Supporting Information Spatially separated bimetallic cocatalysts over hollow-structured TiO₂ for photocatalytic hydrogen generation

Ping She,^a Jun-sheng Qin,^{a,b} Heng Rao,^{a,b} Buyuan Guan,^{a,b} Jihong Yu^{*a,b} *Corresponding author email: jihong@jlu.edu.cn

Dr. Ping She, Prof. Junsheng Qin, Dr. Heng Rao, Prof. Puyuan Guan, Prof. Jihong Yu

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry,

Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.

^b International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.

Fig. S1. SEM images of S1 (a), S1@TiO₂ (b), hollow TiO₂ (c), Pd@S1@TiO₂ (d), Pd@TiO₂ (e) and Pd@TiO₂@Au (f) in low magnification.

Fig. S2. TEM images of hollow TiO₂@Au (a) and Au-im/Pd@S1 (b).

Fig. S3. SEM images of TiO_2 nanoparticles. (b) enlarged image of (a).

Fig. S4. Elemental mapping images of $Pd@TiO_2$ (a-e) and sandwiched-like $Pd@TiO_2@Au$ (f-j)

Fig. S5. XRD profiles of S1 andPd@S1.

Fig. S6. XRD profiles of Pd@S1@TiO₂.

Fig. S7. XRD profiles of TiO₂ NPs and hollow TiO₂.

Fig. S8. Photocatalytic H_2 evolution by $TiO_2 NP_S$.

Fig. S9. TEM images of hollow TiO₂@Pt (a) and Pt-im/Pd@S1 (b).

Fig. S10. Elemental mapping images of $Pd@TiO_2@Pt$: (a) and (f) the corresponding mixed elemental mapping of SEM and TEM images. The insets are the corresponding SEM and TEM images; (b, g) Pd mapping images; (c, h) Ti mapping images; (d, i) O mapping images; (e, j) Pt mapping images.

Fig. S11. Photocatalytic H₂ generation over Pd@TiO₂ and Pd-im@TiO₂.

Fig. S12. Time courses of H₂ generation over Pd@TiO₂@Au catalyst. Catalytic condition: catalysts: (10 mg), light source: Xenon lamp (300W) with a bandpass filter (λ =380 nm).

Photocatalyst	H ₂ evolution rate	Photocatalytic condition	Ref.
	$(\mu mol g^{-1} h^{-1})$	(irradiation range, sacrificial reagent, light	
		source)	
Pd@TiO ₂ @Au	27231	(λ=200-1100 nm, methanol, 250 mW/cm ²)	This work
Pd@TiO ₂ @Pt	64859	$(\lambda = 200-1100 \text{ nm}, \text{ methanol}, 250 \text{ mW/cm}^2)$	This work
RuO ₂ @TiO ₂ @Pt	4100	$(\lambda = 365 \text{ nm, methanol})$	[S1]
Au@TiO ₂	4900	$(\lambda = 200-1100 \text{ nm}, \text{ methanol}, 300 \text{ W Xe-lamp})$	[S2]
Fe ₂ O ₃ /TiO ₂ /Pt	625	$(\lambda > 420 \text{ nm}, \text{triethylamine}, 450 \text{ W Xe-lamp})$	[S3]
Janus Au-TiO ₂	2.0 mL min ⁻¹	$(\lambda > 400 \text{ nm}, \text{ isopropyl alcohol}, 500 \text{ W tungsten}$ halogen lamp)	[S4]
CoO _x /TiO ₂ /Pt	7883	(UV light, methanol, 300 W Xe lamp)	[85]
Mg-TiO ₂	666	(300-W xenon lamp, pure water)	[S6]
TiO_2 - C_3N_4	770	(λ =200-2500 nm, triethanolamine,150 W Xe	[S7]
		lamp)	
NiO/rGO/TiO ₂	240	(300-W xenon lamp, methanol,100 mW/cm ²)	[S8]
Pt/TiO ₂ /rGO	1076	(A full spectrum solar simulator, triethanolamine,	[S9]
		1 sun power by CELS500)	

Table S1. Summary of the photocatalytic hydrogen generation properties of TiO_2 based photocatalysts reported in this work and recent literature works.

References

[S1] B. Cao, G.S. Li, H.X. Li, Hollow spherical RuO₂@TiO₂@Pt bifunctional photocatalyst for coupled H₂ production and pollutant degradation, Appl Catal B-Environ, 194 (2016) 42-49.

[S2] Q.R. He, H. Sun, Y.X. Shang, Y.N. Tang, P. She, S. Zeng, K.L. Xu, G.L. Lu, S. Liang, S.Y. Yin, Z.N. Liu, Au@TiO₂ yolk-shell nanostructures for enhanced performance in both photoelectric and photocatalytic solar conversion, Appl Surf Sci, 441 (2018) 458-465.

[S3] K.E. deKrafft, C. Wang, W.B. Lin, Metal-organic framework templated synthesis of Fe_2O_3/TiO_2 nanocomposite for hydrogen production, Adv Mater, 24 (2012) 2014-2018.

[S4] Z.W. Seh, S.H. Liu, M. Low, S.Y. Zhang, Z.L. Liu, A. Mlayah, M.Y. Han, Janus Au-TiO₂ photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation, Adv Mater, 24 (2012) 2310-2314.

[S5] J.K. Zhang, Z.B. Yu, Z. Gao, H.B. Ge, S.C. Zhao, C.Q. Chen, S. Chen, X.L. Tong, M.H. Wang, Z.F. Zheng, Y. Qin, Porous TiO_2 nanotubes with spatially separated platinum and CoO_x cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production, Angew Chem Int Ed., 56 (2017) 816-820.

[S6] L.J. Gao, Y.G. Li, J.B. Ren, S.F. Wang, R.N. Wang, G.S. Fu, Y. Hu, Passivation of defect states in anatase TiO₂ hollow spheres with Mg doping: realizing efficient photocatalytic overall water splitting, Appl Catal B-Environ, 202 (2017) 127-133.

[S7] J.Q. Yan, H. Wu, H. Chen, Y.X. Zhang, F.X. Zhang, S.F. Liu, Fabrication of TiO_2/C_3N_4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting, Appl Catal B-Environ, 191 (2016) 130-137.

[S8] X. Yu, J. Zhang, Z.H. Zhao, W.B. Guo, J.C. Qiu, X.N. Mou, A.X. Li, J.P. Claverie, H. Liu, NiO-TiO₂ p-n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting, Nano Energy, 16 (2015) 207-217.

[S9] P.F. Wang, S.H. Zhan, Y.G. Xia, S.L. Ma, Q.X. Zhou, Y. Li, The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO₂ nanocomposite for high-performance photocatalytic water splitting, Appl Catal B-Environ, 207 (2017) 335-346.