Electronic Supporting Information

Highly Active Hydrogen Evolution Catalysis on Oxygen-Deficient Double-Perovskite Oxide PrBaCo₂O_{6-δ}

H. Togano,¹ K. Asai,¹ S. Oda,¹ H. Ikeno,¹ S. Kawaguchi,² K. Oka,³ K. Wada,⁴ S. Yagi,⁵ I. Yamada,^{1*}

¹Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
²Japan Synchrotron Radiation Research Institute (JASRI), 1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
³Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
⁴Fuji Die Co., Ltd., 36-1 Hirasawa, Hadano, Kanagawa 257-0015, Japan
⁵Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Compound	δ	$A_{s} (m^{2} g^{-1})$				
PBCO _{5.15}	0.85(3)	1.01				
PBCO _{5.5}	0.49(5)	1.17				
PBCO _{5.7}	0.31(8)	1.71				
PBCO _{5.8}	0.21(3)	0.47				
PBCO _{5.9}	0.09(1)	1.54				
PBCO ₆	-0.01(7)	1.27				

Table S1. Oxygen deficiency content determined by iodometry (δ) and specific surface areas determined by BET analysis of Kr gas adsorption data (A_s) for PBCO_{6- δ}.

	PBCO ₆	PBCO _{5.9}	PBCO _{5.8}	PBCO _{5.7}	PBCO _{5.15}
Space group	P4/mmm	P4/mmm	P4/mmm	P4/mmm	P4/mmm
<i>a</i> (Å)	3.87998(9)	3.88653(14)	3.90985(3)	3.90541(10)	3.95064(7)
<i>c</i> (Å)	7.6684(2)	7.6641(3)	7.63046(5)	7.63559(2)	7.60207(13)
<i>z</i> (Co)	0.2487(4)	0.2493(7)	0.24977(16)	0.2486(4)	0.2472(3)
z (O3)	0.2323(7)	0.2287(10)	0.2207(3)	0.2219(5)	0.2034(5)
g (O1)	1	0.86(2)	0.775(7)	0.796(14)	0.175(13)
Uiso(Pr)×1000 (Å ²)	2.98(10) ^a	4.9(9)	8.6(2)	4.28(11) ^a	5.1(3)
Uiso(Ba)×1000 (Å ²)	2.98(10) ^a	1.3(9)	4.2(2)	4.28(11) ^a	7.1(4)
U _{iso} (Co)×1000 (Å ²)	1.96(14)	1.7(2)	3.53(9)	1.70(15)	4.9(2)
Uiso(O1)×1000 (Å ²)	$9.6(5)^{a}$	$1.02(10)^{b}$	11.2(4) ^c	$8.4(7)^{a}$	13.3(9) ^b
Uiso(O2)×1000 (Å ²)	9.6(5) ^a	$10.2(10)^{b}$	11.2(4) ^c	$8.4(7)^{a}$	13.3(9) ^b
Uiso(O3)×1000 (Å ²)	9.6(5) ^a	$10.2(10)^{b}$	11.2(4) ^c	$8.4(7)^{a}$	13.3(9) ^b
R_{wp} (%)	7.362	11.057	5276	6.285	10.992
<i>R</i> _B (%)	1.671	1.900	0.997	1.948	1.807
S	1.1920	1.6239	1.3234	0.7253	1.2549

Table S2. Structure parameters obtained from Rietveld refinement of synchrotron XRD for PBCO_{6- δ} (δ = 0, 0.1, 0.2, 0.3, and 0.85).

Atomic sites: Pr 1*a* (0, 0, 0), Ba 1*b* (0, 0, $\frac{1}{2}$), Co 2*h* ($\frac{1}{2}$, $\frac{1}{2}$, *z*), O1 1*c* ($\frac{1}{2}$, $\frac{1}{2}$, 0), O2 1*d* ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$), O3 4*i* (0, $\frac{1}{2}$, *z*); The occupancy factors *g* for Pr, Ba, Co, O2, and O3 sites were fixed at unity.

^{*a*}The following constraints were adopted for PBCO₆ and PBCO_{5.7}: $U_{iso}(Pr) = U_{iso}(Ba)$; $U_{iso}(O1) = U_{iso}(O2) = U_{iso}(O3)$.

^{*b*}The following constraints were adopted for PBCO_{5.9}, PBCO_{5.8}: $U_{iso}(O1) = U_{iso}(O2) = U_{iso}(O3)$.

	site	g	x	у	Ζ	Uiso×1000 (Å ²)
Pr1	2 <i>t</i>	1^a	¹ / ₂	¹ / ₂	0.26762(16)	3.1(3)
Bal	2 <i>s</i>	1^a	¹ / ₂	0	0.5145(15)	4.7(4)
Col	2 <i>n</i>	1^a	0	0.2504(5)	¹ / ₂	$3.2(3)^b$
Co2	2 <i>m</i>	1^a	0	0.2516(5)	0	$3.2(3)^b$
01	1 <i>a</i>	1^a	0	0	0	$10.5(10)^{b}$
O2	1 <i>c</i>	1^a	0	0	¹ / ₂	$10.5(10)^{b}$
O3	1 <i>g</i>	0.90(2)	0	¹ / ₂	¹ / ₂	$10.5(10)^{b}$
O4	1 <i>e</i>	0.06(2)	0	¹ / ₂	0	$10.5(10)^{b}$
05	20	1^a	¹ / ₂	0.3090(17)	0	$10.5(10)^{b}$
O6	2 <i>p</i>	1^a	1/2	0.2751(19)	1/2	$10.5(10)^{b}$
O7	4 <i>u</i>	1^a	0	0.2407(10)	0.2841(12)	$10.5(10)^{b}$

Table S3. Structure parameters obtained from Rietveld refinement of synchrotron XRD for PBCO_{5.5}.

Space group: *Pmmm* (No. 47); a = 3.90927(8) Å, b = 7.88417(18) Å, c = 7.60315(16) Å; $R_{wp} = 10.648\%$, $R_{B} = 1.786\%$, S = 1.2905.

^{*a*}The occupancy factors for Pr1, Ba1, Co1, Co2, O1, O2, O5, O6, and O7 sites were fixed to the unity.

^bThe following constraints were adopted: $U_{iso}(Co1) = U_{iso}(Co2)$; $U_{iso}(O1) = U_{iso}(O2) = U_{iso}(O3)$ = $U_{iso}(O4) = U_{iso}(O5) = U_{iso}(O6) = U_{iso}(O7)$.

Figure S1. Rietveld refinement results of the SXRD for PBCO_{6- δ} ($\delta = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.85$). Circles (black) and solid lines (red) represent observed and calculated patterns, respectively. The difference between the observed and calculated patterns is shown at the bottom (blue). The vertical marks (green) indicate the Bragg reflection positions of PBCO_{6- δ}.

Figure S2. Total and partial density of states (DOS) in wide range for PBCO_{6- δ} obtained from DFT calculation: (a) $\delta = 1$, (b) $\delta = 0.5$, and (c) $\delta = 0$.

Figure S3. (a) Chronopotentiogram for PBCO_{5.8} measured in 1 M KOH aqueous solution at $-10 \text{ mA cm}^{-2}_{\text{disk}}$. (b) Continuous cyclic voltammograms (cathodic scans only) for PBCO_{5.8} at 1st, 3rd, 10th, 50th, and 100th cycle.

Figure S4. Equivalent circuit for fitting the EIS data. R_s : electrolyte resistance, R_{int} : interface resistance, R_{ct} : charge-transfer resistance, C_1 : capacitance arisen from the interface, and C_2 : capacitance generated from the Faradic process.