1}]$	n	R
[Os ^{II} (H ₂ L ^{tBut})Cl ₂ H ₂ O](Os1)	5.98 ± 0.1	9.74 ± 0.1	1.02	0.9921
$[Os^{II}(Me_2L^{tBut})Cl_2H_2O] (Os2)$	5.17 ± 0.1	8.43 ± 0.1	0.98	0.9901
[Os ^{II} (terpy)Cl ₂ H ₂ O] (Os3)	4.56 ± 0.1	7.43 ± 0.1	1.03	0.9893

 Table S9. FRET results between complexes Os1-3 and HSA.

Complex	J^a [nm ⁴ /Mcm]	E^b	$R_0{}^c$ [Å]	r^{d} [Å]
Os1	5.01 x 10 ⁹	0.33	4.71	5.32
Os2	2.02 x 10 ⁹	0.27	4.05	4.76
Os3	8.28 x 10 ⁸	0.25	3.49	4.21

^{*a*} Overlap integral

^b Energy transfer efficiency

 c Förster's distance at which energy transfer is 50% efficient

^{*d*} D-A distance

Serum albumin docking						Interaction with amino acids	residues ^b
PDB ID of SA	Binding site	MolDock	Rerank	HBond	Docking	Steric	Hydrogen bond
1AO6 –	I ^a I ^b	-123.94 -115.34	-74.59 -72.65	0 -0.14	-121.88 -166.69	Phe-206, Trp-214, Ala-213	Arg-209
albumin	П ^а П. ^b	-97.31 -93.57	-51.13 -50.16	0 -0.32	-87.69 -81.17	Leu-391, Arg-485, Tyr-411, Phe-403, Asn-391, Iln-388,	Tyr-411

Table S10. Top-score values for investigated complex **Os1** with HSA proteins, with most pronounced interacting amino acid residues.

^aBest complex pose according to MolDock, Docking, and Rerank scoring functions.

^bBest complex pose according to Hbond scoring function.

Fig. S1. a) Emission spectra of human serum albumin (2 μ M; λ ex = 295 nm; λ em = 365 nm) in the presence of the examined **Os1** complex, ratio complex : serum albumin was 1-10. b) Emission spectra of the examined **Os1** complex in the same concentrations as in spectra recorded with HSA c) Emission spectra of human serum albumin (2 μ M; λ ex = 295 nm; λ em = 365 nm) in the presence of the examined **Os1** complex, corrected for the emission spectra of the complex, ratio complex : serum albumin was 1-10. Insert graph: The dependence of I₀/I on the concentration [Q] (Q =

complex). Arrows show changes in intensity after adding solutions of the growing concentration complex.

Fig. S2. a) Emission spectra of human serum albumin (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of the examined **Os2** complex, ratio complex : serum albumin was 1-10. b) Emission spectra of the examined **Os2** complex in the same concentrations as in spectra recorded with HSA c) Emission spectra of human serum albumin (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of the examined **Os2** complex, corrected for the emission spectra of the complex, ratio complex : serum albumin was 1-10. Insert graph: The dependence of I₀/I on the concentration [Q] (Q = complex). Arrows show changes in intensity after adding solutions of the growing concentration complex.

Fig. S3. a) Emission spectra of human serum albumin (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of the examined **Os3** complex, ratio complex : serum albumin was 1-10. b) Emission spectra of the examined **Os3** complex in the same concentrations as in spectra recorded with HSA c) Emission spectra of human serum albumin (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of the examined **Os3** complex, corrected for the emission spectra of the complex, ratio complex : serum albumin was 1-10. Insert graph: The dependence of I₀/I on the concentration [Q] (Q = complex). Arrows show changes in intensity after adding solutions of the growing concentration complex.

Fig. S4. Dependency log [(Io-I) / I] of log [Q] for the interaction between the examined **Os1-3** complexes and HSA; Q = (Complex**Os1-3**).

Fig. S5. a) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Eosine Y and the examined Os1 complex, ratio complex : serum albumin was 1-10. Site marker Eosin Y was added in the same concentration as HSA, ratio was 1:1. b) Emission spectra of the examined Os1 complex in the same concentrations as in spectra recorded with HAS and Eosine Y c) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Eosine Y the examined Os1 complex, corrected for the emission spectra of the complex, ratio complex : serum albumin was 1-10. Site marker Eosin Y was added in the same concentration as HSA, ratio was 1:1. Insert graph: The dependence of I₀/I on the concentration [Q] (Q = complex). Arrows show changes in intensity after adding solutions of the growing concentration complex.

Fig. S6. a) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Eosine Y and the examined Os2 complex, ratio complex : serum albumin was 1-10. Site marker Eosin Y was added in the same concentration as HSA, ratio was 1:1. b) Emission spectra of the examined Os2 complex in the same concentrations as in spectra recorded with HAS and Eosine Y c) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Eosine Y the examined Os2 complex, corrected for the emission spectra of the complex, ratio complex : serum albumin was 1-10. Site marker Eosin Y was added in the same concentration as HSA, ratio was 1:1. Insert graph: The dependence of I₀/I on the concentration [Q] (Q = complex). Arrows show changes in intensity after adding solutions of the growing concentration complex.

Fig. S7. a) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Eosine Y and the examined Os3 complex, ratio complex : serum albumin was 1-10. Site marker Eosin Y was added in the same concentration as HSA, ratio was 1:1. b) Emission spectra of the examined Os3 complex in the same concentrations as in spectra recorded with HAS and Eosine Y c) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Eosine Y the examined Os3 complex, corrected for the emission spectra of the complex, ratio complex : serum albumin was 1-10. Site marker Eosin Y was added in the same concentration as HSA, ratio was added in the same concentration as HSA, ratio was 1:1. Insert graph: The dependence of I₀/I on the concentration [Q] (Q = complex). Arrows show changes in intensity after adding solutions of the growing concentration complex.

Fig. S8. a) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Ibuprofen and the examined **Os1** complex, ratio complex : human serum albumin was 1-10. Site marker Ibuprofen was added in the same concentration as HSA, ratio was 1:1. b) Emission spectra of the examined **Os1** complex in the same concentrations as in spectra recorded with HAS and Ibuprofen c) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Ibuprofen the examined **Os1** complex, corrected for the emission spectra of the complex, ratio complex : serum albumin was 1-10. Site marker Ibuprofen was added in the same concentration as HSA, ratio was 1:1. Insert graph: The dependence of I₀/I on the concentration [Q] (Q = complex). Arrows show changes in intensity after adding solutions of the growing concentration complex.

Fig. S9. a) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Ibuprofen and the examined **Os2** complex, ratio complex : human serum albumin was 1-10. Site marker Ibuprofen was added in the same concentration as HSA, ratio was 1:1. b) Emission spectra of the examined **Os2** complex in the same concentrations as in spectra recorded with HAS and Ibuprofen c) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Ibuprofen the examined **Os2** complex, corrected for the emission spectra of the complex, ratio complex : serum albumin was 1-10. Site marker Ibuprofen was added in the same concentration as HSA, ratio was 1:1. Insert graph: The dependence of I₀/I on the concentration [Q] (Q = complex). Arrows show changes in intensity after adding solutions of the growing concentration complex.

Fig. S10. a) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Ibuprofen and the examined Os3 complex, ratio complex : human serum albumin was 1-10. Site marker Ibuprofen was added in the same concentration as HSA, ratio was 1:1. b) Emission spectra of the examined Os3 complex in the same concentrations as in spectra recorded with HAS and Ibuprofen c) Emission spectra of HSA (2 μ M; λ ex ,= 295 nm; λ em = 365 nm) in the presence of site marker Ibuprofen the examined Os3 complex, corrected for the emission spectra of the complex, ratio complex : serum albumin was 1-10. Site marker Ibuprofen was added in the same concentration as HSA, ratio was 1:1. Insert graph: The dependence of I₀/I on the concentration [Q] (Q = complex). Arrows show changes in intensity after adding solutions of the growing concentration complex.

Fig. S11. The overlap of the absorption spectrum of a complexes **Os1-3** and fluorescence spectrum of HSA. The ration of **Os1-3** complexes and HAS is 1:1.

Fig. S12. Cell viability after 24h and 72h of exposure, expressed in percentages of viable cells.

Fig. S13. E \square ects of **Os1-3** complexes on HCT-116, SW-480, Hela and MRC-5 cell lines, expressed as the O₂⁻⁻ concentration after 24h and 72h of exposure.

Fig. S14. $E \square$ ects of **Os1-3** complexes on HCT-116, SW-480, Hela and MRC-5 cell lines, expressed as the NO₂⁻ concentration after 24h and 72h of exposure.

Fig. S15. $E \square$ ects of **Os1-3** complexes on HCT-116, SW-480, Hela and MRC-5 cell lines, expressed as the GSH concentration after 24h and 72h of exposure.

Fig. S16. ¹H NMR and ¹³C NMR spectra of IL4

¹H (D₂O): 1.67 (*m*, 2H, C**H**₂CH₂COO⁻), 2.17 (*t*, 2H, C**H**₂COO⁻), 2.60 (t, 2H, C**H**₂NH₂), 3.19 (bs, 9H, N(C**H**₃)₃), 3.50 (*m*, 2H, C**H**₂N(CH₃)₃), 4.04 (*m*, 2H, C**H**₂OH).

¹³C (D₂O): 31.64 (*C*H₂CH₂COO⁻), 38.00 (*C*H₂COO⁻), 43.34 (*C*H₂NH₂), 56.67, 56.71, 56.75 (N(*C*H₃)₃), 58.42 (HO*C*H₂CH₂N(CH₃)₃), 70.27, 70.30, 70.33 (*C*H₂N(CH₃)₃), 185.97 (C=O).

¹H NMR (D₂O): 3.12 (bs, 9H, N(C**H**₃)₃), 3.52 (*m*, 2H, C**H**₂N(CH₃)₃), 4.07 (*m*, 2H, C**H**₂OH), 7.31, 7.38 and 7.41 (2xs, 5H, H-6, H-7, H-8, H-9, H-10); 7.61 and 7.67 (2*xs*. 2H. H-4 and H-5)

¹³C NMR (D₂O): 55.21, 56.09, 56.34 (N(CH_3)₃), 59.26 (HO CH_2 CH₂N(CH₃)₃), 70.35 (CH_2 N(CH₃)₃), 124.34 i 125.65 (C-4 i C-5); 129.65 (C-6); 130.21 (C-7), 130.86 (C-8), 135.11 (d. C-2), 141.73 (C-9) and 174.05 (COO^-)

Fig. S18. ¹H NMR and ¹³C NMR spectra of IL7

¹H NMR (D₂O):): 3.12 (bs, 9H, N(CH₃)₃), 3.71 (*m*, 2H, CH₂N(CH₃)₃), 4.19 (*m*, 2H, CH₂OH), 5.81 and 6.04 (*bs* 6H, O-CH₃), 7.41 and 7.53 (2*xs*, 2H, H-1' i H-2'), 7.74 (*dd*, 1H, C-OH)

¹³C NMR (D₂O): 55.33, 55.49, 55.84 (N(CH₃)₃), 59.26 (HOCH₂CH₂N(CH₃)₃), 71.04 ($CH_2N(CH_3)_3$), 106.23 and 106.33 (O-CH₃), 118.09 (C-3'), 119.22 (C-1'), 122.23 (C-5'), 135.33 (C-6'), 137.36 (C-4'), 139.41 (C-2'), 165.44 (C-7').

Fig. S19. ¹H NMR and ¹³C NMR spectra of IL8

¹H NMR (D₂O):): 3.08 (bs, 9H, N(CH₃)₃), 3.65 (*m*, 2H, CH₂N(CH₃)₃), 4.12 (*m*, 2H, CH₂OH), 6.83 (*d*, 1H, $J_{3',4'}$ = 8.2 Hz, H-1'), 6.89 (t, 1H, J= 7.5 Hz, H-5'), 7.27 and 7.36 (2*xs*, 2H, H-2' i H-4'), 7.74 (*dd*, 1H, $J_{4',6'}$ = 1.3 Hz, $J_{5',6'}$ = 7.8 Hz H-3').

¹³C NMR (D₂O): 54.93, 55.29, 55.74 (N(CH₃)₃), 58.83 (HOCH₂CH₂N(CH₃)₃), 70.02 ($CH_2N(CH_3)_3$), 121.09 (C-3'), 123.22 (C-1'), 124.23 (C-5'), 130.33 (C-6'), 133.79 (C-4'), 135.41 (C-2'), 162.21 (C-7').

Fig. S20. Absorption and emission spectra of Os1-3 complexes in water/dmf solution.